Using 15N Isotope to Evaluate the Effect of Brown Coal Application on the Nitrogen Fate in the Soil–Plant System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Overview and Experimental Design
2.2. Sample Collection and Determination
2.2.1. Determination of Biomass of Different Parts of Pakchoi
2.2.2. Soil Mineral N Determination
2.2.3. Determination of 15N Atomic Percentage of Soil and Crops
2.2.4. Soil and Plant Carbon and N Determination
2.3. Data Analysis
2.3.1. Apparent fertilizer NRE Was Shown in the Equation Below (Equation (1))
2.3.2. N Derived from Fertilizer (Equation (2))
2.3.3. The Amount of Labeled Urea Absorbed by the Plant 15N Recovery (g pot−1) Was Calculated Using the Following Equation (Equation (3))
2.3.4. The Amount of Labeled Urea Retained in the Soil 15N Retention (g pot−1) Was Calculated Using the Following Equation (Equation (4))
2.3.5. Plant 15N Recovery Efficiency (Equation (5))
2.3.6. Soil 15N Retention Efficiency (Equation (6))
2.3.7. Potential 15N Loss Efficiency (Equation (7))
2.4. Statistical Analysis
3. Results and Discussions
3.1. Dry mass and N Uptake in Aboveground Parts of Pakchoi
3.2. Dry Mass and N Uptake of Pakchoi Roots
3.3. Retention and Soil N Transformation
3.4. Effect of Combined Application of BC on Utilization and Distribution of Urea Nitrogen
3.5. Relationship between Indicators
3.6. Application Prospect of BC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Al, E. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, F.; Zheng, H.; Hong, M.; Hu, Y.; Zhao, B.; De, H. Effects of three types of soil amendments on yield and soil nitrogen balance of maize-wheat rotation system in the Hetao Irrigation Area, China. J. Arid Land 2019, 11, 904–915. [Google Scholar] [CrossRef] [Green Version]
- Finn, D.; Page, K.; Catton, K.; Kienzle, M.; Robertson, F.; Armstrong, R.; Dalal, R. Ecological stoichiometry controls the transformation and retention of plant-derived organic matter to humus in response to nitrogen fertilisation. Soil Boil. Biochem. 2016, 99, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Akimbekov, N.; Qiao, X.; Digel, I.; Abdieva, G.; Ualieva, P.; Zhubanova, A. The effect of leonardite-derived amendments on soil microbiome structure and potato yield. Agriculture 2020, 10, 147. [Google Scholar] [CrossRef]
- Akimbekov, N.; Digel, I.; Qiao, X.; Tastambek, K.; Zhubanova, A. Lignite biosolubilization by Bacillus sp. RKB 2 and characterization of its products. Geomicrobiol. J. 2020, 37, 255–261. [Google Scholar] [CrossRef]
- Ozkan, S.; Ozkan, S.G. Investigation of humate extraction from lignites. Int. J. Coal Prep. Util. 2017, 37, 285–292. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Chun, D.; Choi, H.; Yoo, J. Chapter 4—Upgrading and advanced cleaning technologies for low-rank coals. In Fuel and Chemical Production; Luo, Z., Agranotis, M., Eds.; Woodhead Publishing Ltd.: Duxford, UK, 2017; pp. 73–92. [Google Scholar]
- Bai, M.; Impraim, R.; Coates, T.; Flesch, T.; Trouve, R.; van Grinsven, H.; Cao, Y.; Hill, J.; Chen, D. Lignite effects on NH3, N2O, CO2 and CH4 emissions during composting of manure. J. Environ. Manag. 2020, 271, 110960. [Google Scholar] [CrossRef]
- Impraim, R.; Weatherley, A.; Coates, T.; Chen, D.; Suter, H. Lignite improved the quality of composted manure and mitigated emissions of ammonia and greenhouse gases during forced aeration composting. Sustainability 2020, 12, 10528. [Google Scholar] [CrossRef]
