Nitrogen-Driven Genotypic Diversity of Wheat (Triticum aestivum L.) Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Characteristics
2.2. Experimental Design and Treatment Details
2.3. Sampling and Measurements
2.4. Chemical Analysis of N Content in Plant Samples
2.5. Computation of Nitrogen Uptake in Genotypes
2.6. Statistical Analysis
3. Results
3.1. Yields and Harvest Index
3.2. N Concentration and Uptake
3.3. Partial N Balance
3.4. Internal Nitrogen Use Efficiency
3.5. Correlation Analysis among Crop Traits
4. Discussion
4.1. Effects of N Fertilization on Wheat Yields, Harvest Index, and Nitrogen Uptake
4.2. Relationship between Crop Traits/Parameters of Wheat
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hitz, K.; Clark, A.J.; Van Sanford, D.A. Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments. Field Crops Res. 2017, 200, 1–9. [Google Scholar] [CrossRef]
- Tamang, B.G.; Brasier, K.G.; Thomason, W.E.; Griffey, C.A.; Fukao, T. Differential responses of grain yield, grain protein, and their associated traits to nitrogen supply in soft red winter wheat. J. Plant Nutr. Soil Sci. 2017, 180, 316–325. [Google Scholar] [CrossRef]
- Van Sanford, D.A.; MacKown, C.T. Variation in nitrogen use efficiency among soft red winter wheat genotypes. Theor. Appl. Genet. 1986, 72, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Saba, M.; Kuchel, H.; Langridge, P.; Okamoto, M. Evaluation of australian wheat genotypes for response to variable nitrogen application. Plant Soil 2015, 399, 247–255. [Google Scholar] [CrossRef]
- Brennan, J.; Hackett, R.; McCabe, T.; Grant, J.; Fortune, R.A.; Forristal, P.D. The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool atlantic climate. Eur. J. Agron. 2014, 54, 61–69. [Google Scholar] [CrossRef]
- Chen, C.; Westcott, M.; Neill, K.; Wichman, D.; Knox, M. Row configuration and nitrogen application for barley–pea intercropping in montana. Agron. J. 2004, 96, 1730–1738. [Google Scholar] [CrossRef]
- Hirel, B.; Bertin, P.; Quilleré, I.; Bourdoncle, W.; Attagnant, C.; Dellay, C.; Gouy, A.; Cadiou, S.; Retailliau, C.; Falque, M.; et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plan Physio 2001, 125, 1258–1270. [Google Scholar] [CrossRef]
- Sylvester-Bradley, R.; Kindred, D.R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J. Exp. Bot. 2009, 60, 1939–1951. [Google Scholar] [CrossRef]
- Pathak, R.R.; Ahmad, A.; Lochab, S.; Raghuram, N. Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr. Sci. 2008, 94, 1394–1403. [Google Scholar]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid method for the estimation of nitrogen in soil. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; No. 939; US Department of Agriculture: Washington, DC, USA, 1954.
- Hanway, J.J.; Heidel, H. Soil Analysis Methods as Used in Iowa State College Soil Testing Laboratory; Bulletin 57; Iowa State College of Agriculture: Ames, IA, USA, 1952. [Google Scholar]
- Prasad, R.; Shivay, Y.S.; Kumar, D.; Sharma, S.N. Learning by Doing Exercises in Soil Fertility (A Practical Manual for Soil Fertility); Division of Agronomy, Indian Agricultural Research Institute: New Delhi, India, 2006; Volume 68. [Google Scholar]
- de Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-5. 2021. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 3 February 2023).
- Singh, B. Agronomic Benefits of Neem Coated Urea—A Review. In International Fertilizer Association Review Papers; International Fertilizer Association: Paris, France, 2016. [Google Scholar]
- Foulkes, M.J.; Hawkesford, M.J.; Barraclough, P.B.; Holdsworth, M.J.; Kerr, S.; Kightley, S.; Shewry, P.R. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res. 2009, 114, 329–342. [Google Scholar] [CrossRef]
- Slafer, G.A.; Andrade, F.H. Genetic improvement in bread wheat (Triticum aestivum) yield in Argentina. Field Crops Res. 1989, 21, 289–296. [Google Scholar] [CrossRef]
- Barraclough, P.B.; Howarth, J.R.; Jones, J.; Lopez-Bellido, R.; Parmar, S.; Shepherd, C.E.; Hawkesford, M.J. Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. Eur. J. Agron. 2010, 33, 1–11. [Google Scholar] [CrossRef]
- Ortiz-Monasterior, J.I.; Sayre, K.D.; Rajaram, S.; McMahon, M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 1997, 37, 898–904. [Google Scholar] [CrossRef]
- Le Gouis, J.; Béghin, D.; Heumez, E.; Pluchard, P. Genetic Differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur. J. Agron. 2000, 12, 163–173. [Google Scholar] [CrossRef]
