Genetic Analysis of Zinc, Iron and Provitamin A Content in Tropical Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Materials
2.2. Field Evaluation
2.3. Agronomic Trait Recording
2.4. Minerals Analysis
2.5. Carotenoids Analysis
2.6. Data Analysis
3. Results
3.1. Variation in Zn, Fe and PVA Content
3.2. Combining Ability Estimates
3.3. Effects of Mating Sets on Hybrid Zn, Fe and PVA Content
3.4. Relationships among Micronutrients and Agronomic Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekanem, S.F.; Audu, A.A.; Lieberman, M. Proximate Analysis of Grain Samples From Strategic Grain Reserve Facilities in Nigeria. J. Chem. Soc. Niger. 2022, 47, 592–602. [Google Scholar] [CrossRef]
- Bänziger, M.; Long, J. The Potential for Increasing the Iron and Zinc Density of Maize through Plant Breeding. Food Nutr. Bull. 2000, 21, 397–400. [Google Scholar] [CrossRef] [Green Version]
- Goredema-Matongera, N.; Ndhlela, T.; Magorokosho, C.; Kamutando, C.N.; van Biljon, A.; Labuschagne, M. Multinutrient Biofortification of Maize (Zea mays L.) in Africa: Current Status, Opportunities and Limitations. Nutrients 2021, 13, 1039. [Google Scholar] [CrossRef] [PubMed]
- AREDS Research Group. Associations of Mortality with Ocular Disorders and an Interventionof High-Dose Antioxidants and Zinc in the Age-Related Eye Disease Study: AREDS Report No. 13. Arch. Ophthalmol. 2004, 122, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Rostan, E.F.; DeBuys, H.V.; Madey, D.L.; Pinnell, S.R. Evidence supporting zinc as an important antioxidant for skin. Int. J. Dermatol. 2002, 41, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; pp. 191–248. [Google Scholar]
- Awuchi, C.G.; Igwe, V.S.; Amagwula, I.O. Nutritional diseases and nutrient toxicities: A systematic review of the diets and nutrition for prevention and treatment. Int. J. Adv. Acad. Res. 2020, 6, 1–46. [Google Scholar] [CrossRef]
- Amann, P.M.; Eichmuller, S.B.; Schmidt, J.; Bazhin, A.V. Regulation of gene expression by retinoids. Curr. Med. Chem. 2011, 18, 1405–1412. [Google Scholar] [CrossRef]
- Shukla, A.K.; Behera, S.K.; Pakhre, A.; Chaudhari, S.K. Micronutrients in soils, plants, animals and humans. Indian J. Fertil. 2018, 14, 30–54. [Google Scholar]
- Oikeh, S.O.; Menkir, A.; Maziya-Dixon, B.; Welch, R.; Glahn, R.P. Assessment of Concentrations of Iron and Zinc and Bioavailable Iron in Grains of Early-Maturing Tropical Maize Varieties. J. Agric. Food Chem. 2003, 51, 3688–3694. [Google Scholar] [CrossRef]
- Chomba, E.; Westcott, C.M.; Westcott, J.E.; Mpabalwani, E.M.; Krebs, N.F.; Patinkin, Z.W.; Palacios, N.; Hambidge, K.M. Zinc Absorption from Biofortified Maize Meets the Requirements of Young Rural Zambian Children. J. Nutr. 2015, 145, 514–519. [Google Scholar] [CrossRef] [Green Version]
- Maqbool, M.A.; Beshir, A. Zinc Biofortification of Maize (Zea mays L.): Status and Challenges. Plant Breed. 2019, 138, 1–28. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.; Palacios-Rojas, N.; Meng, E.; Pixley, K.; Trethowan, R.; Pena, R.J. Enhancing the Mineral and Vitamin Content of Wheat and Maize through Plant Breeding. J. Cereal Sci. 2007, 46, 293–307. [Google Scholar] [CrossRef]
- Akinwale, R.O.; Adewopo, O.A. Grain Iron and Zinc Concentrations and Their Relationship with Selected Agronomic Traits in Early and Extra-Early Maize. J. Crop Improv. 2016, 30, 641–656. [Google Scholar] [CrossRef]
- Mageto, E.K.; Lee, M.; Dhliwayo, T.; Palacios-rojas, N.; Vicente, S.; Burgueño, J.; Hallauer, A.R. An Evaluation of Kernel Zinc in Hybrids of Elite Quality Protein Maize (QPM) and Non-QPM Inbred Lines Adapted to the Tropics Based on a Mating Design. Agronomy 2020, 10, 695. [Google Scholar] [CrossRef]
- Azmach, G.; Gedil, M.; Spillane, C.; Menkir, A. Combining Ability and Heterosis for Endosperm Carotenoids and Agronomic Traits in Tropical Maize Lines. Front. Plant Sci. 2021, 12, 674089. [Google Scholar] [CrossRef]
- Asson-Batres, M.A.; Rochette-Egly, C. Biochemistry of Retinoid Signaling II; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Menkir, A.; Rocheford, T.; Maziya-Dixon, B.; Tanumihardjo, S. Exploiting natural variation in exotic germplasm for increasing provitamin-A carotenoids in tropical maize. Euphytica 2015, 205, 203–217. [Google Scholar] [CrossRef]
- Nuss, E.T.; Arscott, S.A.; Bresnahan, K.; Pixley, K.V.; Rocheford, T.; Hotz, C.; Siamusantu, W.; Chileshe, J.; Tanumihardjo, S.A. Comparative intake of white-versus orange-colored maize by Zambian children in the context of promotion of biofortified maize. Food Nutr. Bull. 2012, 33, 63–71. [Google Scholar] [CrossRef]
- Iseghohi, I.; Abe, A.; Meseka, S.; Mengesha, W.; Gedil, M.; Menkir, A. Assessing Effect of Marker-Based Improvement of Maize Synthetics on Agronomic Performance, Carotenoid Content, Combining Ability and Heterosis. Agronomy 2020, 10, 1625. [Google Scholar] [CrossRef]
- Karlen, D.L.; Kramer, L.A.; Logsdon, S.D. Field-scale Nitrogen Balances Associated with Long-term Continuous Corn Production. Agron. J. 1998, 90, 644–650. [Google Scholar] [CrossRef]
- Hindu, V.; Palacios-Rojas, N.; Babu, R.; Suwarno, W.B.; Rashid, Z.; Usha, R.; Saykhedkar, G.R.; Nair, S.K. Identification and Validation of Genomic Regions Influencing Kernel Zinc and Iron in Maize. Theor. Appl. Genet. 2018, 131, 1443–1457. [Google Scholar] [CrossRef] [Green Version]
- Hallauer, A.R.; Filho, J.B.M.; Carena, M.J. Heterosis. In Quantitative Genetics in Maize Breeding, 3rd ed.; Prohens, J., Nuez, F., Carena, M.J., Eds.; Chapter 10; Springer Science+Business Media: NewYork, NY, USA, 2010; pp. 477–481. [Google Scholar]
- Halilu, A.D.; Ado, S.G.; Aba, D.A.; Usman, I.S. Genetics of Carotenoids for Provitamin A Biofortification in Tropical-Adapted Maize. Crop J. 2016, 4, 313–322. [Google Scholar] [CrossRef]
- Brkić, I.; Šimić, D.; Zdunić, Z.; Jambrović, A.; Ledenčan, T.; Kovačević, V.; Kadar, I. Combining Abilities of Corn-Belt Inbred Lines of Maize for Mineral Content in Grain. Maydica 2003, 48, 293–297. [Google Scholar]
- Run, L.I.; Xiao, L.; Jing, W.; Lu, Y.; Rong, T.; Pan, G.; Wu, Y.; Qilin, T.; Hai, L.A.N.; Cao, M. Combining Ability and Parent-Offspring Correlation of Maize (Zea may L.) Grain β-Carotene Content with a Complete Diallel. J. Integr. Agric. 2013, 12, 19–26. [Google Scholar]
- Obeng-Bio, E.; Badu-Apraku, B.; Ifie, B.E.; Danquah, A.; Blay, E.T.; Annor, B. Genetic Analysis of Grain Yield and Agronomic Traits of Early Provitamin A Quality Protein Maize Inbred Lines in Contrasting Environments. J. Agric. Sci. 2019, 157, 413–433. [Google Scholar] [CrossRef] [Green Version]
- Maazou, A.-R.S.; Adetimirin, V.O.; Gedil, M.; Meseka, S.; Mengesha, W.; Menkir, A. Suitability of Testers to Characterize Provitamin a Content and Agronomic Performance of Tropical Maize Inbred Lines. Front. Genet. 2022, 13, 955420. [Google Scholar] [CrossRef]
- El-Bendary, A.A.; El-Fouly, M.M.; Rakha, F.A.; Omar, A.A.; Abou-Youssef, A.Y. Mode of Inheritance of Zinc Accumulation in Maize. J. Plant Nutr. 1993, 16, 2043–2053. [Google Scholar] [CrossRef]
- Long, J.K.; Bänziger, M.; Smith, M.E. Diallel Analysis of Grain Iron and Zinc Density in Southern African-adapted Maize Inbreds. Crop Sci. 2004, 44, 2019–2026. [Google Scholar] [CrossRef]
- Akinwale, R.O.; Fadoju, A.O.; Sulola, B.H.; Oluwaranti, A.; Awosanmi, F.E. Inheritance of Seed Quality Traits and Concentrations of Zinc and Iron in Maize Topcross Hybrids. Afr. Crop Sci. J. 2021, 29, 119–131. [Google Scholar] [CrossRef]
- Graham, R.D.; Rosser, J.M. Carotenoids in Staple Foods: Their Potential to Improve Human Nutrition. Food Nutr. Bull. 2000, 21, 404–409. [Google Scholar] [CrossRef] [Green Version]
- García-Casal, M.N.; Leets, I.; Layrisse, M. β-Carotene and Inhibitors of Iron Absorption Modify Iron Uptake by Caco-2 Cells. J. Nutr. 2000, 130, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Paltridge, N.G.; Palmer, L.J.; Milham, P.J.; Guild, G.E.; Stangoulis, J.C.R. Energy-Dispersive X-ray Fluorescence Analysis of Zinc and Iron Concentration in Rice and Pearl Millet Grain. Plant Soil 2012, 361, 251–260. [Google Scholar] [CrossRef]
- Howe, J.A.; Tanumihardjo, S.A. Carotenoid-Biofortified Maize Maintains Adequate Vitamin A Status in Mongolian Gerbils. J. Nutr. 2006, 136, 2562–2567. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Amaya, D.B.; Kimura, M. HarvestPlus Handbook for Carotenoid Analysis; International Food Policy Research Institute (IFPRI): Washington, MA, USA, 2004; Volume 2. [Google Scholar]
- US Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; The National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- SAS Institute. SAS System for Windows; Release 9.4; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Rodríguez, F.; Alvarado, G.; Pacheco, Á.; Crossa, J.; Burgueño, J. AGR-R (Analysis of Genetic Designs in R); Version 5.0; International Maize and Wheat Improvement Center (CIMMYT): Mexico City, Mexico, 2018. [Google Scholar]
- Prasanna, B.M.; Mazumdar, S.; Chakraborti, M.; Hossain, F.; Manjaiah, K.M.; Agrawal, P.K.; Gupta, H.S. Genetic variability and genotype × environment interactions for kernel iron and zinc concentrations in maize (Zea mays) genotypes. Indian J. Agric Sci. 2011, 81, 704–711. [Google Scholar]
- Queiroz, V.A.V.; Guimarães, P.E.D.O.; Queiroz, L.R.; Guedes, E.D.O.; Vasconcelos, V.D.B.; Guimarães, L.J.; Ribeiro, P.E.D.A.; Schaffert, R.E. Iron and zinc availability in maize lines. Food Sci. Technol. 2011, 31, 577–583. [Google Scholar] [CrossRef]
- Chakraborti, M.; Prasanna, B.M.; Hossain, F.; Singh, A.M. Evaluation of Single Cross Quality Protein Maize (QPM) Hybrids for Kernel Iron and Zinc Concentrations. Indian J. Genet. Plant Breed. 2011, 71, 312–319. [Google Scholar]
- Kanatti, A.; Rai, K.N.; Radhika, K.; Govindaraj, M.; Sahrawat, K.L.; Rao, A.S. Grain iron and zinc density in pearl millet: Combining ability, heterosis and association with grain yield and grain size. SpringerPlus 2011, 3, 763. [Google Scholar] [CrossRef] [Green Version]
- Oikeh, S.O.; Menkir, A.; Maziya-Dixon, B.; Welch, R.M.; Glahn, R.P.; Gauch, G. Environmental Stability of Iron and Zinc Concentrations in Grain of Elite Early-Maturing Tropical Maize Genotypes Grown under Field Conditions. J. Agric. Sci. 2004, 142, 543–551. [Google Scholar] [CrossRef]
- Grzebisz, W.; Wronska, M.; Diatta, J.B.; Dullin, P. Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part I. Zinc uptake patterns and its redistribution among maize organs. J. Elem. 2008, 13, 17–28. [Google Scholar]
- Sperotto, R.A. Zn/Fe remobilization from vegetative tissues to rice seeds: Should I stay or should I go? Ask Zn/Fe supply! Front. Plant Sci. 2013, 4, 464. [Google Scholar] [CrossRef] [Green Version]
- Menkir, A.; Gedil, M.; Tanumihardjo, S.; Adepoju, A.; Bossey, B. Carotenoid Accumulation and Agronomic Performance of Maize Hybrids Involving Parental Combinations from Different Marker-Based Groups. Food Chem. 2014, 148, 131–137. [Google Scholar] [CrossRef]
- Šimić, D.; Mladenović Drinić, S.; Zdunić, Z.; Jambrović, A.; Ledenčan, T.; Brkić, J.; Brkić, A.; Brkić, I. Quantitative Trait Loci for Biofortification Traits in Maize Grain. J. Hered. 2012, 103, 47–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velu, G.; Rai, K.N.; Muralidharan, V.; Longvah, T.; Crossa, J. Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 2011, 180, 251–259. [Google Scholar] [CrossRef]
- Vidhyavathi, R.; Manivannan, N.; Muralidharan, V. Line × tester analysis in sesame (Sesamum indicum L.). Indian J. of Agric. Res. 2005, 39, 225. [Google Scholar]
- Chaudhari, G.R.; Patel, D.A.; Parmar, D.P.; Patel, K.C. Fe, Zn & Protein content in grain, per se performance, heterosis, combining ability of grain yield in bread wheat (Triticum aestivum) under normal & late sowing condition. Res. Sq. 2005. pre-print. [Google Scholar] [CrossRef]
Inbred Line | Zn (mg kg−1) | PVA (μg g−1) | Fe (mg kg−1) |
---|---|---|---|
1 | 28.53 | 10.39 | 23.42 |
2 | 31.10 | 8.12 | 23.40 |
3 | 30.85 | 10.07 | 22.69 |
4 | 32.86 | 8.84 | 22.73 |
5 | 33.36 | 5.77 | 23.06 |
6 | 32.61 | 5.85 | 24.31 |
7 | 35.62 | 8.39 | 25.00 |
8 | 31.45 | 11.66 | 19.20 |
9 | 36.39 | 6.56 | 24.29 |
10 | 41.49 | 5.04 | 22.44 |
11 | 39.86 | 4.13 | 31.01 |
12 | 36.12 | 8.33 | 24.03 |
13 | 34.72 | 5.24 | 25.21 |
14 | 34.75 | 8.39 | 24.78 |
15 | 41.59 | 2.12 | 29.36 |
16 | 35.33 | 9.31 | 27.89 |
17 | 29.61 | 7.28 | 27.31 |
18 | 31.68 | 7.99 | 21.97 |
19 | 33.06 | 10.88 | 26.96 |
20 | 27.82 | 11.25 | 24.05 |
21 | 37.12 | 4.88 | 27.71 |
22 | 35.14 | 10.81 | 26.16 |
23 | 27.65 | 15.15 | 20.93 |
24 | 28.78 | 7.41 | 26.17 |
Grand mean | 33.58 | 7.72 | 24.39 |
LSD (p < 0.05) | 1.37 | 0.83 | 1.46 |
Source | DF | Zn mg kg−1 | Fe mg kg−1 | Provitamin A (μg g−1) | Grain Yield (t ha−1) |
---|---|---|---|---|---|
Env | 3 | 687.98 ** | 204.94 ** | 114.49 ** | 286.98 ** |
Rep (Env) | 4 | 22.01 ** | 36.04 ** | 10.01 ** | 0.77 |
Block (Env × Rep) | 192 | 3.39 | 3.85 ** | 1.32 ** | 0.97 ** |
Hybrid | 99 | 23.58 ** | 15.89 ** | 24.95 ** | 5.08 ** |
Env × Hybrid | 297 | 3.74 | 2.87 * | 1.25 ** | 0.87 ** |
Set | 5 | 133.59 ** | 33.67 ** | 57.48 ** | 5.11 ** |
Env × Set | 15 | 4.08 | 4.03 * | 1.75 ** | 1.21 ** |
Female (Set) | 18 | 19.04 ** | 16.48 ** | 40.55 ** | 5.76 ** |
Male (Set) | 18 | 19.23 ** | 30.51 ** | 43.16 ** | 7.02 ** |
Female × Male (Set) | 54 | 8.32 ** | 4.48 ** | 2.20 ** | 2.98 ** |
Env × Female (Set) | 54 | 5.26 * | 3.33 * | 1.23 ** | 0.74 |
Env × Male (Set) | 54 | 3.37 | 3.19 | 1.76 ** | 0.89 * |
Env × Female × Male (Set) | 162 | 2.85 | 2.04 | 0.88 * | 0.71 |
Error | 220 | 3.65 | 2.29 | 0.68 | 0.62 |
CV% | 6.70 | 6.39 | 10.03 | 16.16 | |
σ2Additive | 14.88 | 9.51 | 16.06 | 146.63 | |
σ2Non-additive | 4.83 | 2.13 | 1.26 | 92.33 | |
σ2Env | 0.48 | 0.38 | 0.18 | 5.6 | |
Predictability ratio | 0.84 | 0.90 | 0.96 | 0.76 | |
Heritability | 0.88 | 0.87 | 0.92 | 0.86 |
S/N | Hybrids | Zn mg kg−1 | Fe mg kg−1 | PVA μg g−1 | GY t ha−1 |
---|---|---|---|---|---|
1 | 1 × 9 | 30.86 | 25.22 | 6.84 | 5.80 |
2 | 2 × 9 | 28.31 | 23.23 | 6.78 | 4.99 |
3 | 3 ×9 | 27.79 | 22.96 | 8.00 | 4.70 |
4 | 4 × 9 | 30.41 | 23.95 | 7.98 | 5.50 |
5 | 1 ×10 | 32.22 | 25.27 | 6.19 | 4.67 |
6 | 2 × 10 | 30.16 | 25.31 | 8.36 | 3.16 |
7 | 3 × 10 | 26.22 | 22.01 | 6.72 | 4.51 |
8 | 4 × 10 | 30.67 | 22.36 | 7.65 | 5.79 |
9 | 1 × 11 | 30.30 | 29.65 | 7.00 | 4.00 |
10 | 2 × 11 | 28.08 | 24.39 | 6.53 | 4.49 |
11 | 3 × 11 | 28.25 | 25.89 | 6.62 | 3.48 |
12 | 4 × 11 | 29.78 | 24.94 | 7.83 | 4.92 |
13 | 1 ×12 | 31.45 | 26.63 | 8.61 | 5.57 |
14 | 2 × 12 | 23.52 | 22.21 | 8.18 | 4.94 |
15 | 3 × 12 | 27.82 | 23.59 | 7.23 | 5.86 |
16 | 4 × 12 | 31.97 | 23.74 | 8.73 | 4.65 |
17 | 9 × 5 | 30.90 | 25.77 | 6.35 | 5.74 |
18 | 10 × 5 | 29.36 | 23.47 | 6.00 | 5.11 |
19 | 11 × 5 | 30.86 | 25.52 | 6.07 | 4.36 |
20 | 12 × 5 | 29.04 | 24.27 | 7.52 | 5.35 |
21 | 9 × 6 | 30.38 | 25.16 | 9.72 | 4.90 |
22 | 10 × 6 | 31.65 | 23.55 | 9.71 | 5.37 |
23 | 11 × 6 | 29.91 | 25.48 | 8.38 | 4.40 |
24 | 12 × 6 | 31.42 | 23.80 | 11.08 | 5.82 |
25 | 9 × 7 | 30.60 | 23.36 | 8.26 | 4.90 |
26 | 10 × 7 | 31.64 | 24.48 | 6.86 | 5.21 |
27 | 11 × 7 | 30.19 | 24.65 | 7.09 | 4.65 |
28 | 12 × 7 | 29.95 | 23.51 | 8.49 | 4.91 |
29 | 9 × 8 | 28.10 | 20.84 | 7.04 | 6.00 |
30 | 10 × 8 | 30.50 | 21.58 | 6.87 | 5.69 |
31 | 11 × 8 | 29.89 | 24.08 | 7.81 | 5.91 |
32 | 12 × 8 | 28.23 | 20.69 | 7.35 | 6.04 |
33 | 17 × 1 | 29.72 | 26.21 | 7.37 | 4.58 |
34 | 18 × 1 | 30.12 | 25.93 | 6.76 | 5.62 |
35 | 19 × 1 | 29.80 | 26.75 | 10.00 | 4.93 |
36 | 20 × 1 | 28.64 | 22.37 | 6.44 | 5.32 |
37 | 17 × 2 | 25.97 | 23.55 | 8.02 | 4.32 |
38 | 18 × 2 | 25.54 | 20.94 | 7.02 | 5.66 |
39 | 19 × 2 | 26.67 | 22.88 | 11.32 | 5.54 |
40 | 20 × 2 | 26.26 | 21.00 | 9.25 | 4.85 |
41 | 17 × 3 | 29.79 | 21.81 | 6.85 | 4.94 |
42 | 18 × 3 | 22.51 | 20.88 | 9.46 | 5.48 |
43 | 19 × 3 | 26.33 | 23.24 | 9.61 | 4.33 |
44 | 20 × 3 | 24.81 | 22.61 | 8.65 | 3.89 |
45 | 17 × 4 | 27.05 | 22.33 | 8.39 | 4.62 |
46 | 18 × 4 | 27.44 | 21.95 | 7.89 | 5.64 |
47 | 19 × 4 | 27.92 | 22.46 | 11.99 | 5.57 |
48 | 20 × 4 | 28.03 | 22.49 | 9.93 | 4.33 |
49 | 13 × 21 | 28.99 | 23.50 | 6.18 | 4.08 |
50 | 14 × 21 | 28.72 | 24.13 | 7.02 | 4.34 |
51 | 15 × 21 | 30.06 | 24.83 | 4.69 | 4.60 |
52 | 16 × 21 | 31.19 | 25.64 | 8.75 | 4.31 |
53 | 13 × 22 | 29.78 | 25.72 | 7.32 | 4.58 |
54 | 14 × 22 | 29.52 | 24.20 | 8.68 | 5.00 |
55 | 15 × 22 | 29.14 | 24.25 | 5.40 | 5.20 |
56 | 16 × 22 | 29.08 | 26.43 | 9.62 | 5.15 |
57 | 13 × 23 | 27.95 | 24.93 | 10.15 | 4.90 |
58 | 14 × 23 | 28.34 | 23.90 | 12.36 | 4.74 |
59 | 15 × 23 | 27.94 | 23.79 | 8.83 | 4.46 |
60 | 16 × 23 | 26.51 | 24.74 | 12.97 | 5.61 |
61 | 13 × 24 | 27.06 | 22.27 | 5.86 | 5.08 |
62 | 14 × 24 | 27.84 | 22.11 | 7.55 | 4.40 |
63 | 15 × 24 | 28.67 | 20.82 | 3.78 | 3.93 |
64 | 16 × 24 | 28.65 | 23.73 | 7.71 | 4.78 |
65 | 5 × 13 | 28.15 | 23.33 | 5.52 | 5.42 |
66 | 6 × 13 | 29.25 | 22.45 | 10.15 | 4.77 |
67 | 7 × 13 | 29.15 | 23.39 | 7.88 | 4.96 |
68 | 8 × 13 | 28.44 | 21.30 | 6.69 | 5.43 |
69 | 5 × 14 | 28.27 | 23.45 | 7.00 | 4.87 |
70 | 6 × 14 | 29.85 | 22.47 | 9.57 | 3.98 |
71 | 7 ×14 | 33.31 | 24.25 | 8.19 | 1.49 |
72 | 8 × 14 | 27.84 | 21.00 | 7.57 | 4.91 |
73 | 5 × 15 | 29.39 | 21.83 | 3.55 | 4.50 |
74 | 6 × 15 | 24.95 | 22.72 | 7.37 | 4.73 |
75 | 7 × 15 | 30.43 | 21.10 | 5.10 | 4.89 |
76 | 8 × 15 | 29.05 | 21.22 | 3.86 | 5.70 |
77 | 5 × 16 | 28.52 | 23.73 | 6.68 | 5.21 |
78 | 6 × 16 | 31.88 | 25.17 | 12.21 | 4.10 |
79 | 7 × 16 | 31.96 | 24.66 | 9.49 | 4.81 |
80 | 8 × 16 | 30.32 | 22.01 | 10.20 | 6.05 |
81 | 21 × 17 | 27.05 | 25.43 | 6.93 | 4.04 |
82 | 22 × 17 | 26.44 | 24.99 | 9.31 | 5.19 |
83 | 23 × 17 | 25.15 | 25.78 | 11.73 | 4.37 |
84 | 24 × 17 | 26.31 | 24.31 | 6.96 | 4.33 |
85 | 21 × 18 | 26.68 | 23.63 | 7.48 | 4.57 |
86 | 22 × 18 | 28.18 | 24.56 | 9.04 | 5.92 |
87 | 23 × 18 | 26.51 | 22.77 | 10.53 | 5.50 |
88 | 24 × 18 | 25.19 | 20.04 | 7.45 | 5.28 |
89 | 21 × 19 | 28.27 | 25.62 | 10.57 | 4.76 |
90 | 22 × 19 | 27.70 | 25.86 | 11.41 | 5.60 |
91 | 23 × 19 | 26.49 | 24.50 | 15.28 | 4.76 |
92 | 24 × 19 | 27.51 | 23.74 | 10.36 | 4.76 |
93 | 21 × 20 | 25.83 | 23.37 | 8.67 | 4.41 |
94 | 22 × 20 | 26.54 | 24.85 | 10.79 | 4.45 |
95 | 23 × 20 | 23.88 | 22.99 | 13.21 | 4.12 |
96 | 24 × 20 | 25.74 | 21.80 | 8.12 | 4.38 |
Ife Hybrid-3 | check | 27.21 | 21.40 | 10.59 | 4.70 |
Ife Hybrid-4 | check | 29.81 | 25.07 | 10.78 | 5.17 |
M1124-31 | check | 27.36 | 22.39 | 7.94 | 6.00 |
Oba Super 2 | check | 27.20 | 20.42 | 5.88 | 4.46 |
Grand mean | 28.51 | 23.61 | 8.32 | 4.88 | |
LSD (p < 0.05) | 1.93 | 1.71 | 0.83 | 0.67 |
Fe (mg kg−1) | Zn (mg kg−1) | PVA (μg g−1) | GY (t ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Parent | GRP | M | F | M | F | M | F | M | F |
1 | I | 1.39 * | 1.79 ** | 0.87 * | 1.87 ** | -0.70 | −0.82 | 0.08 | 0.02 |
2 | I | −0.83 | −0.10 | −1.43 * | −0.66 | 0.41 | −0.28 | 0.08 | −0.14 |
3 | I | −1.11 * | −0.21 | −1.01 * | −1.00 * | 0.22 | −0.71 | −0.15 | −0.11 |
4 | I | −0.96 * | −0.36 | −0.19 | 1.26 * | 0.93 | 0.26 | 0.11 | 0.19 |
