Calibration of Soil Moisture Sensors (ECH2O-5TE) in Hot and Saline Soils with New Empirical Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Instruments
2.2. Soil
- A.
- B.
- For specific experiments, to test the influence of soil texture on sensor measurement accuracy, two types of soils were used, as shown in Table 3. These soils were used alone or were mixed, according to the required percentages for the specific experiment.
2.3. Water
- A.
- Distilled water was used to test the influences of all mentioned factors except the decreasing salinity (EC) from bovine compost by leaching.
- B.
- Available irrigation water was used to remove the salinity from bovine compost by leaching. A water analysis is presented in Table 4.
2.4. Sporadic Materials and Devices Used
2.5. Bovine Compost
2.6. Measuring VWC by Gravimetric Method and Sensors
2.7. Soil Moisture Level Impact on Sensor’s Measurement
2.8. Soil Salinity (EC) Impact on Sensor’s Measurement
2.8.1. Preparing Soil Sample with Gradated Concentration Salt
2.8.2. Testing and Sampling Method
2.8.3. ECe & ECa Testing
2.8.4. Comparison of the VWC Measured by Sensors and by Gravimetric Method
2.9. Soil Temperature Impact on Sensor’s Measurement
2.10. Bovine Compost Impact on Sensor’s Measurement
2.11. Soil Texture Impact on Sensor’s Measurement
2.12. Soil Bulk Density () Impact on Sensor’s Measurement
2.13. Statistical Analysis
3. Results and Discussion
3.1. Combining the Analysis Results with the True Values Measured by the Gravimetric Method under Different Constraints
3.2. Influence of Soil Moisture Content on 5TE Sensor Measurement Accuracy
3.3. Influence of Soil Temperature on Sensor Measurement Accuracy
3.4. Influence of Organic Matter Content on Sensor Measurement Accuracy
3.5. Influence of Soil Texture on Sensor Measurement Accuracy
3.6. Influence of Soil Bulk Density on Sensor Measurement Accuracy
3.7. An Empirical Equation to Correct the Influence of EC and Temperature
3.8. Testing the Empirical Correction Equation
3.8.1. Testing Equation Performance with Increased Soil Moisture
3.8.2. Testing Equation to Correct Influence of Electric Conductivity (EC) at 25 °C
3.8.3. Testing L&O Equation to Correct Influence of Temperature at ECe of 2.42 dS m−1
3.8.4. Testing Equation with Graded EC at Low and High Temperatures
3.8.5. Testing Equation to Correct for Influence of Both Temperature and Low or High EC
3.8.6. Multiple Comparisons
3.8.7. Correlations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fares, A.; Abbas, F.; Maria, D.; Mair, A. Improved Calibration Functions of Three Capacitance Probes for the Measurement of Soil Moisture in Tropical Soils. Sensors 2011, 11, 4858–4874. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Awal, R.; Bayabil, H.K. Soil water content sensor response to organic matter content under laboratory conditions. Sensors 2016, 16, 1239. [Google Scholar]
- Assouline, S.; Narkis, K.; Tyler, S.; Lunati, I.; Parlange, M.; Selker, J.S. On the Diurnal Soil Water Content Dynamics during Evaporation using Dielectric Methods. Vadose Zone J. 2010, 9, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Baumhardt, R.L.; Lascano, R.J.; Eve, S.R. Soil material, temperature, and EC effects on calibration of multi sensor capacitance probes. Soil Sci. Soc. Am. J. 2000, 64, 1940–1946. [Google Scholar] [CrossRef]
