Integrating Native Plant Mixtures and Arbuscular Mycorrhizal Fungi Inoculation Increases the Productivity of Degraded Grassland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Inoculum Preparation
2.3. Greenhouse Experiment
2.4. Harvesting and Measurements
2.5. Data Analysis and Statistical Analysis
3. Results
3.1. Changes in Plant Community Productivity under Different Treatments
3.2. Changes in Aboveground N and P Contents in Plants under Different Treatments
3.3. Changes in Soil Nutrients under Different Treatments and SQI Values
3.4. Relationships between Plant Parameters and Soil Properties
3.5. Pathways Determining Biomass
4. Discussion
4.1. Effects on Degraded Grassland Plant Communities
4.2. Effects on Soil Properties of Degraded Grassland
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, F.; Xue, X.; You, Q.; Huang, C.; Dong, S.; Liao, J.; Duan, H.; Tsunekawa, A.; Wang, T. Changes of soil properties regulate the soil organic carbon loss with grassland degradation on the Qinghai-Tibet Plateau. Ecol. Indic. 2018, 93, 572–580. [Google Scholar] [CrossRef]
- Fayiah, M.; Dong, S.; Khomera, S.W.; Ur Rehman, S.A.; Yang, M.; Xiao, J. Status and challenges of Qinghai–Tibet Plateau’s grasslands: An analysis of causes, mitigation measures, and way forward. Sustainability 2020, 12, 1099. [Google Scholar] [CrossRef] [Green Version]
- Panakhyd, G.; Kotyash, U.; Yarmoluk, M.; Mizernyk, D.; Mashchak, Y. Improvement effect on the productivity of degraded grasslands. Ştiinţa Agric. 2014, 2, 3–8. [Google Scholar]
- Carbon and nitrogen mineralization in soils under agro-pastoral systems in subtropical central Brazil. Soil Sci. Plant Nutr. 2002, 48, 179–184. [CrossRef]
- Chen, K.; Zhou, H.; Lu, B.; Wu, Y.; Wang, J.; Zhao, Z.; Li, Y.; Wang, M.; Zhang, Y.; Chen, W.; et al. Single-Species Artificial Grasslands Decrease Soil Multifunctionality in a Temperate Steppe on the Qinghai–Tibet Plateau. Agronomy 2021, 11, 2092. [Google Scholar] [CrossRef]
- Fisher, J.P.; Estop-Aragonés, C.; Thierry, A.; Charman, D.J.; Wolfe, S.A.; Hartley, I.P.; Murton, J.P.; Williams, M.; Phoenix, G.K. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest. Glob. Change Biol. 2016, 22, 3127–3140. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Chavez, C.; Harris, P.J.; Dodd, J.; Meharg, A.A. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol. 2002, 155, 163–171. [Google Scholar] [CrossRef]
- Bao, X.; Zou, J.; Zhang, B.; Wu, L.; Yang, T.; Huang, Q. Arbuscular Mycorrhizal Fungi and Microbes Interaction in Rice Mycorrhizosphere. Agronomy 2022, 12, 1277. [Google Scholar] [CrossRef]
- Tian, H.; Gai, J.P.; Zhang, J.L.; Christie, P.; Li, X.L. Arbuscular mycorrhizal fungi in degraded typical steppe of Inner Mongolia. Land Degrad. Dev. 2009, 20, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Rosales, J.; Cuenca, G.; Ramírez, N.; De Andrade, Z. Native colonizing species and degraded land restoration in La Gran Sabana, Venezuela. Restor. Ecol. 1997, 5, 147–155. [Google Scholar] [CrossRef]
- Coutinho, E.S.; Barbosa, M.; Beiroz, W.; Mescolotti, D.L.; Bonfim, J.A.; Berbara, R.L.L.; Fernandes, G.W. Soil constraints for arbuscular mycorrhizal fungi spore community in degraded sites of rupestrian grassland: Implications for restoration. Soil Biol. 2019, 90, 51–57. [Google Scholar] [CrossRef]
- Hebeisen, T.; LÜSCHER, A.; Zanetti, S.; Fischer, B.; Hartwig, U.; Frehner, M.; Hendrey, G.; Blum, H.; NÖSBERGER, J.O.S.E.F. Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Glob. Chang. Biol. 1997, 3, 149–160. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.Y.; Wu, H.M.; Zhang, F.F.; Li, C.J.; Li, X.X.; Lambers, H.; Li, L. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc. Natl. Acad. Sci. USA 2016, 113, 6496–6501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issah, G.; Schoenau, J.J.; Lardner, H.A.; Knight, J.D. Nitrogen fixation and resource partitioning in alfalfa (Medicago sativa L.), cicer milkvetch (Astragalus cicer L.) and sainfoin (Onobrychis viciifolia Scop.) using 15N enrichment under controlled environment conditions. Agronomy 2020, 10, 1438. [Google Scholar] [CrossRef]
- Crème, A.; Rumpel, C.; Gastal, F.; de la Luz Mora Gil, M.; Chabbi, A. Effects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus forms. Plant Soil 2016, 402, 117–128. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Steele, K.W. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 1992, 141, 137–153. [Google Scholar] [CrossRef]
- Verzeaux, J.; Hirel, B.; Dubois, F.; Lea, P.J.; Tétu, T. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Sci. 2017, 264, 48–56. [Google Scholar] [CrossRef] [Green Version]
- He, J.S.; Dong, S.; Shang, Z.; Sundqvist, M.K.; Wu, G.; Yang, Y. Above-belowground interactions in alpine ecosystems on the roof of the world. Plant Soil 2021, 458, 1–6. [Google Scholar] [CrossRef]
- Berns, A.E.; Philipp, H.; Narres, H.D.; Burauel, P.; Vereecken, H.; Tappe, W. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur. J. Soil Sci. 2008, 59, 540–550. [Google Scholar] [CrossRef]
- De Long, J.R.; Kardol, P.; Sundqvist, M.K.; Veen, G.F.; Wardle, D.A. Plant growth response to direct and indirect temperature effects varies by vegetation type and elevation in a subarctic tundra. Oikos 2015, 124, 772–783. [Google Scholar] [CrossRef]
- Gundale, M.J.; Kardol, P.; Nilsson, M.C.; Nilsson, U.; Lucas, R.W.; Wardle, D.A. Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytol. 2014, 202, 415–421. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Wang, Y.; Shen, Q.; Mu, L.; Liu, Z. Spatiotemporal heterogeneity of soil available nitrogen during crop growth stages on mollisol slopes of Northeast China. Land Degrad. Dev. 2017, 28, 856–869. [Google Scholar] [CrossRef]
- BAO S, D. Soil and agricultural chemistry analysis. Agric. Publ. 2000, 355–356. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Andrews, S.S.; Mitchell, J.P.; Mancinelli, R.; Karlen, D.L.; Hartz, T.K.; Horwath, W.R.; Pettygrove, S.R.; Scow, K.M.; Munk, D.S. On-farm assessment of soil quality in California’s Central Valley. Agron. J. 2002, 94, 12–23. [Google Scholar]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann。 Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Coban, O.; De Deyn, G.B.; van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 2018, 375, abe0725. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, J.; Pan, D.; Ge, X.; Jin, X.; Chen, S.; Wu, F. p-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biol. Fertil. Soils. 2018, 54, 363–372. [Google Scholar] [CrossRef]
- Wang, G.; Koziol, L.; Foster, B.L.; Bever, J.D. Microbial mediators of plant community response to long-term N and P fertilization: Evidence of a role of plant responsiveness to mycorrhizal fungi. Glob. Chang. Biol. 2022, 28, 2721–2735. [Google Scholar] [CrossRef]
- Lin, G.; McCormack, M.L.; Guo, D. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 2015, 103, 1224–1232. [Google Scholar] [CrossRef]
- Liang, J.F.; An, J.; Gao, J.Q.; Zhang, X.Y.; Yu, F.H. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles. PLoS ONE 2018, 13, e0191999. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Niu, D.; Ma, P.; Wang, Y.; Fu, H.; Elser, J.J. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology 2019, 100, e02755. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Bi, Y.; Zhang, J.; Gong, Y.; Yang, H. Arbuscular mycorrhizal fungi promote the growth of plants in the mining associated clay. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- van de Weg, M.J.; Meir, P.; Grace, J.; Atkin, O.K. Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecol. Divers. 2009, 2, 243–254. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K.; Elliott, E.T. Grassland management and conversion into grassland: Effects on soil carbon. Ecol. Appl. 2001, 11, 343–355. [Google Scholar] [CrossRef]
- Liu, Y.; Men, M.; Peng, Z.; Houx, J.H., III; Peng, Y. Nitrogen availability determines ecosystem productivity in response to climate warming. Ecology 2022, 103, e3823. [Google Scholar] [CrossRef]
- Mortenson, M.C.; Ingram, L.J. Carbon sequestration in rangelands interseeded with yellow-flowering alfalfa (Medicago sativa ssp. falcata). Environ. Manag. 2004, 33, S475–S481. [Google Scholar] [CrossRef]
- Rao, S.C.; Northup, B.K.; Phillips, W.A.; Mayeux, H.S. Interseeding novel cool-season annual legumes to improve bermudagrass paddocks. Crop. Sci. 2007, 47, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, K.; Joe, M.M.; Kim, K.Y.; Lee, S.M.; Shagol, C.; Rangasamy, A.; Chung, J.B.; Sa, T.M. Synergistic effects of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for sustainable agricultural production. Korean J. Soil Sci. Fertil. 2011, 44, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.; Fitter, A.H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. USA 2010, 107, 13754–13759. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Shao, H.; Lu, Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere. Ecotoxicol. Environ. Saf. 2019, 182, 109476. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol. 2017, 8, 2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.T.; Wang, G.X.; Liu, W.; Wang, Y.; Hu, L.; Ma, L. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow. Isr. J. Ecol. Evol. 2013, 59, 141–153. [Google Scholar] [CrossRef]
- Zak, D.R.; Grigal, D.F.; Gleeson, S.; Tilman, D. Carbon and nitrogen cycling during old-field succession: Constraints on plant and microbial biomass. Biogeochemistry 1990, 11, 111–129. [Google Scholar] [CrossRef]
- Sun, D.S.; Wesche, K.; Chen, D.D.; Zhang, S.H.; Wu, G.L.; Du, G.Z.; Comerford, N.B. Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant Soil Environ. 2011, 57, 271–278. [Google Scholar] [CrossRef]
Soil Degradation Degree | Soil Biological Treatment | Planting Ratios |
---|---|---|
