Palynological Study of Fossil Plants from Miocene Murree Formation of Pakistan: Clues to Investigate Palaeoclimate and Palaeoenvironment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collections
2.2. Sample Preparation
2.3. Samples’ Identifications
3. Results
3.1. Proteaceae
3.2. Rosaceae
3.3. Pinaceae
3.4. Typhaceae
3.5. Fagaceae
3.6. Cupressaceae
3.7. Myrtaceae
3.8. Asteraceae
3.9. Chenopodiaceae
3.10. Liliaceae
3.11. Poaceae
3.12. Lamiaceae
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meigs, A.J.; Douglas, W.B.; Richard, A.B. Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology 1995, 23, 423–426. [Google Scholar] [CrossRef]
- Zaheer, M.; Khan, M.S.; Mughal, M.S.; Abbasi, N. Petrography, provenance, diaganesis and depositional environment of Murree formation in Jhelum Valley, Sub Himalayas, Azad Jammu and Kashmir, Pakistan. Arab. J. Geosci. 2017, 10, 514. [Google Scholar] [CrossRef]
- Strother, S.L.; Salzmann, U.; Sangiorgi, F.; Bijl, P.K.; Pross, J.; Escutia, C.; Salabarnada, A.; Pound, M.J.; Voss, J.; Woodward, J. A new quantitative approach to identify reworking in Eocene to Miocene pollen records from offshore Antarctica using red fluorescence and digital imaging. Biogeosciences 2017, 14, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Shaikh, N.; Ahmed, M.; Zaman, W.; Khan, A.; Ayaz, A.; El-Ansary, D.O.; Sharma, H.; Elansary, H.O.; Park, S. Floristic Association of Moist Temperate Forests of Shangla District, Delineated by a Multivariate Approach. Agronomy 2022, 12, 1723. [Google Scholar] [CrossRef]
- Gilani, H.; Goheer, M.A.; Ahmad, H.; Hussain, K. Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 2020, 111, 106049. [Google Scholar] [CrossRef]
- Liu, F.; Peng, H.; Bomfleur, B.; Kerp, H.; Zhu, H.; Shen, S. Palynology and vegetation dynamics across the Permian–Triassic boundary in southern Tibet. Earth-Sci. Rev. 2020, 209, 103278. [Google Scholar] [CrossRef]
- Shah, S.I. Stratigraphy of Pakistan. Mem. Geol. Surv. Pak. 1977, 12, 138. [Google Scholar]
- Mughal, M.S.; Zhang, C.; Du, D.; Zhang, L.; Mustafa, S.; Hameed, F.; Khan, M.R.; Zaheer, M.; Blaise, D. Petrography and provenance of the Early Miocene Murree Formation, Himalayan Foreland Basin, Muzaffarabad, Pakistan. J. Asian Earth Sci. 2018, 162, 25–40. [Google Scholar] [CrossRef]
- Boyd, M. Phytoliths as paleoenvironmental indicators in a dune field on the northern Great Plains. J Arid Environ. 2005, 61, 357–375. [Google Scholar] [CrossRef]
- Edwards, K.J. Pollen, women, war and other things: Reflections on the history of palynology. Veg. Hist. Archaeobot. 2018, 27, 319–335. [Google Scholar] [CrossRef] [Green Version]
- Malkani, M.S.; Mahmood, Z.; Somro, N.; Shaikh, S. Revised Stratigraphy and Mineral Resources of Kirthar Basin, Pakistan. Mem. Geol. Surv. Pak. 2017, 24, 1–134. [Google Scholar]
- Liu, Y.; Song, C.; Meng, Q.; He, P.; Yang, R.; Huang, R.; Chen, S.; Wang, D.; Xing, Z. Paleoclimate change since the Miocene inferred from clay-mineral records of the Jiuquan Basin, NW China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 550, 109730. [Google Scholar] [CrossRef]
- Yar, M.; Hanif, M.; Sajid, M. Lithofacies and petrography of Miocene Murree Formation, Peshawar basin, NW Pakistan: Implications for provenance and paleoclimate. Arab. J. Geosci. 2021, 14, 714. [Google Scholar] [CrossRef]
- Perveen, A.; Qaiser, M. Pollen flora of Pakistan—LXXII. Ericaceae. Pak. J. Bot. 2013, 45, 977–979. [Google Scholar]
- Siddiqui, K.M.; Mohammad, I.; Ayaz, M. Forest ecosystem climate change impact assessment and adaptation strategies for Pakistan. Clim. Res. 1999, 12, 195–203. [Google Scholar] [CrossRef]
- Williams, C.G. The Male Gametophyte Enclosed in a Pollen Wall. In Conifer Reproductive Biology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 69–89. [Google Scholar]
- Usma, A.; Ahmad, M.; Zafar, M.; Sultana, S.; Ullah, F.; Saqib, S.; Ayaz, A.; Zaman, W. Palynological Study of Weed Flora from Potohar Plateau. Agronomy 2022, 12, 2500. [Google Scholar] [CrossRef]
- Mander, L.; Punyasena, S.W. Fossil pollen and spores in paleoecology. In Methods in Paleoecology; Springer: Cham, Switzerland, 2018; pp. 215–234. [Google Scholar]
- Jaramillo, C.A.; Moreno, E.; Ramírez, V.; da Silva-Caminha, S.A.; de la Barrera, A.; de la Barrera, A.; Sanchez, C.R.; Morón, S.; Herrer, F.; Escobar, J. Palynological record of the last 20 million years in Panama. In Paleobotany and Biogeography: A Festschrift for Alan Graham in His 80th Year; Stevens, W.D., Montiel, O.M., Raven, P., Eds.; Missouri Botanical Garden Press: St. Louis, MO, USA, 2014; pp. 134–253. [Google Scholar]
- Shah, S.N.; Ahmad, M.; Zafar, M.; Ullah, F.; Zaman, W.; Malik, K.; Rashid, N.; Gul, S. Taxonomic importance of spore morphology in Thelypteridaceae from Northern Pakistan. Microsc. Res. Tech. 2019, 82, 1326–1333. [Google Scholar] [CrossRef]
- Punt, W.; Hoen, P.P.; Blackmore, S.; Nilsson, S.; Le Thomas, A. Glossary of pollen and spore terminology. Rev. Palaeobot Palynol. 2007, 143, 1–81. [Google Scholar] [CrossRef]
- De Franceschi, D.; Hoorn, C.; Antoine, P.O.; Cheema, I.U.; Flynn, L.J.; Lindsay, E.H.; Marivaux, L.; Métais, G.; Rajpar, A.R.; Welcomme, J.L. Floral data from the mid-Cenozoic of central Pakistan. Rev. Palaeobot. Palynol. 2008, 150, 115–129. [Google Scholar] [CrossRef]
- Faegri, K.; Kaland, P.E.; Krzywinski, K. Textbook of Pollen Analysis; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1989. [Google Scholar]
- Svetlana, P.; Torsten, U.; Anna, A.; Valentina, T.; Polina, T.; Yaowu, X. Early Miocene flora of central Kazakhstan (Turgai Plateau) and its paleoenvironmental implications. Plant Divers. 2019, 41, 183–197. [Google Scholar] [CrossRef]
- Ahmad, M.; Ali, M.; Zafar, M.; Sultana, S.; Majeed, S.; Yaseen, G.; Ahmad, S. Palynological diversity of Melliferous flora around apiaries from district Mardan Khyber Pakhtunkhwa-Pakistan. Bot. Rev. 2022, 88, 299–332. [Google Scholar]
- Flynn, L.J.; Morgan, M.E. An unusual diatomyid rodent from an infrequently sampled Late Miocene interval in the Siwaliks of Pakistan. Palaeontol. Electron. 2005, 8, 17A. [Google Scholar]
- Palazzesi, L.; Barreda, V.; Tellería, M.C. Fossil pollen grains of Asteraceae from the Miocene of Patagonia: Barnadesioideae affinity. Rev. Palaeobot. Palynol. 2009, 155, 83–88. [Google Scholar] [CrossRef]
- Zetter, R.; Ferguson, D.K.; Mohr, B.A. Discriminating fossil evergreen and deciduous Quercus pollen: A case study from the Miocene of eastern China. Rev. Palaeobot. Palynol. 2007, 145, 289–303. [Google Scholar]
- Khan, A.N.; Collins, A.E.; Qazi, F. Causes and extent of environmental impacts of landslide hazard in the Himalayan region: A case study of Murree, Pakistan. Nat. Hazards 2011, 57, 413–434. [Google Scholar]
- Denk, T.; Bouchal, J.M. New Fagaceous pollen taxa from the Miocene Søby flora of Denmark and their biogeographic implications. Am. J Bot. 2021, 108, 1500–1524. [Google Scholar] [CrossRef]
- Wu, F.; Gao, S.; Tang, F.; Meng, Q.; An, C. A late Miocene-early Pleistocene palynological record and its climatic and tectonic implications for the Yunnan Plateau, China. Palaeogeogr. Paleoclimatol. Palaeoecol. 2019, 530, 190–199. [Google Scholar] [CrossRef]
- Sarkar, S.; Bhattacharya, A.P.; Singh, H.P. Palynology of Middle Siwalik sediments (Late Miocene) from Bagh Rao, Uttar Pradesh. Palaeobotanist 1994, 42, 199–209. [Google Scholar] [CrossRef]
- Mandaokar, B.D. Palynoflora from the Keifang Formation (early Miocene) Mizoram, India and its environmental significance. J. Palaeontol. Soc. India 2002, 47, 77–83. [Google Scholar]
- Mehrotra, R.C.; Bera, S.K.; Basumatary, S.K.; Srivastava, G. Study of fossil wood from the Middle–Late Miocene sediments of Dhemaji and Lakhimpur districts of Assam, India and its palaeoecological and palaeophytogeographical implications. J. Earth Syst. Sci. 2011, 120, 681–701. [Google Scholar] [CrossRef] [Green Version]
- Paruya, D.K.; Ghosh, R.; Bismas, O.; Bera, M.; Bera, S. Dispersed fungal remains from the Neogene Siwalik forest of sub Himalayan Arunachal Pradesh, India and their palaeoenvironmental indicative values. J. Mycopathol. Res. 2017, 55, 303–307. [Google Scholar]
- Wang, W.M.; Harley, M.M. The Miocene genus Fupingopollenites: Comparisons with ultrastructure and pseudocolpi in modern pollen. Rev. Palaeobot. Palynol. 2004, 131, 117–145. [Google Scholar] [CrossRef]
- Xu, J.X.; Ferguson, D.K.; Li, C.S.; Wang, Y.F. Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Rev. Palaeobot. Palynol. 2008, 148, 36–59. [Google Scholar] [CrossRef]
- Quamar, M.F.; Singh, P.; Garg, A.; Tripathi, S.; Farooqui, A.; Shukla, A.N.; Prasad, N. Pollen characters and their evolutionary and taxonomic significance: Using light and confocal laser scanning microscope to study diverse plant pollen taxa from central India. Palynology 2022, 46, 1–13. [Google Scholar] [CrossRef]
- Ahmad, M.; Bano, A.; Zafar, M.; Khan, M.A.; Chaudhry, M.J.I.; Sultana, S. Pollen morphology of some species of the family asteraceae from the alpine zone, Deosai Plateau, northern Pakistan. Palynology 2013, 37, 189–195. [Google Scholar] [CrossRef]
- Usma, A.; Ahmad, M.; Zafar, M.; Sultana, S.; Lubna; Kalsoom, N.; Zaman, W.; Ullah, F. Micromorphological variations and taxonomic implications of caryopses of some grasses from Pakistan. Wulfenia 2020, 27, 86–96. [Google Scholar]