- Guarda, A.; Rosell, C.M.; Benedito, C.; Galotto, M.J. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocoll. 2004, 18, 241–247. [Google Scholar] [CrossRef]
- Laperche, A.; Devienne-Barret, F.; Maury, O.; Le Gouis, J.; Ney, B. A Simplified conceptual model of carbon/nitrogen functioning for qtl analysis of winter wheat adaptation to nitrogen deficiency. Theor. Appl. Genet. 2006, 113, 1131–1146. [Google Scholar] [CrossRef]
- Gaju, O.; Allard, V.; Martre, P.; Snape, J.W.; Heumez, E.; LeGouis, J.; Moreau, D.; Bogard, M.; Griffiths, S.; Orford, S.; et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res. 2011, 123, 139–152. [Google Scholar] [CrossRef]
- Gawdiya, S.; Kumar, D.; Shivay, Y.S.; Kour, B.; Kumar, R.; Meena, S.; Saini, R.; Choudhary, K.; Al-Ansari, N.; Alataway, A.; et al. Field screening of wheat cultivars for enhanced growth, yield, yield attributes, and nitrogen use efficiencies. Agronomy 2023, 13, 2011. [Google Scholar] [CrossRef]
- Kubar, M.S.; Alshallash, K.S.; Asghar, M.A.; Feng, M.; Raza, A.; Wang, C.; Saleem, K.; Ullah, A.; Yang, W.; Kubar, K.A.; et al. Improving winter wheat photosynthesis, nitrogen use efficiency, and yield by optimizing nitrogen fertilization. Life 2022, 12, 1478. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Li, X.; Zhang, Z.; Ren, T.; Cong, R.; Ata-Ul-Karim, S.T.; Fahad, S.; Shah, A.N.; Lu, J. Nitrogen fertilizer management for enhancing crop productivity and nitrogen use efficiency in a rice-oilseed rape rotation system in China. Front. Plant Sci. 2016, 7, 1496. [Google Scholar] [CrossRef] [PubMed]
- Lammerts van Bueren, E.T.; Struik, P.C. Diverse concepts of breeding for nitrogen use efficiency. A Review. Agron. Sustain. Dev. 2017, 37, 1–24. [Google Scholar] [CrossRef]
- Habbib, H.; Hirel, B.; Verzeaux, J.; Roger, D.; Lacoux, J.; Lea, P.; Dubois, F.; Tétu, T. Investigating the combined effect of tillage, nitrogen fertilization and cover crops on nitrogen use efficiency in winter wheat. Agronomy 2017, 7, 66. [Google Scholar] [CrossRef]
- Mehrabi, F.; Sepaskhah, A.R. Interaction effects of planting method, irrigation regimes, and nitrogen application rates on yield, water and nitrogen use efficiencies of winter wheat (Triticum aestivum). Int. J. Plant Prod. 2018, 12, 265–283. [Google Scholar] [CrossRef]
- Grant, C.A.; Moulin, A.P.; Tremblay, N. Nitrogen management effects on spring wheat yield and protein concentration vary with seeding date and slope position. Agron. J. 2016, 108, 1246–1256. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z. Effects of nitrogen fertilizer rates and ratios of base and topdressing on wheat yield, soil nitrate content and nitrogen balance. Front. Agric. China 2008, 2, 181–189. [Google Scholar] [CrossRef]
- Man, J.; Shi, Y.; Yu, Z.; Zhang, Y. Dry matter production, photosynthesis of flag leaves and water use in winter wheat are affected by supplemental irrigation in the Huang-Huai-Hai plain of China. PLoS ONE 2015, 10, e0137274. [Google Scholar] [CrossRef]
- Gowda, M.; Hahn, V.; Reif, J.C.; Longin, C.F.H.; Alheit, K.; Maurer, H.P. Potential for simultaneous improvement of grain and biomass yield in central European winter triticale germplasm. Field Crops Res. 2011, 121, 153–157. [Google Scholar] [CrossRef]
- Cormier, F.; Faure, S.; Dubreuil, P.; Heumez, E.; Beauchêne, K.; Lafarge, S.; Praud, S.; Le Gouis, J. A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2013, 126, 3035–3048. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Stahl, A.; Wittkop, B.; Lichthardt, C.; Nagler, S.; Rose, T.; Chen, T.-W.; Zetzsche, H.; Seddig, S.; Majid Baig, M.; et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 2019, 5, 706–714. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Frels, K.; Regassa, T.; Waters, B.M.; Baenziger, P.S. Variation for nitrogen use efficiency traits in current and historical great plains hard winter wheat. Euphytica 2017, 213, 87. [Google Scholar] [CrossRef]
- Brasier, K.; Oakes, J.; Balota, M.; Reiter, M.; Jones, N.; Pitman, R.; Sneller, C.; Thomason, W.; Griffey, C. Genotypic variation and stability for nitrogen use efficiency in winter wheat. Crop Sci. 2020, 60, 32–49. [Google Scholar] [CrossRef]
- Brasier, K.; Oakes, J.; Balota, M.; Thomason, W.; Griffey, C. Greater biomass accumulation at anthesis increases nitrogen use efficiency in winter wheat. Agron. J. 2019, 111, 2163–2173. [Google Scholar] [CrossRef]
- