Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Genotypic Data
2.3. Growth Chamber Trial
2.4. Experimental Design
2.5. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- John, A. Improving suboptimal temperature tolerance in maize—The search for variation. J. Exp. Bot. 1996, 7, 307–323. [Google Scholar]
- Revilla, P.; Butrón, A.; Cartea, M.E.; Malvar, R.A.; Ordás, A. Breeding for cold tolerance. In Abiotic Stresses. Plant Resistance through Breeding and MOLECULAR Approaches; Ashraf, M., Harris, P., Eds.; The Haworth Press: New York, NY, USA, 2005; pp. 301–398. [Google Scholar]
- Strigens, A.; Grieder, C.; Haussmann, B.; Melchinger, A.E. Genetic variation among inbred lines and testcrosses of maize for early growth parameters and their relationship to final dry matter yield. Crop Sci. 2012, 52, 1084–1092. [Google Scholar] [CrossRef] [Green Version]
- Frascaroli, E.; Revilla, P. Genomics of cold tolerance in maize. In The Maize Genome; Bennetzen, J., Flint-Garcia, S., Hirsch, C., Tuberosa, R., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 287–303. [Google Scholar]
- Yi, Q.; Malvar, R.A.; Álvarez-Iglesias, L.; Ordás, B.; Revilla, P. Dissecting the genetics of cold tolerance in a multiparental maize population. Theor. Appl. Genet. 2020, 133, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Yi, Q.; Álvarez-Iglesias, L.; Malvar, R.A.; Romay, M.C.; Revilla, P. A worldwide maize panel revealed large genetic variation for cold tolerance. Theor. Appl. Genet. 2021, 134, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Hussain, M.; Luo, D.; Tang, N. Current understanding of genetic and molecular basis of cold tolerance in rice. Mol. Breed 2019, 39, 159. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, J.; Han, B.; Huang, X. Advances in genome-wide association studies of complex traits in rice. Theor. Appl. Genet. 2019, 133, 1415–1425. [Google Scholar] [CrossRef]
- Revilla, P.; Malvar, R.A.; Cartea, M.E.; Butrón, A.; Ordás, A. Inheritance of cold tolerance at emergence and during early season growth in maize. Crop Sci. 2020, 40, 1579–1585. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, V.M.; Butrón, A.; Rady, M.; Soengas, P.; Revilla, P. Identification of QTLs involved in the response to cold stress in maize (Zea mays L.). Mol. Breed 2014, 33, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Allam, M.; Revilla, P.; Djemel, A.; Tracy, W.F.; Ordás, B. Identification of QTLs involved in cold tolerance in sweet × field corn. Euphytica 2016, 208, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Presterl, T.; Ouzunova, M.; Schmidt, W.; Möller, E.M.; Röber, F.K.; Knaak, C.; Ernst, K.; Westhoff, P.; Geiger, H.H. Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor. Appl. Genet. 2007, 114, 1059–1070. [Google Scholar] [CrossRef]
- Strigens, A.; Freitag, N.; Gilbert, X.; Grieder, C.; Riedelsheimer, C.; Schrag, T.; Messmer, R.; Melchinger, A. Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ. 2013, 36, 1871–1887. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, J.; Li, W.; Hu, W.; Duan, L.; Feng, Y.; Que, F.; Yue, B. Genome wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize. J. Integr. Plant Biol. 2013, 55, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Revilla, P.; Rodríguez, V.M.; Ordás, A.; Rincent, R.; Charcosset, A.; Giauffret, C.; Melchinger, A.; Schön, C.C.; Bauer, E.; Altmann, T.; et al. Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol. 2016, 16, 127. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Li, Z.; Lu, Y.; Li, C.; Gong, S.; Yan, S.; Li, G.; Wang, M.; Ren, H.; Guan, H.; et al. Genome-wide association study identified multiple genetic loci on chilling resistance during germination in maize. Sci. Rep. 2017, 7, 10840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revilla, P.; Rodríguez, V.M.; Ordás, A.; Rincent, R.; Charcosset, A.; Giauffret, C.; Melchinger, A.E.; Schön, C.C.; Bauer, E.; Altmann, T.; et al. Cold tolerance in two large maize inbred panels adapted to European climates. Crop Sci. 2014, 54, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Hölker, A.C.; Mayer, M.; Presterl, T.; Bolduan, T.; Bauer, E.; Ordás, B.; Brauner, P.C.; Ouzunova, M.; Melchinger, A.E.; Schön, C.C. European maize landraces made accessible for plant breeding and genome-based studies. Theor. Appl. Genet. 2019, 132, 3333–3345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, M.; Hölker, A.C.; González-Segovia, E.; Bauer, E.; Presterl, T.; Ouzunova, M.; Melchinger, A.E.; Schön, C.C. Discovery of beneficial haplotypes for complex traits in maize landraces. Nat. Commun. 2020, 11, 4954. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.; Falque, M.; Walter, H.; Bauland, C.; Camisan, C.; Campo, L.; Meyer, N.; Ranc, N.; Rincent, R.; Schipprack, W.; et al. Intraspecific variation of recombination rate in maize. Genome Biol. 2013, 14, R103. [Google Scholar] [CrossRef]
- McMullen, M.D.; Kresovich, S.; Villeda, H.S.; Bradbury, P.; Li, H.; Sun, Q.; Flint-Garcia, S.; Thornsberry, J.; Acharya, C.; Bottoms, C.; et al. Genetic properties of the maize nested association mapping population. Science 2009, 325, 737–740. [Google Scholar] [CrossRef] [Green Version]
- Ganal, M.W.; Durstewitz, G.; Polley, A.; Bérard, A.; Buckler, E.S.; Charcosset, A.; Clarke, J.D.; Graner, E.M.; Hansen, M.; Joets, J.; et al. A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 2011, 6, e28334. [Google Scholar] [CrossRef] [Green Version]
- Giraud, H.; Lehermeier, C.; Bauer, E.; Falque, M.; Segura, V.; Bauland, C.; Camisan, C.; Campo, L.; Meyer, N.; Ranc, N.; et al. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize. Genetics 2014, 198, 1717–1734. [Google Scholar] [CrossRef] [PubMed]
- Jourjon, M.F.; Jasson, S.; Marcel, J.; Ngom, B.; Mangin, B. MCQTL: Multi-allelic QTL mapping in multi-cross design. Bioinformatics 2005, 21, 128–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martinez, C.T. Estimating and interpreting heritability for plant breeding: An update. Plant Breed. Rev. 2003, 22, 9–112. [Google Scholar]
- Lehermeier, C.; Krämer, N.; Bauer, E.; Bauland, C.; Camisan, C.; Campo, L.; Flament, P.; Melchinger, A.E.; Menz, M.; Meyer, M.; et al. Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Genetics 2014, 198, 3–16. [Google Scholar] [CrossRef] [PubMed]
Trait | Dent-NAM | Flint-NAM | ||
---|---|---|---|---|
Control | Cold | Control | Cold | |
Dry weight (g/plant) | 5.21575 | 9.28918 | 6.46503 | 5.87618 |
Fv/Fm 1 | 10.8409 | 5.71184 | 23.4355 | 12.0236 |
Chlorophyll 2 | 4.30574 | 5.67056 | 5.64056 | 5.12795 |
QTL Potion | R2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trait | Treatment | Chromosome | Bin | Genetic Position (cM) | CI 1 | Marker interval | Marker interval position (bp) | −log10 p | QTL | Model |
Dry weight | Cold | 9 | 9.07 | 90.7 | 89.85–91.80 | SYN27145- SYN39040 | 147612352- 149283765 | 11.08 | 0.07 | 0.07 |
Dry weight | Control | 7 | 7.04 | 84.7 | 76.28–92.61 | PZE-107084200- PZE-107118905 | 139561428- 165357869 | 5.30 | 0.05 | 0.05 |
Chlorophyll | Control | 2 | 2.02 | 16.1 | - | - | - | 4.77 | 0.03 | 0.11 |
Chlorophyll | Control | 3 | 3.05 | 56.5 | 56.44–56.52 | PZE-103083897- PZE-103084731 | 138902786- 140208059 | 6.32 | 0.09 | |
Fv/Fm | Cold | 1 | 1.09 | 134.9 | 131.70–137.01 | PZE-101213812- PZE-101222240 | 245333971- 253563972 | 8.09 | 0.05 | 0.22 |
Fv/Fm | Cold | 4 | 4.09 | 121.2 | 117.79-121.20 | SYN29114- PZE-104146082 | 231865672- 234967370 | 6.32 | 0.04 | |
Fv/Fm | Cold | 5 | 5.03 | 59.8 | 59.80–63.01 | PZE-105064695- PUT-163a-71766852-3520 | 65453204- 81988171 | 14.52 | 0.11 | |
Fv/Fm | Cold | 7 | 7.05 | 117.6 | 117.58–117.62 | PZE-107132474- PZE-107132516 | 172770620- 172774835 | 7.06 | 0.06 |
QTL | Treatment | F353 | UH007 | B73 | D06 | D09 | EC169 | F252 | F618 | Mo17 | UH250 | UH304 | W117 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chlorophyll-chr2 | Control | 0.7897 | −0.7897 | ||||||||||
Chlorophyll -chr3 | Control | 0.3786 | 2.3930 | −0.4784 | 1.1829 | 3.485 | 1.388 | −0.185 | 0.247 | 0.9714 | −0.1514 | 2.4745 | −6.7565 |
Weight-chr7 | Control | 0.001 | 0.013 | −0.003 | −0.012 | ||||||||
Weight-chr9 | Cold | 0.0069 | 0.056 | −0.013 | |||||||||
Fluorescence-chr1 | Cold | −0.0134 | 0.1866 | −0.0953 | −0.0779 | ||||||||
Fluorescence-chr4 | Cold | −0.0436 | 0.0365 | 0.0071 | |||||||||
Fluorescence-chr5 | Cold | −0.0298 | −0.0499 | 0.0102 | 0.0495 | 0.0137 | −0.0254 | −0.0105 | 0.0422 | ||||
Fluorescence-chr7 | Cold | 0.012 | 0.0268 | −0.0415 | −0.0685 | 0.0094 | 0.019 | 0.0096 | −0.0025 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revilla, P.; Butrón, A.; Rodriguez, V.M.; Rincent, R.; Charcosset, A.; Giauffret, C.; Melchinger, A.E.; Schön, C.-C.; Bauer, E.; Altmann, T.; et al. Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations. Agronomy 2023, 13, 195. https://doi.org/10.3390/agronomy13010195
Revilla P, Butrón A, Rodriguez VM, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schön C-C, Bauer E, Altmann T, et al. Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations. Agronomy. 2023; 13(1):195. https://doi.org/10.3390/agronomy13010195
Chicago/Turabian StyleRevilla, Pedro, Ana Butrón, Víctor Manuel Rodriguez, Renaud Rincent, Alain Charcosset, Catherine Giauffret, Albrecht E. Melchinger, Chris-Carolin Schön, Eva Bauer, Thomas Altmann, and et al. 2023. "Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations" Agronomy 13, no. 1: 195. https://doi.org/10.3390/agronomy13010195
APA StyleRevilla, P., Butrón, A., Rodriguez, V. M., Rincent, R., Charcosset, A., Giauffret, C., Melchinger, A. E., Schön, C. -C., Bauer, E., Altmann, T., Brunel, D., Moreno-González, J., Campo, L., Ouzunova, M., Álvarez, Á., Ruíz de Galarreta, J. I., Laborde, J., & Malvar, R. A. (2023). Genetic Variation for Cold Tolerance in Two Nested Association Mapping Populations. Agronomy, 13(1), 195. https://doi.org/10.3390/agronomy13010195