- Khan, R.; Ul Abidin, S.Z.; Ahmad, M.; Zafar, M.; Liu, J.; Amina, H. Palyno-morphological characteristics of gymnosperm flora of Pakistan and its taxonomic implications with LM and SEM methods. Microsc. Res. Tech. 2018, 81, 74–87. [Google Scholar] [CrossRef]
- Bouchal, J.M.; Zetter, R.; Grímsson, F.; Denk, T. The middle Miocene palynoflora and palaeoenvironments of Eskihisar (Yatağan basin, south-western Anatolia): A combined LM and SEM investigation. Bot. J. Linn. Soc. 2016, 182, 14–79. [Google Scholar] [CrossRef] [Green Version]
- Kar, R.K. On the Indian origin of Ocimum (Lamiaceae): A palynological approach. Palaeobotanist 1996, 43, 43–50. [Google Scholar] [CrossRef]
- Yu, X.Q.; Maki, M.; Drew, B.T.; Paton, A.J.; Li, H.W.; Zhao, J.L.; Conran, J.G.; Li, J. Phylogeny and historical biogeography of Isodon (Lamiaceae): Rapid radiation in south-west China and Miocene overland dispersal into Africa. Mol. Phylogenet. Evol. 2014, 77, 183–194. [Google Scholar] [CrossRef]
- Akgün, F.; Kayseri-Özer, M.S.; Tekin, E.; Varol, B.; Şen, Ş.; Herece, E.; Gündoğan, İ.; Sözeri, K.; Us, M.S. Late Eocene to Late Miocene palaeoecological and palaeoenvironmental dynamics of the Ereğli-Ulukışla Basin (Southern Central Anatolia). Geol. J. 2021, 56, 673–703. [Google Scholar] [CrossRef]
- Guo, Z.T.; Sun, B.; Zhang, Z.S.; Peng, S.Z.; Xiao, G.Q.; Ge, J.Y.; Hao, Q.Z.; Qiao, Y.S.; Liang, M.Y.; Liu, J.F.; et al. A major reorganization of Asian climate by the early Miocene. Clim. Past 2008, 4, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, W.M.; Shu, J.W.; Chen, W. Miocene palynoflora from Shengxian Formation, Zhejiang Province, southeast China and its palaeovegetational and palaeoenvironmental implications. Rev. Palaeobot. Palynol. 2018, 259, 185–197. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.J.; Song, C.H.; Yu, H.; Peng, T.J.; Hui, Z.C.; Ye, X.Y. Palynological evidence for late Miocene stepwise aridification on the northeastern Tibetan Plateau. Clim. Past 2016, 12, 1473–1484. [Google Scholar] [CrossRef] [Green Version]
- Florenzano, A. The history of pastoral activities in S Italy inferred from palynology: A long-term perspective to support biodiversity awareness. Sustainability 2019, 11, 404. [Google Scholar] [CrossRef] [Green Version]
- Camuera, J.; Jiménez-Moreno, G.; Ramos-Román, M.J.; García-Alix, A.; Toney, J.L.; Anderson, R.S.; Jiménez-Espejo, F.; Bright, J.; Webster, C.; Yanes, Y.; et al. Vegetation and climate changes during the last two glacial-interglacial cycles in the western Mediterranean: A new long pollen record from Padul (southern Iberian Peninsula). Quat. Sci. Rev. 2019, 205, 86–105. [Google Scholar] [CrossRef]
S. No | Species/Taxon/Family | Pollen Shape | Pollen Type | Colpi/Pore | Ornamentations | Spines |
---|---|---|---|---|---|---|
1 | Gevuina Avellana Molina | Triangular | Tricolporate | P | Psilate | A |
2 | Sanguisorba minor Scop | Circular | - | A | Psilate | A |
3 | Spheroidal | Tricolpaorte | P | Psilate | A | |
4 | Pinus spp. | Circular | Monoporate | A | Regulate | A |