- Sun, J.; Bai, M.; Shen, J.; Griffith, D.W.T.; Denmead, O.T.; Hill, J.; Lam, S.K.; Mosier, A.R.; Chen, D. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens. Sci. Total Environ. 2016, 565, 148–154. [Google Scholar] [CrossRef]
- Rose, M.T.; Perkins, E.L.; Saha, B.K.; Tang, E.C.W.; Cavagnaro, T.R.; Jackson, W.R.; Hapgood, K.P.; Hoadley, A.F.A.; Patti, A.F. A slow release nitrogen fertiliser produced by simultaneous granulation and superheated steam drying of urea with brown coal. Chem. Biol. Technol. Agric. 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.D.; Lee, I.; Yang, Y.K. Microstructural variations of lignite, subbituminous and bituminous coals and their high temperature chars. Fuel Process. Technol. 1988, 18, 11–23. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Zou, J.; Dong, L.; Ren, P.; Huang, G. Impact of biochar and lignite-based amendments on microbial communities and greenhouse gas emissions from agricultural soil. Vadose Zone J. 2021, 20, e20105. [Google Scholar] [CrossRef]
- Anemana, T.; Óvári, M.; Szegedi, Á.; Uzinger, N.; Rékási, M.; Tatár, E.; Yao, J.; Streli, C.; Záray, G.; Mihucz, V.G. Optimization of lignite particle size for stabilization of trivalent chromium in soils. Soil Sediment Contam. 2020, 29, 272–291. [Google Scholar] [CrossRef] [Green Version]
- Simmler, M.; Ciadamidaro, L.; Schulin, R.; Madejon, P.; Reiser, R.; Clucas, L.; Weber, P.; Robinson, B. Lignite reduces the solubility and plant uptake of cadmium in pasturelands. Environ. Sci. Technol. 2013, 47, 4497–4504. [Google Scholar] [CrossRef]
- Olaetxea, M.; Hita, D.D.; Garcia, C.A.; Fuentes, M.; Baigorri, R.; Mora, V.; Garnica, M.; Urrutia, O.; Erro, J.; Zamarreño, A.M.; et al. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Appl. Soil Ecology 2018, 123, 521–537. [Google Scholar] [CrossRef]
- Sekhohola, L.M.; Cowan, A.K. Biological conversion of low-grade coal discard to a humic substance-enriched soil–like material. Int. J. Coal Sci. Technol. 2017, 4, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.W.; Liu, Q.; Wang, S.; Yang, G.S.; Xue, S. A global meta-analysis of the impacts of exotic plant species invasion on plant di-versity and soil properties. J. Sci. Total Environ. 2022, 810, 152286. [Google Scholar] [CrossRef]
- Xu, H.W.; Qu, Q.; Li, G.W.; Liu, G.B.; Geissen, V.; Ritsema, C.J.; Xue, S. Impact of nitrogen addition on plant-soil-enzyme C–N–P stoichiometry and microbial nutrient limitation. J. Soil. Biol. Biochem. 2022, 170, 108714. [Google Scholar] [CrossRef]
- Rashid, M.; Hussain, Q.; Khan, K.S.; Alwabel, M.I.; Hayat, R.; Akmal, M.; Ijaz, S.S.; Alvi, S.; Obaidur, R. Carbon-based slow-release fertilizers for efficient nutrient management: Synthesis, applications, and future research needs. J. Soil Sci. Plant Nutr. 2021, 21, 1144–1169. [Google Scholar] [CrossRef]
- Little, K.R.; Rose, M.T.; Jackson, W.R.; Cavagnaro, T.R.; Patti, A.F. Do lignite-derived organic amendments improve early-stage pasture growth and key soil biological and physicochemical properties? Crop Pasture Sci. 2014, 65, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Kim Thi Tran, C.; Rose, M.T.; Cavagnaro, T.R.; Patti, A.F. Lignite amendment has limited impacts on soil microbial communities and mineral nitrogen availability. Appl. Soil Ecology 2015, 95, 140–150. [Google Scholar] [CrossRef]
- Saha, B.K.; Rose, M.T.; Wong, V.; Cavagnaro, T.R.; Patti, A.F. Hybrid brown coal-urea fertiliser reduces nitrogen loss compared to urea alone. Sci. Total Environ. 2017, 601–602, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Schillem, S.; Schneider, B.U.; Zeihser, U.; Hüttl, R.F. Effect of N-modified lignite granulates and composted biochar on plant growth, nitrogen and water use efficiency of spring wheat. Arch. Agron. Soil Sci. 2019, 65, 1913–1925. [Google Scholar] [CrossRef]
- Bedard-Haughn, A.; van Groenigen, J.W.; van Kessel, C. Tracing 15N through landscapes: Potential uses and precautions. J. Hydrol. 2003, 272, 175–190. [Google Scholar] [CrossRef]
- Chalk, P.M.; Inácio, C.T.; Chen, D. Chapter Four—Tracing the dynamics of animal excreta N in the soil–plant–atmosphere continuum using 15N enrichment. Adv. Agron. 2020, 160, 187–247. [Google Scholar]
- Gao, N.; Liu, Y.; Wu, H.; Zhang, P.; Yu, N.; Zhang, Y.; Zou, H.; Fan, Q.; Zhang, Y. Interactive effects of irrigation and nitrogen fertilizer on yield, nitrogen uptake, and recovery of two successive Chinese cabbage crops as assessed using 15N isotope. Sci. Hortic. 2017, 215, 117–125. [Google Scholar] [CrossRef]
- Zhao, L.; Jia, Z.; Li, G.; Zhang, T.; Wei, M. N Utilization, Residual and loss characteristics of spring-topdressing (15N-urea) pear orchards in the old course of the Yellow River Area. Agronomy 2022, 12, 2682. [Google Scholar] [CrossRef]
- Zistl-Schlingmann, M.; Kwatcho Kengdo, S.; Kiese, R.; Dannenmann, M. Management intensity controls nitrogen-use-efficiency and flows in grasslands—A 15N tracing experiment. Agronomy 2020, 10, 606. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Luo, Y.; Zhan, Y.; Meng, Y.; Zhou, Z. Biochar increases 15N fertilizer retention and indigenous soil N uptake in a cotton-barley rotation system. Geoderma 2020, 357, 113944. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Yuan, L.; Li, W.; Lin, Z.A.; Li, Y.T.; Hu, S.W.; Zhao, B.Q. Effects of urea enhanced with different weathered coal-derived humic acid components on maize yield and fate of fertilizer nitrogen. J. Integr. Agr. 2019, 18, 656–666. [Google Scholar] [CrossRef]
- Akimbekov, N.S.; Digel, I.; Tastambek, K.T.; Sherelkhan, D.K.; Jussupova, D.B.; Altynbay, N.P. Low-rank coal as a source of humic substances for soil amendment and fertility management. Agriculture 2021, 11, 1261. [Google Scholar] [CrossRef]
- Ameen, A.; Liu, J.; Han, L.; Xie, G.H. Effects of nitrogen rate and harvest time on biomass yield and nutrient cycling of switchgrass and soil nitrogen balance in a semiarid sandy wasteland. Ind. Crop Prod. 2019, 136, 1–10. [Google Scholar] [CrossRef]
- Xing, J.J.; Xing, Y.Y.; Wang, X.K.; Wang, Y.F.; Li, X.X.; Nie, J.B. Effects of Different Fertilizers Application on Soil Nitrate, Growth and Yield of Tomato Growing in Solar Greenhouse in Northern Shaanxi Province. J. Irrig. Drain. 2018, 37, 29–35. (In Chinese) [Google Scholar]
- Boldt-Burisch, K.; Schillem, S.; Schneider, B.U.; Hüttl, R.F. The effect of nitrogen-modified lignite granules on mycorrhization and root and shoot growth of Secale cereale (winter rye) in a nutrient-deficient, sandy soil. Arch. Agron. Soil Sci. 2021, 68, 1117–1130. [Google Scholar] [CrossRef]
- Qin, K.; Dong, X.; Jifon, J.; Leskovar, D.I. Rhizosphere microbial biomass is affected by soil type, organic and water inputs in a bell pepper system. Appl. Soil Ecol. 2019, 138, 80–87. [Google Scholar] [CrossRef]