- Li, B.; Wang, C.; Gu, X.; Zhou, X.; Ma, M.; Li, L.; Feng, Z.; Ding, T.; Li, X.; Jiang, T.; et al. Accuracy calibration and evaluation of capacitance-based soil moisture sensors for a variety of soil properties. Agric. Water Manag. 2022, 273, 107913. [Google Scholar] [CrossRef]
- Wu, B.; Han, H.; He, J.; Zhang, J.; Cui, L.; Jia, Z.; Yang, W. Field-Specific Calibration and Evaluation of ECH2 O EC-5 Sensor for Sandy Soils. Soil Sci. Soc. Am. J. 2014, 78, 70–78. [Google Scholar] [CrossRef]
- Czarnomski, N.M.; Moore, G.W.; Pypker, T.G.; Licata, J.; Bond, B.J. Precision and accuracy of three alternative instruments for measuring soil water content in two forest soils of the Pacific Northwest. Can. J. For. Res. 2005, 35, 18671876. [Google Scholar] [CrossRef] [Green Version]
- Elia, S.; Berti, A.; Teatini, P.; Morari, F. Simultaneous monitoring of soil water content and EC with a low-cost capacitance-resistance probe. Sensors 2012, 12, 17588–17607. [Google Scholar]
- Abbas, F.; Fares, A.; Fares, S. Field Calibrations of Soil Moisture Sensors in a Forested Watershed. Sensors 2011, 11, 6354–6369. [Google Scholar] [CrossRef] [Green Version]
- Fernando, V.; Martínez, D.; Molina, M.J.; Ingelmo, F.; De Paz, J.M. A combined equation to estimate the soil pore-water electrical conductivity: Calibration with the WET and 5TE sensors. Soil Res. 2014, 52, 419. [Google Scholar]
- Fernando, V.; De Paza, J.M.; Martínez, D.; Molina, M.J. Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agric. Water Manag. 2014, 132, 111–119. [Google Scholar]
- Ganjegunte, G.K.; Sheng, Z.; Clark, J.A. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Appl. Water Sci. 2012, 2, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Gasch, C.K.; Brown, D.J.; Brooks, E.S.; Yproposedek, M.; Poggio, M.; Cobos, D.R.; Campbell, C.S. A pragmatic, automated approach for retroactive calibration of soil moisture sensors using a two-step, soil-specific correction. Comput. Electron. Agric. 2017, 137, 29–40. [Google Scholar] [CrossRef] [Green Version]
- George, K.; Persson, M.; Kanelis, G.; Markopoulou, I. Prediction of soil solution electrical conductivity by the permittivity corrected linear model using a dielectric sensor. J. Irrig. Drain. Eng. 2017, 143, 8. [Google Scholar]
- Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of four soil moisture sensor types under field conditions in Switzerland. J. Hydrol. 2012, 430-431, 39–49. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 19.0; IBM Corp.: Armonk, NY, USA, 2010.
- Jae-Kwon, S.; Shin, W.-T.; Cho, J.-Y. Laboratory and field assessment of the decagon 5TE and GS3 sensors for estimating soil water content in saline-alkali reclaimed soils. J. Commun. Soil Sci. Plant Anal. 2017, 48, 2268–2279. [Google Scholar]
- Kapilaratne, R.J.; Lu, M. Automated general temperature correction method for dielectric soil moisture sensors. J. Hydrol. 2017, 551, 203–216. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P. Water content determination in mineral and organic porous media by ML2 theta probe. Irrig. Drain. 2008, 57, 435–449. [Google Scholar] [CrossRef]
- Kargas, G.; Kerkides, P.; Seyfried, M. Response of Three Soil Water Sensors to Variable Solution Electrical Conductivity in Different Soils. Vadose Zone J. 2014, 13, 9. [Google Scholar] [CrossRef]