5 | Subprolate | Dicolporate | P | Psilate | A | |
6 | Peroblate | - | P | Psilate | A | |
7 | Angular | Monoporate | A | Regulate | A | |
8 | Sparganium spp. | Circular | Monoporate | P | Psilate | A |
9 | Quercus spp. | Inter-angular | Tricolpate | P | Regulate | A |
10 | Prolate-spheroidal | - | A | Psilate | A | |
11 | Prolate | - | A | Psilate | A | |
12 | Prolate-spheroidal | - | A | Regulate | A | |
13 | Juniperous spp. | Prolate | - | A | Psilate | A |
14 | Myrtaceae | Angular | Tricolpate | P | Psilate | A |
15 | Artemisia spp. | Spheroidal | - | A | Regulate | A |
16 | Interporopollenites spp. | Inter-semilobate | A | Psilate | A | |
17 | Chenopodiaceae | Spheroidal | Pentaporate | P | Regulate | A |
18 | Cupressaceae | Spheroidal | - | A | Psilate | A |
19 | Liliaceae | Prolate | - | A | Psilate | A |
20 | Peroblate | - | A | Psilate | A | |
21 | Cichoriodeae | Spheroidal | Polyporate | P | Echinate | A |
22 | Asteraceae | Spheroidal | - | A | Echinate | P |
23 | Spheroidal | - | A | Echinate | P | |
24 | Spheroidal | - | A | Echinate | P | |
25 | Prolate-spheroidal | Tricolporate | P | Echinate | P | |
26 | Circular | - | A | Echinate | P | |
27 | Spheroidal | - | A | Echinate | P | |
28 | Circular | Tricolporate | P | Echinate | P | |
29 | Poaceae | Elliptic | Monoporate | P | Psilate | A |
30 | Spheroidal | - | A | Psilate | A | |
31 | Prolate | - | A | Psilate | A | |
32 | Subprolate | - | A | Psilate | A | |
33 | Spheroidal | - | A | Psilate | A | |
34 | Inter-subangular | - | A | Psilate | A | |
35 | Circular | - | A | Psilate | A | |
36 | Prolate-spheroidal | - | A | Psilate | A | |
37 | Lmiaceae | Prolate-spheroidal | - | A | - | A |
38 | Semi-angular | - | A | Psilate | A | |
39 | Circular | - | A | - | A | |
40 | Circular | - | A | - | A | |
41 | Angular | - | A | Psilate | A | |
42 | Circular | - | A | - | A | |
43 | Angular | - | A | - | A | |
44 | Circular-lobed | - | A | Psilate | A | |
45 | Prolate | - | A | - | A | |
46 | Circular-lobed | - | A | Psilate | A | |
47 | Circular | - | A | Psilate | A | |
48 | Ocimum basilicum L. | Oblate-spheroidal | Hexacolporate | P | Reticulate | A |
S. No | Species Name | Exine Thickness (μm) | Pollen Diameter (μm) | Colpi Length (μm) | Colpi Width (μm) |
---|---|---|---|---|---|
1 | Gevuina Avellana Molina | 2.25 | 25.5 | 7.0 | 6.25 |
2 | Sanguisorba minor Scop | 3.25 | 21.75 | 10.75 | 2.25 |
3 | 4.00 | 38.5 | - | - | |
4 | Pinus spp. | 2.5 | 55.75 | - | - |
5 | 3.75 | 59.00 | 13.00 | 17.25 | |
6 | 3.5 | 69.5 | - | - | |
7 | 1.25 | 53.5 | - | - | |
8 | Sparganium spp. | 2.75 | 38.00 | - | - |
9 | Quercus spp. | 1.6 | 32.25 | 2 | |
10 | 3.25 | 21.00 | - | - | |
11 | 1.25 | 29.25 | - | - | |
12 | 2.00 | 51.25 | - | - | |
13 | Juniperous spp. | 3.5 | 56.5 | - | - |
14 | Myrtaceae | 4.07 | 31.8 | - | - |
15 | Artemisia spp. | 1.5 | 22.5 | - | - |
16 | Interporopollenites spp. | 1.25 | 40.25 | 2.5 | 3 |
17 | Chenopodiaceae | 3.5 | 25.25 | - | - |
18 | Cupressaceae | 3.25 | 26.00 | - | - |
19 | Liliaceae | 1.00 | 42.5 | - | - |
20 | 2.5 | 32.25 | - | - | |