- Heijboer, A.; Ten Berge, H.F.M.; de Ruiter, P.C.; Jørgensen, H.B.; Kowalchuk, G.A.; Bloem, J. Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; a 15N tracer-based approach. Appl. Soil Ecol. 2016, 107, 251–260. [Google Scholar] [CrossRef]
- Richards, D.; Lane, M.; Beardsell, D.V. The influence of particle-size distribution in pinebark:sand:brown coal potting mixes on water supply, aeration and plant growth. Sci. Hortic. 1986, 29, 1–14. [Google Scholar] [CrossRef]
- Karczewska, A.; Chodak, T.; Kaszubkiewicz, J. The suitability of brown coal as a sorbent for heavy metals in polluted soils. Appl. Geochem. 1996, 11, 343–346. [Google Scholar] [CrossRef]
- Qi, Y.; Hoadley, A.F.A.; Chaffee, A.L.; Garnier, G. Characterisation of lignite as an industrial adsorbent. Fuel 2011, 90, 1567–1574. [Google Scholar] [CrossRef]
- Knicker, H.; LÜdemann, H.D.; Haider, K. Incorporation studies of NH4+ during incubation of organic residues by 15N-CPMAS-NMR-spectroscopy. Eur. J. Soil Sci. 1997, 48, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Brust, G.E. Chapter 9—Management Strategies for Organic Vegetable Fertility. In Safety and Practice for Organic Food, Biswas, D.; Micallef, S.A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 193–212. [Google Scholar]
- Shen, Y.W.; Lin, H.T.; Gao, W.S.; Li, M.L. The effects of humic acid urea and polyaspartic acid urea on reducing nitrogen loss compared with urea. J. Sci. Food Agric. 2020, 100, 4425–4432. [Google Scholar] [CrossRef] [PubMed]
- Berglund, L.M.; DeLuca, T.H.; Zackrisson, O. Activated carbon amendments to soil alters nitrification rates in Scots pine forests. Soil Biol. Biochem. 2004, 36, 2067–2073. [Google Scholar] [CrossRef]
- Glendining, M.J.; Poulton, P.R.; Powlson, D.S.; Macdonald, A.J.; Jenkinson, D.S. Availability of the residual nitrogen from a single application of ¹⁵N–labelled fertilizer to subsequent crops in a long-term continuous barley experiment. Plant Soil 2001, 233, 231–239. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Recovery of 15N–labelled fertilizer applied to winter wheat and perennial ryegrass crops and residual 15N recovery by succeeding wheat crops under different crop residue management practices. Nutr. Cycling Agroecosyst. 2002, 62, 123–130. [Google Scholar] [CrossRef]
- Hadas, A.; Kautsky, L.; Portnoy, R. Mineralization of com-posted manure and microbial dynamics in soil as affected by long-term nitrogen management. Soil Biol. Biochem. 1996, 6, 733–738. [Google Scholar] [CrossRef]
- Gentile, R.; Vanlauwe, B.; van Kessel, C.; Six, J. Managing N availability and losses by combining fertilizer-N with different quality residues in Kenya. Agric., Ecosyst. Environ. 2009, 131, 308–314. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, M.; Han, B.; Impraim, R.; Butterly, C.; Hu, H.; He, J.; Chen, D. Enhanced nitrogen retention by lignite during poultry litter composting. J. Cleaner Prod. 2020, 277, 122422. [Google Scholar] [CrossRef]
- Poudel, D.D.; Horwath, W.R.; Mitchell, J.P.; Temple, S.R. Impacts of cropping systems on soil nitrogen storage and loss. Agr. Syst. 2001, 68, 253–268. [Google Scholar] [CrossRef]
- Li, J.; Ren, T.; Li, Y.; Chen, N.; Yin, Q.; Li, M.; Liu, H.; Liu, G. Organic materials with high C/N ratio: More beneficial to soil improvement and soil health. Biotechnol. Lett. 2022, 44, 1415–1429. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Hussain, Q.; Usman, A.R.A.; Ahmad, M.; Abduljabbar, A.; Sallam, A.S.; Ok, Y.S. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad. Dev. 2018, 29, 2124–2161. [Google Scholar] [CrossRef]