Non-degraded/lightly/severely degraded | Sterilized soil | Lolium perenne monoculture |
Trifolium repens monoculture | ||
L. perenne:T. repens = 3:1 | ||
L. perenne:T. repens = 1:3 | ||
L. perenne:T. repens = 1:1 | ||
Sterilized + AMF | L. perenne monoculture | |
T. repens monoculture | ||
L. perenne:T. repens = 3:1 | ||
L. perenne:T. repens = 1:3 | ||
L. perenne:T. repens = 1:1 | ||
Non-sterilized soil | L. perenne monoculture | |
T. repens monoculture | ||
L. perenne:T. repens = 3:1 | ||
L. perenne:T. repens = 1:3 | ||
L. perenne:T. repens = 1:1 |
Treatment | DF | Biomass | NH4+-N | NO3−-N | Available P | Shoot N | Shoot P | Plant N/P |
---|---|---|---|---|---|---|---|---|
Soil degradation (S) | 2 | 901.0 *** | 73.25 *** | 110.13 *** | 498.13 * | 426.19 * | 909.14 * | 108.26 *** |
Planting ratio (P) | 4 | 278.20 *** | 5.39 *** | 24.892 *** | 1.97 | 82.96 * | 90.02 * | 4.70 * |
Biological treatment (B) | 2 | 10.99 *** | 7.29 *** | 19.648 * | 0.05 | 5.83 * | 10.19 * | 13.99 *** |
S × P | 8 | 3.92 *** | 2.80 *** | 8.116 * | 2.59 * | 5.84 * | 5.57 * | 4.92 *** |
S × B | 4 | 15.24 *** | 0.86 | 3.016 * | 0.94 | 10.73 * | 12.02 * | 5.28 * |
B × P | 8 | 3.73 *** | 1.42 | 1.188 | 1.83 | 2.67 | 1.53 | 1.41 |
S × P × B | 16 | 2.48 *** | 1.26 | 1.651 | 1.36 | 3.19 | 2.78 * | 2.03 * |
Variable | PC 1 | PC 2 | PC 3 |
---|---|---|---|
Available P | 0.949 | −0.092 | −0.057 |
SOC | 0.883 | 0.035 | −0.127 |
Shoot P | 0.855 | 0.025 | 0.159 |
Biomass | 0.0747 | −0.252 | −0.449 |
Shoot N | −0.072 | 0.831 | 0.4 |
pH | −0.084 | −0.587 | 0.599 |
NO3−-N | 0.613 | −0.031 | 0.67 |
NH4+-N | 0.466 | 0.543 | −0.168 |
Eigenvalues | 3.576 | 1.405 | 1.197 |
Cumulative contribution (%) | 44.696 | 62.264 | 77.222 |
Variables | Component 1 | ||
---|---|---|---|
Non-Degraded | Lightly Degraded | Severely Degraded | |
Soil nutrients | |||
AN (mg kg−1) | 0.753 | 0.651 | 0.657 |
AP (mg kg−1) | 0.752 | 0.822 | 0.775 |
SOC (mg kg−1) | 0.388 | −0.617 | 0.724 |
Cumulative (%) | 72.75% | 66.42% | 77.36% |
Plant nutrients | |||
Shoot N (mg g−1) | 0.893 | 0.772 | 0.751 |
Shoot P (mg g−1) | 0.893 | −0.772 | −0.751 |
Cumulative (%) | 79.82% | 69.60% | 66.41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.; Li, K.; Xie, J.; Zhang, Y.; Wang, S.; Ren, H.; Liu, M. Integrating Native Plant Mixtures and Arbuscular Mycorrhizal Fungi Inoculation Increases the Productivity of Degraded Grassland. Agronomy 2023, 13, 7. https://doi.org/10.3390/agronomy13010007
Chang J, Li K, Xie J, Zhang Y, Wang S, Ren H, Liu M. Integrating Native Plant Mixtures and Arbuscular Mycorrhizal Fungi Inoculation Increases the Productivity of Degraded Grassland. Agronomy. 2023; 13(1):7. https://doi.org/10.3390/agronomy13010007
Chicago/Turabian StyleChang, Jiechao, Kang Li, Jiayao Xie, Yanxia Zhang, Sitong Wang, Haiyan Ren, and Manqiang Liu. 2023. "Integrating Native Plant Mixtures and Arbuscular Mycorrhizal Fungi Inoculation Increases the Productivity of Degraded Grassland" Agronomy 13, no. 1: 7. https://doi.org/10.3390/agronomy13010007
APA StyleChang, J., Li, K., Xie, J., Zhang, Y., Wang, S., Ren, H., & Liu, M. (2023). Integrating Native Plant Mixtures and Arbuscular Mycorrhizal Fungi Inoculation Increases the Productivity of Degraded Grassland. Agronomy, 13(1), 7. https://doi.org/10.3390/agronomy13010007