5 | II | 0.81 | 0.06 | 0.29 | 0.02 | −1.41 * | −2.08 ** | 0.04 | 0.12 |
6 | II | 0.46 | 0.10 | 1.24 * | −0.34 | 1.53 * | 1.86 ** | 0.01 | −0.19 |
7 | II | 0.39 | 0.13 | 0.94 * | 1.84 ** | −0.37 | −0.35 | −0.03 | −0.37 * |
8 | II | −1.39 * | −1.53 ** | −0.15 | −0.14 | −0.49 | −0.54 | 0.43 * | 0.32 * |
9 | III | −0.04 | −0.05 | 0.26 | 0.99 * | −0.36 | −0.19 | 0.21 | 0.20 |
10 | III | −0.22 | −0.52 | 0.42 | 0.80 | −0.55 | −0.47 | −0.14 | 0.08 |
11 | III | 1.97 ** | 1.02 * | 0.52 | 1.04 * | −0.87 | −0.60 | −0.26 | −0.09 |
12 | III | −0.07 | −0.26 | −0.19 | 0.57 | 0.19 | 0.54 | 0.14 | 0.21 |
13 | IV | −0.63 | 0.05 | −0.26 | −0.47 | −0.57 | −0.51 | 0.21 | −0.02 |
14 | IV | −0.44 | −0.15 | 0.59 | −0.02 | 0.34 | 0.77 | −0.47 ** | −0.12 |
15 | IV | −1.27 * | −0.43 | −0.42 | 0.34 | −2.60 ** | −2.32 ** | 0.01 | −0.12 |
16 | IV | 0.53 | 1.03 * | 1.03 * | 0.13 | 1.69 | 1.59 * | 0.11 | 0.08 |
17 | V | 1.13 * | 0.00 | −0.76 | −0.32 | −0.19 | −0.90 | −0.16 | −0.10 |
18 | V | −0.75 | −0.57 | −0.50 | −0.80 | −0.44 | −0.49 | 0.20 | 0.33 * |
19 | V | 0.77 | 0.25 | −0.07 | −0.56 | 2.64 ** | 2.04 ** | 0.02 | 0.07 |
20 | V | −0.48 | −0.71 | −1.16 * | −0.90 | 1.07 ** | 0.19 | −0.25 | −0.20 |
21 | VI | 0.53 | 0.55 | 0.76 | −0.39 | −1.50 * | −0.72 | −0.16 | −0.16 |
22 | VI | 0.78 | 0.82 | 0.38 | −0.32 | −0.16 | 1.03 * | 0.04 | 0.13 |
23 | VI | 0.58 | 0.25 | −0.56 | −1.53 * | 2.86 ** | 3.50 ** | 0.05 | −0.04 |
24 | VI | −1.15 * | −1.16 * | −0.58 | −1.43 * | −1.68 * | −0.78 | −0.11 | −0.11 |
SE | 0.56 | 0.53 | 0.60 | 0.66 | 0.61 | 0.60 | 0.20 | 0.19 | |
GM | 23.60 | 23.60 | 28.53 | 28.53 | 8.22 | 8.22 | 4.88 | 4.88 |
H | Set | Parents | Performance per se | GCA | H | Set | Parents | Performance per se | GCA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | F | F1 | M | F | M | F | M | F | F1 | M | F | M | F | ||||
Top 10% Hybrids Zn (mg kg−1) | Top 10% Hybrids Fe (mg kg−1) | ||||||||||||||||
71 | V | 14 | 7 | 33.31 | 34.75 | 35.62 | 0.59 | 1.84 ** | 9 | I | 11 | 1 | 29.65 | 31.01 | 23.42 | 1.97 ** | 1.79 ** |
5 | I | 10 | 1 | 32.22 | 41.49 | 28.53 | 0.42 | 1.87 ** | 35 | III | 1 | 19 | 26.75 | 23.42 | 26.96 | 1.39 * | 0.25 |
16 | I | 12 | 4 | 31.97 | 36.12 | 32.86 | −0.19 | 1.26 * | 13 | I | 12 | 1 | 26.63 | 24.03 | 22.73 | −0.07 | 1.79 ** |
79 | V | 16 | 7 | 31.96 | 35.33 | 35.62 | 1.03 * | 1.84 ** | 56 | IV | 22 | 16 | 26.43 | 26.16 | 27.89 | 0.78 | 1.03 * |
78 | V | 16 | 6 | 31.88 | 35.33 | 32.61 | 1.03 * | −0.34 | 33 | III | 1 | 17 | 26.21 | 23.42 | 27.31 | 1.39 * | 0.00 |
22 | II | 6 | 10 | 31.65 | 32.61 | 41.49 | 1.24 * | 0.80 | 34 | III | 1 | 18 | 25.93 | 23.42 | 21.97 | 1.39 * | −0.57 |
26 | II | 7 | 10 | 31.64 | 35.62 | 41.49 | 1.24 * | 0.80 | 11 | I | 11 | 3 | 25.89 | 31.01 | 22.69 | 1.97 ** | 0.21 |
13 | I | 12 | 1 | 31.45 | 36.12 | 28.53 | −0.19 | 1.87 ** | 90 | VI | 19 | 22 | 25.86 | 26.96 | 26.16 | 0.77 | 0.82 |
24 | II | 6 | 12 | 31.42 | 32.61 | 36.12 | 1.24 * | 0.57 | 83 | VI | 17 | 23 | 25.78 | 27.31 | 20.93 | 1.13 * | 0.25 |
52 | IV | 21 | 16 | 31.19 | 37.12 | 35.33 | 0.76 | 0.13 | 17 | II | 5 | 9 | 25.77 | 23.06 | 24.29 | 0.81 | −0.05 |
Top 10% Hybrids PVA (μg g−1) | Top 10% Hybrids β-Carotene (μg g−1) | ||||||||||||||||