- Guo, L.; Nie, Z.; Zhou, J.; Zhang, S.; An, F.; Zhang, L.; Tóth, T.; Yang, F.; Wang, Z. Effects of different organic amendments on soil improvement, bacterial composition, and functional diversity in saline–sodic soil. Agronomy 2022, 12, 2294. [Google Scholar] [CrossRef]
- Verheyen, T.V.; Perry, G.J. Chapter 6—Chemical structure of Victorian brown coal. In the Science of Victorian Brown Coal Strusture, Properties, and Consequences for Utilization; Durie, R.A., Ed.; Butterworth Heinemann: Oxford, UK, 1991; pp. 279–321. [Google Scholar]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Szara, E.; Fenton, O.; Thornton, S.F.; Malina, G. Assessing factors controlling structural changes of humic acids in soils amended with organic materials to improve soil functionality. Agronomy 2022, 12, 283. [Google Scholar] [CrossRef]
Material | BC | Sandy Loam | Organic Manure |
---|---|---|---|
pH (1:5H2O) | 4.13 | 7.19 | 7.95 |
Total C (a) (g kg−1) | 604.0 | 37.5 | 196.0 |
Total N (b) (g kg−1) | 4.9 | 4.3 | 7.1 |
C:N (c) | 123.3 | 8.72 | 27.2 |
NO3−-N (mg kg−1) | trace | 50.0 | 43.2 |
NH4+-N (mg kg−1) | trace | 8.63 | 46.0 |
CEC (d) (Cmol kg−1) | 19.9 | —(e) | — |
P (g kg−1) | 0.10 | 0.05 | — |
K (g kg−1) | 0.04 | 0.09 | — |
S (g kg−1) | 1.99 | 0.03 | — |
Ca (g kg−1) | 0.72 | 0.80 | — |
Mg (g kg−1) | 1.42 | 0.04 | — |
Cu (mg kg−1) | <1 | — | — |
Zn (mg kg−1) | 3.7 | — | — |
Mn (mg kg−1) | 42.0 | — | — |
Treatment | Urea kg N ha−1 | BC t ha−1 | Organic Manure kg N ha−1 |
---|---|---|---|
N0B0F0 | 0 | 0 | 0 |
N1B0F0 | 100 | 0 | 0 |
N2B0F0 | 200 | 0 | 0 |
N3B0F0 | 300 | 0 | 0 |
N4B0F0 | 400 | 0 | 0 |
N0B1F0 | 0 | 5 | 0 |
N1B1F0 | 100 | 5 | 0 |
N2B1F0 | 200 | 5 | 0 |
N3B1F0 | 300 | 5 | 0 |
N4B1F0 | 400 | 5 | 0 |
N0B0F1 | 0 | 0 | 100 |
N0B1F1 | 0 | 5 | 100 |
N1B0F1 | 100 | 0 | 100 |
N1B1F1 | 100 | 5 | 100 |
Material 15N Abundance | Natural Abundance of 15N in Plants (a) | Natural Abundance of 15N in Soils (a) | Fertilizer 15N Abundance (b) |
---|---|---|---|
Abundance value (%) | 0.4140 | 0.3483 | 10.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, H.; Lian, Y.; Kyaw, P.E.E.; Bai, M.; Leghari, S.J.; Pan, H.; Xiao, Z.; Chen, D. Using 15N Isotope to Evaluate the Effect of Brown Coal Application on the Nitrogen Fate in the Soil–Plant System. Agronomy 2023, 13, 263. https://doi.org/10.3390/agronomy13010263
Lei H, Lian Y, Kyaw PEE, Bai M, Leghari SJ, Pan H, Xiao Z, Chen D. Using 15N Isotope to Evaluate the Effect of Brown Coal Application on the Nitrogen Fate in the Soil–Plant System. Agronomy. 2023; 13(1):263. https://doi.org/10.3390/agronomy13010263
Chicago/Turabian StyleLei, Hongjun, Yingji Lian, Pan Ei Ei Kyaw, Mei Bai, Shah Jahan Leghari, Hongwei Pan, Zheyuan Xiao, and Deli Chen. 2023. "Using 15N Isotope to Evaluate the Effect of Brown Coal Application on the Nitrogen Fate in the Soil–Plant System" Agronomy 13, no. 1: 263. https://doi.org/10.3390/agronomy13010263
APA StyleLei, H., Lian, Y., Kyaw, P. E. E., Bai, M., Leghari, S. J., Pan, H., Xiao, Z., & Chen, D. (2023). Using 15N Isotope to Evaluate the Effect of Brown Coal Application on the Nitrogen Fate in the Soil–Plant System. Agronomy, 13(1), 263. https://doi.org/10.3390/agronomy13010263