- Kizito, F.; Campbell, C.S.; Cobos, D.R.; Teare, B.L.; Carter, B.; Hopmans, J.W. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. J. Hydrol. 2008, 352, 367–378. [Google Scholar] [CrossRef]
- Chow, L.; Xing, Z.; Rees, H.W.; Meng, F.; Monteith, J.; Stevens, L. Field Performance of Nine Soil Water Content Sensors on a Sandy Loam Soil in New Brunswick, Maritime Region, Canada. Sensors 2009, 9, 9398–9413. [Google Scholar] [CrossRef] [PubMed]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Louki, I.I.; Al-Omran, A.M.; Aly, A.A.; Al-Harbi, A.R. Sensor Effectiveness For Soil Water Content Measurements under Normal and Extreme Conditions. Irrig. Drain. 2019, 68, 979–992. [Google Scholar] [CrossRef]
- Martin, K.; Kodešová, R. Influence of temperature on soil water content measured by ECH2O-TE sensors. Int. Agrophysics 2012, 26, 259–269. [Google Scholar]
- McCann, I.R.; Fraj, I.B.; Dakheel, A. Evaluation of the Decagon® 5TE sensor as a tool for irrigation and EC management in a sandy soil. Acta Hortic. 2014, 1054, 153–160. [Google Scholar] [CrossRef]
- Mittelbach, H.; Casini, F.; Lehner, I.; Teuling, A.; Seneviratne, S. Soil moisture monitoring for climate research: Evaluation of a low-cost sensor in the framework of the Swiss Soil Moisture Experiment (SwissSMEX) campaign. J. Geophys. Res. Earth Surf. 2011, 116, D05111. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.M.; Cho, H. Response of the ECH2O soil moisture probe in electrically conductive soils. Environ. Control Biol. 2006, 44, 225–230. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis, 2nd ed.; Part 3; Sparks, D.L., Ed.; SSSA Book Series No. 5. ASA; SSSA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis; Produced by Cooperative Extension Publishing Operations; ASA: Madison, WI, USA, 2003. [Google Scholar]
- Qu, W.; Bogena, H.; Huisman, J.; Vereecken, H. Calibration of a Novel Low-Cost Soil Water Content Sensor Based on a Ring Oscillator. Vadose Zone J. 2013, 12, 2. [Google Scholar] [CrossRef]
- Reynolds, S.G. The gravimetric methods of soil moisture determination. J. Hydrol. 1970, 11, 258–283. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Huisman, J.A.; Vrba, J.; Vereecken, H.; Bogena, H.R. Correction of temperature and electrical conductivity influencings on dielectric permittivity measurements with ECH2O sensors. Vadose Zone J. 2011, 10, 582–593. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Huisman, J.A.; Weuthen, A.; Vereecken, H.; Bogena, H.R. Sensor-to-sensor variability of the ECH2O EC-5, TE, and 5TE sensors in dielectric liquids. Vadose Zone J. 2010, 9, 181–186. [Google Scholar] [CrossRef]
- Ojo, E.R.; Bullock, P.R.; Fitzmaurice, J. Field Performance of Five Soil Moisture Instruments in Heavy Clay Soils. Soil Sci. Soc. Am. J. 2014, 79, 20–29. [Google Scholar]
- Rowlandson, T.L.; Berg, A.A.; Bullock, P.R.; Ojo, E.R.; McNairn, H.; Wiseman, G.; Cosh, M.H. Evaluation of several calibration procedures for a portable soil moisture sensor. J. Hydrol. 2013, 498, 335–344. [Google Scholar] [CrossRef]
- Sakaki, T.; Limsuwat, A.; Illangasekare, T.H. A simple method for calibrating dielectric soil moisture sensors: Laboratory validation in sands. Vadose Zone J. 2011, 10, 526–531. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Casanova, J.; Pelletier, M.; Evett, S.; Baumhardt, R. Soil Permittivity Response to Bulk Electrical Conductivity for Selected Soil Water Sensors. Vadose Zone J. 2013, 12, 2. [Google Scholar] [CrossRef]
- Singh, J.; Lo, T.; Rudnick, D.; Dorr, T.; Burr, C.; Werle, R.; Shaver, T.; Muñoz-Arriola, F. Performance assessment of factory and field calibrations for electromagnetic sensors in a loam soil. Agric. Water Manag. 2018, 196, 87–98. [Google Scholar] [CrossRef]
- Svatopluk, M.; Báťková, K.; Legese, W.M. Laboratory performance of five selected soil moisture sensors applying factory and own calibration equations for two soil media of different bulk density and EC levels. Sensors 2016, 16, 1912. [Google Scholar]
- Saito, T.; Fujimaki, H.; Yasuda, H.; Inoue, M. Empirical Temperature Calibration of Capacitance Probes to Measure Soil Water. Soil Sci. Soc. Am. J. 2009, 73, 1931–1937. [Google Scholar] [CrossRef]
- Tadaomi, S.; Fujimaki, H.; Yasuda, H.; Inosako, K.; Inoue, M. Calibration of temperature influencing on dielectric probes using time series field data. Vadose Zone J. 2013, 12, 2. [Google Scholar]
- Saito, T.; Yasuda, H.; Sakurai, M.; Acharya, K.; Sueki, S.; Inosako, K.; Yoda, K.; Fujimaki, H.; Elbasit, M.A.A.; Eldoma, A.M.; et al. Monitoring of Stem Water Content of Native and Invasive Trees in Arid Environments Using GS3 Soil Moisture Sensors. Vadose Zone J. 2016, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Elsen, H.V.D.; Ritsema, C.; Seeger, M.; Keesstra, S. Averaging Performance of Capacitance and Time Domain Reflectometry Sensors in Nonuniform Wetted Sand Profiles. Vadose Zone J. 2014, 13, 1–13. [Google Scholar]
- Varble, J.L.; Chávez, J.L. Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado. Agric. Water Manag. 2011, 101, 93–106. [Google Scholar] [CrossRef]
- Vaz Carlos, M.P.; Jones, S.; Meding, M.; Tuller, M. Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone J. 2013, 12, 2. [Google Scholar]
- Wojciech, S. Temperature dependence of time domain reflectometry-measured soil dielectric permittivity. J. Plant Nutr. Soil Sci. 2009, 172, 186–193. [Google Scholar]
- Satoh, Y.; Kakiuchi, H. Calibration method to address influences of temperature and electrical conductivity for a low-cost soil water content sensor in the agricultural field. Agric. Water Manag. 2021, 255, 107015. [Google Scholar] [CrossRef]
Saturation Percentage SP% | CaCO3 (%) | Sand (%) | Silt (%) | Clay (%) | Texture | EC dS m−1 | CEC meq/100 gm |
---|---|---|---|---|---|---|---|
24 | 18.92 | 75.35 | 11.32 | 13.33 | Sandy Loam | 1.09 | 11.54 |
pH | Na+ meq/L | K+ meq/L | Ca2+ meq/L | Mg2+ meq/L | HCO3− meq/L | Cl− mmeq/L | SO42− meq/L |
---|---|---|---|---|---|---|---|
8.24 | 3.63 | 0.73 | 3 | 3.2 | 2.22 | 3.89 | 5.04 |
Soil | Sand (%) | Silt (%) | Clay (%) | Texture | EC dS m−1 | CEC meq/100 gm |
---|---|---|---|---|---|---|
1 | 94.97 | 2.01 | 3.02 | sand | 2.5 * | 4.83 |
2 | 16.50 | 39.24 | 44.27 | clay | 2.5 | 23.69 |
EC dS m−1 | pH | Na+ ppm | K+ ppm | Ca2+ ppm | Mg2+ ppm | HCO3− ppm | Cl− ppm | SO42− ppm |
---|---|---|---|---|---|---|---|---|
0.98 | 7.38 | 119 | 3.71 | 97 | 15 | 190 | 58 | 135 |
Analytical Composition | Primary and Secondary Elements | ||
---|---|---|---|
Organic Matter | 40–50% | Total Nitrogen | 1.5–2.5% |
pH | 6.5–7.5 | Phosphorus | 0.7–1.5% |
Moisture | 20–25% | Potassium | 0.5–1.2% |
C/N Ratio | 20–25:1 | Calcium | 0.5–1% |
EC (dS m−1) | 18–19 |
Soil Texture | ɑ | b | c | d | e | f |
---|---|---|---|---|---|---|
Loam Soil | 0.04 | 0.05 | 0.645 | 0.00012 | 0.006 | 0.775 |