21 | Cichoriodeae | 3.5 | 22.75 | - | - |
22 | Asteraceae | 4.00 | 17.5 | - | - |
23 | 3.75 | 17.25 | - | - | |
24 | 3.75 | 22.00 | - | - | |
25 | 3.5 | 38.5 | - | - | |
26 | 3.5 | 36.75 | - | - | |
27 | 3.25 | 32.00 | - | - | |
28 | 3.75 | 21.00 | - | - | |
29 | Poaceae | 2.25 | 31.00 | - | - |
32 | 2.00 | 27.5 | - | - | |
31 | 1.75 | 23.00 | - | - | |
32 | 2.00 | 26.25 | - | - | |
33 | 1.25 | 40.00 | - | - | |
34 | 2.25 | 25.25 | - | - | |
35 | 1.75 | 31.75 | - | - | |
36 | 1.25 | 16.5 | - | - | |
37 | Lamiaceae | 1.25 | 31.00 | - | - |
38 | 3.00 | 30.25 | - | - | |
39 | 3.25 | 39.00 | - | - | |
40 | 2.5 | 38.25 | - | - | |
41 | 2.5 | 40.25 | - | - | |
42 | 3.00 | 38.25 | - | - | |
43 | 2.25 | 31.25 | - | - | |
44 | 2.25 | 37.5 | 4.75 | 5.25 | |
45 | 2.25 | 38.5 | - | - | |
46 | 2.75 | 32.75 | - | - | |
47 | 3.00 | 43.00 | - | - | |
48 | Ocimum basilicum L. | 4.25 | 57.23 | 22.6 | 4.22 |
S. No | Category | Family | Taxa/Tribe | Counts |
---|---|---|---|---|
1 | Angiosperm | Proteaceae | Gevuina Avellana Molina | 1 |
2 | Angiosperm | Rosaceae | Sanguisorba minor Scop | 2 |
3 | Gymnosperm | Pinaceae | Pinus spp. | 4 |
4 | Angiosperm | Typhaceae | Sparganium spp. | 1 |
5 | Angiosperm | Fagaceae | Quercus spp. | 4 |
6 | Angiosperm | Asteraceae | Artemisia spp. | 1 |
7 | Gymnosperm | Cupressaceae | Juniperous spp. | 1 |
Interporopollenites spp. | 1 | |||
- | 1 | |||
8 | Angiosperm | Lamiaceae | - | 12 |
9 | Angiosperm | Chenopodiaceae | - | 1 |
10 | Angiosperm | Asteraceae | - | 7 |
11 | Angiosperm | Poaceae | - | 8 |
12 | Angiosperm | Liliaceae | - | 2 |
13 | Angiosperm | Asteraceae | Cichoriodeae | 1 |
14 | Angiosperm | Myrtaceae | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.; Ahmad, M.; Fawzy Ramadan, M.; Sultana, S.; Papini, A.; Ullah, F.; Saqib, S.; Ayaz, A.; Ahmed Bazai, M.; Zaman, W.; et al. Palynological Study of Fossil Plants from Miocene Murree Formation of Pakistan: Clues to Investigate Palaeoclimate and Palaeoenvironment. Agronomy 2023, 13, 269. https://doi.org/10.3390/agronomy13010269
Ahmad S, Ahmad M, Fawzy Ramadan M, Sultana S, Papini A, Ullah F, Saqib S, Ayaz A, Ahmed Bazai M, Zaman W, et al. Palynological Study of Fossil Plants from Miocene Murree Formation of Pakistan: Clues to Investigate Palaeoclimate and Palaeoenvironment. Agronomy. 2023; 13(1):269. https://doi.org/10.3390/agronomy13010269
Chicago/Turabian StyleAhmad, Shabir, Mushtaq Ahmad, Mohamed Fawzy Ramadan, Shazia Sultana, Alessio Papini, Fazal Ullah, Saddam Saqib, Asma Ayaz, Mansoor Ahmed Bazai, Wajid Zaman, and et al. 2023. "Palynological Study of Fossil Plants from Miocene Murree Formation of Pakistan: Clues to Investigate Palaeoclimate and Palaeoenvironment" Agronomy 13, no. 1: 269. https://doi.org/10.3390/agronomy13010269
APA StyleAhmad, S., Ahmad, M., Fawzy Ramadan, M., Sultana, S., Papini, A., Ullah, F., Saqib, S., Ayaz, A., Ahmed Bazai, M., Zaman, W., & Zafar, M. (2023). Palynological Study of Fossil Plants from Miocene Murree Formation of Pakistan: Clues to Investigate Palaeoclimate and Palaeoenvironment. Agronomy, 13(1), 269. https://doi.org/10.3390/agronomy13010269