91 | VI | 19 | 23 | 15.28 | 10.88 | 15.15 | 2.64 ** | 3.50 ** | 91 | VI | 19 | 23 | 11.76 | 8.10 | 10.80 | 2.06 ** | 2.56 ** |
95 | VI | 20 | 23 | 13.21 | 11.25 | 15.15 | 1.07 ** | 3.50 ** | 60 | IV | 23 | 16 | 9.91 | 10.80 | 6.58 | 2.31 ** | 1.27 * |
60 | IV | 23 | 16 | 12.97 | 15.15 | 9.31 | 2.86 ** | 1.59 * | 58 | IV | 23 | 14 | 9.85 | 10.80 | 6.69 | 2.31 ** | 0.85 |
58 | IV | 23 | 14 | 12.36 | 15.15 | 8.39 | 2.86 ** | 0.77 | 47 | III | 4 | 19 | 9.49 | 7.34 | 8.10 | 1.06 * | 1.36 * |
78 | V | 16 | 6 | 12.21 | 9.31 | 5.85 | 1.69 * | 1.86 ** | 90 | VI | 19 | 22 | 9.35 | 8.10 | 9.66 | 2.06 * | 0.64 |
47 | III | 4 | 19 | 11.99 | 8.84 | 10.88 | 0.93 | 2.04 ** | 95 | VI | 20 | 23 | 9.1 | 7.34 | 10.80 | 0.49 | 2.31 * |
83 | VI | 17 | 23 | 11.73 | 7..28 | 15.15 | −0.19 | 3.50 ** | 78 | V | 16 | 6 | 8.93 | 6.58 | 3.37 | 1.38 ** | 1.42 ** |
90 | VI | 19 | 22 | 11.41 | 10.88 | 10.81 | 2.64 * | 1.03 * | 80 | V | 16 | 8 | 8.62 | 6.58 | 11.03 | 1.38 ** | 0.07 |
39 | III | 2 | 19 | 11.32 | 8.12 | 10.88 | 0.41 | 2.04 ** | 94 | VI | 20 | 22 | 8.29 | 7.34 | 9.66 | 0.49 | 0.64 |
24 | II | 6 | 12 | 11.08 | 5.85 | 8.33 | 1.53 * | 0.54 | 87 | VI | 18 | 23 | 8.26 | 6.49 | 10.80 | 0.15 | 2.56 ** |
Set | Description | Fe (mg kg−1) | Zn (mg kg−1) | PVA (μg g−1) | GY (t ha−1) |
---|---|---|---|---|---|
1 | GI × GIII | 24.45 | 29.24 | 7.48 | 4.80 |
II | GIII × GII | 23.74 | 30.14 | 7.80 | 5.23 |
III | GV × GI | 22.97 | 27.33 | 8.67 | 4.98 |
IV | GIV × GVI | 24.09 | 28.73 | 7.92 | 4.71 |
V | GII × GIV | 22.70 | 29.43 | 7.54 | 4.74 |
V1 | GVI × GV | 24.04 | 26.43 | 9.87 | 4.78 |
LSD(0.05) | 0.63 | 0.50 | 0.20 | 0.14 |
PVA (μg g−1) | Fe (mg kg−1) | Zn (mg kg−1) | |
---|---|---|---|
PVA (μg g−1) | 1 | 0.19 | −0.19 * |
Fe (mg kg−1) | 1 | 0.42 ** | |
Zn (mg kg−1) | 1 |
PVA (μg g−1) | Fe (mg kg−1) | Zn (mg kg−1) | |
---|---|---|---|
Days to anthesis | 0.12 | 0.21 * | 0.56 ** |
Days to silking | 0.10 | 0.21 * | 0.56 ** |
ASI (days) | −0.13 | 0.06 | 0.06 |
Plant height (cm) | 0.02 | −0.33 * | 0.13 |
Ear height (cm) | 0.10 | −0.09 | 0.37 ** |
Plant aspect | −0.11 | 0.14 | −0.22 * |
Ear aspect | −0.32 ** | 0.04 | −0.23 * |
Grain yield (tha−1) | 0.02 | −0.21 * | −0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udo, E.; Abe, A.; Meseka, S.; Mengesha, W.; Menkir, A. Genetic Analysis of Zinc, Iron and Provitamin A Content in Tropical Maize (Zea mays L.). Agronomy 2023, 13, 266. https://doi.org/10.3390/agronomy13010266
Udo E, Abe A, Meseka S, Mengesha W, Menkir A. Genetic Analysis of Zinc, Iron and Provitamin A Content in Tropical Maize (Zea mays L.). Agronomy. 2023; 13(1):266. https://doi.org/10.3390/agronomy13010266
Chicago/Turabian StyleUdo, Enoobong, Ayodeji Abe, Silvestro Meseka, Wende Mengesha, and Abebe Menkir. 2023. "Genetic Analysis of Zinc, Iron and Provitamin A Content in Tropical Maize (Zea mays L.)" Agronomy 13, no. 1: 266. https://doi.org/10.3390/agronomy13010266
APA StyleUdo, E., Abe, A., Meseka, S., Mengesha, W., & Menkir, A. (2023). Genetic Analysis of Zinc, Iron and Provitamin A Content in Tropical Maize (Zea mays L.). Agronomy, 13(1), 266. https://doi.org/10.3390/agronomy13010266