Sandy Soil | 0.076 | −0.133 | 0.877 | 8.77 × 10−5 | 0.0116 | 0.603 |
Clay Soil | 0.037 | 0.037 | 0.694 | 0.00016 | 0.00085 | 0.864 |
T C° | ECe (dS m−1) | θvs (m3 m−3) | θvw (m3 m−3) | θv-L&O Equ. (m3 m−3) | T C° | ECe (dS m−1) | θvs (m3 m−3) | θvw (m3 m−3) | θv-L&O Equ. (m3 m−3) |
---|---|---|---|---|---|---|---|---|---|
19.0 | 2.50 | 0.051 | 0.060 | 0.054 | 25 | 1.00 | 0.050 | 0.061 | 0.068 |
19.7 | 2.50 | 0.124 | 0.131 | 0.129 | 25 | 1.00 | 0.086 | 0.116 | 0.116 |
20.5 | 2.50 | 0.209 | 0.214 | 0.216 | 25 | 1.00 | 0.103 | 0.143 | 0.140 |
21.0 | 2.50 | 0.300 | 0.296 | 0.309 | 25 | 1.00 | 0.121 | 0.170 | 0.165 |
23.9 | 2.50 | 0.406 | 0.400 | 0.404 | 25 | 1.00 | 0.142 | 0.187 | 0.193 |
24.4 | 2.61 | 0.030 | 0.030 | 0.028 | 25 | 1.00 | 0.170 | 0.223 | 0.231 |
24.9 | 2.61 | 0.075 | 0.073 | 0.072 | 25 | 1.00 | 0.198 | 0.259 | 0.269 |
26.9 | 2.61 | 0.143 | 0.139 | 0.133 | 25 | 1.00 | 0.254 | 0.330 | 0.345 |
26.8 | 2.57 | 0.390 | 0.379 | 0.368 | 2.0 | 2.61 | 0.019 | 0.030 | 0.023 |
50.5 | 2.61 | 0.047 | 0.030 | 0.033 | 3.0 | 2.61 | 0.056 | 0.073 | 0.067 |
47.1 | 2.61 | 0.044 | 0.030 | 0.032 | 2.3 | 2.61 | 0.100 | 0.139 | 0.121 |
50.1 | 2.61 | 0.116 | 0.073 | 0.081 | 3.1 | 2.59 | 0.298 | 0.379 | 0.358 |
49.3 | 2.61 | 0.114 | 0.073 | 0.080 | 18.3 | 4.59 | 0.106 | 0.080 | 0.067 |
48.3 | 2.61 | 0.112 | 0.073 | 0.079 | 20.4 | 4.59 | 0.176 | 0.122 | 0.108 |
47.3 | 2.61 | 0.110 | 0.073 | 0.079 | 22.5 | 4.59 | 0.245 | 0.163 | 0.147 |
46.4 | 2.61 | 0.107 | 0.073 | 0.078 | 22.0 | 4.59 | 0.278 | 0.178 | 0.168 |
50.0 | 2.61 | 0.224 | 0.139 | 0.155 | 22.4 | 4.59 | 0.323 | 0.202 | 0.194 |
50.5 | 2.61 | 0.223 | 0.139 | 0.154 | 22.5 | 4.59 | 0.372 | 0.215 | 0.223 |
49.9 | 2.61 | 0.220 | 0.139 | 0.153 | 21.8 | 4.59 | 0.365 | 0.231 | 0.221 |
49.5 | 2.61 | 0.218 | 0.139 | 0.152 | 22.2 | 4.59 | 0.400 | 0.237 | 0.241 |
50.0 | 2.72 | 0.512 | 0.379 | 0.346 | 23.5 | 4.59 | 0.467 | 0.266 | 0.277 |
49.3 | 2.71 | 0.509 | 0.379 | 0.348 | 24.2 | 4.59 | 0.562 | 0.309 | 0.331 |
48.6 | 2.71 | 0.505 | 0.379 | 0.349 | 24.7 | 4.59 | 0.674 | 0.322 | 0.394 |
48.0 | 2.71 | 0.501 | 0.379 | 0.349 | 25.7 | 4.59 | 0.743 | 0.407 | 0.430 |
47.4 | 2.69 | 0.497 | 0.379 | 0.350 | 26.7 | 4.59 | 0.812 | 0.492 | 0.464 |
Evaluation Experiment | n | R2 | RMSE (m3 m−3) | RRMSE (%) | CRM | ||||
---|---|---|---|---|---|---|---|---|---|
Sensor | Equation | Sensor | Equation | Sensor | Equation | Sensor | Equation | ||
EC (1.0 dS m−1) at 25 °C | 8 | 0.9985 | 0.9996 | 0.072 | 0.011 | 31.2 | 4.3 | 0.286 | 0.034 |
EC (2.42 dS m−1) at 25 °C | 8 | 0.9997 | 0.9984 | 0.003 | 0.005 | 1.4 | 1.8 | −0.005 | −0.008 |
EC (5.0 dS m−1) at 25 °C | 8 | 0.9922 | 0.9849 | 0.252 | 0.030 | 109.4 | 11.5 | −0.874 | −0.012 |
Temp. (3 °C) at 2.42 dS m−1 | 7 | 0.9992 | 0.9998 | 0.053 | 0.007 | 26.8 | 3.3 | 0.237 | 0.028 |
Temp. (25 °C) at 2.42 dS m−1 | 7 | 0.9999 | 0.9999 | 0.004 | 0.003 | 1.9 | 1.5 | 0.010 | 0.005 |
Temp. (50 °C) at 2.42 dS m−1 | 7 | 0.9977 | 0.9977 | 0.098 | 0.011 | 49.1 | 5.7 | −0.439 | 0.020 |
Evaluation Experiment | n | RMSE (m3 m−3) | RRMSE (%) | CRM | |||
---|---|---|---|---|---|---|---|
Sensor | Equation | Sensor | Equation | Sensor | Equation | ||
Salinity impact at field capacity | 424 | 0.086 | 0.012 | 49.2 | 6.6 | −0.071 | −0.006 |
Salinity impact at saturated point | 822 | 0.196 | 0.020 | 53 | 5.3 | −0.271 | −0.005 |
Salinity impact on low temp. 5 °C at saturated point | 14 | 0.164 | 0.012 | 35.6 | 2.5 | 0.038 | 0.021 |
Salinity impact on high temp. 38 °C at saturated point | 18 | 0.302 | 0.010 | 90.1 | 3.0 | −0.577 | 0.012 |
Temperature impact at field capacity | 149 | 0.038 | 0.008 | 27.8 | 6.1 | −0.056 | 0.033 |
Temperature impact at saturated point | 157 | 0.065 | 0.012 | 17.2 | 3 | −0.003 | −0.006 |
Temperature impact on low EC- 1.55 dS m−1 at low moisture | 10 | 0.018 | 0.001 | 24.3 | 5.4 | 0.150 | −0.003 |
Temperature impact on high EC- 4.48 dS m−1 at field capacity | 27 | 0.219 | 0.025 | 96.7 | 11.2 | −0.778 | 0.062 |
(I) Measured in High Salinity and Temperature (4.48 dS m−1 and 36.7 °C) | (J) Measured in High Salinity and Temperature (4.48 dS m−1 and 36.7 °C) | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
LSD | Measured by sensors | Calculated by L&O equation | 0.164125 * | 0.030946 | 0.000 | 0.09977 | 0.22848 |
Control (measured by gravimetric method) | 0.167625 * | 0.030946 | 0.000 | 0.10327 | 0.23198 | ||
Calculated by L&O equation | Measured by sensors | −0.164125 * | 0.030946 | 0.000 | −0.22848 | −0.09977 | |
Control (measured by gravimetric method) | 0.003500 | 0.030946 | 0.911 | −0.06086 | 0.06786 | ||
Control (measured by gravimetric method) | Measured by sensors | −0.167625 * | 0.030946 | 0.000 | −0.23198 | −0.10327 | |
Calculated by L&O equation | −0.003500 | 0.030946 | 0.911 | −0.06786 | 0.06086 | ||
Dunnett t (2-sided) a | Measured by sensors | Control (measured by gravimetric method) | 0.167625 * | 0.030946 | 0.000 | 0.09427 | 0.24098 |
Calculated by L&O equation | Control (measured by gravimetric method) | 0.003500 | 0.030946 | 0.991 | −0.06985 | 0.07685 |
Measured by Sensors | Salinity Impact at 25 °C | Calculated by L&O Equation | Measured by Gravimetric Method | ||
---|---|---|---|---|---|
Pearson correlation | Measured by sensors | 1.000 | 0.960 | 0.412 | −0.076 |
Salinity impact at 25 °C | 0.960 | 1.000 | 0.214 | −0.256 | |
Calculated by L&O equation | 0.412 | 0.214 | 1.000 | 0.844 | |
Measured by gravimetric method | −0.076 | −0.256 | 0.844 | 1.000 | |
Sig. (1-tailed) | Measured by sensors | . | 0.000 | 0.045 | 0.382 |
Salinity impact at 25 °C | 0.000 | . | 0.197 | 0.153 | |
Calculated by L&O equation | 0.045 | 0.197 | . | 0.000 | |
Measured by gravimetric method | 0.382 | 0.153 | 0.000 | . | |
N | Measured by sensors | 18 | 18 | 18 | 18 |
Salinity impact at 25 °C | 18 | 18 | 18 | 18 | |
Calculated by L&O equation | 18 | 18 | 18 | 18 | |
Measured by gravimetric method | 18 | 18 | 18 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louki, I.I.; Al-Omran, A.M. Calibration of Soil Moisture Sensors (ECH2O-5TE) in Hot and Saline Soils with New Empirical Equation. Agronomy 2023, 13, 51. https://doi.org/10.3390/agronomy13010051
Louki II, Al-Omran AM. Calibration of Soil Moisture Sensors (ECH2O-5TE) in Hot and Saline Soils with New Empirical Equation. Agronomy. 2023; 13(1):51. https://doi.org/10.3390/agronomy13010051
Chicago/Turabian StyleLouki, Ibrahim I., and Abdulrasoul M. Al-Omran. 2023. "Calibration of Soil Moisture Sensors (ECH2O-5TE) in Hot and Saline Soils with New Empirical Equation" Agronomy 13, no. 1: 51. https://doi.org/10.3390/agronomy13010051
APA StyleLouki, I. I., & Al-Omran, A. M. (2023). Calibration of Soil Moisture Sensors (ECH2O-5TE) in Hot and Saline Soils with New Empirical Equation. Agronomy, 13(1), 51. https://doi.org/10.3390/agronomy13010051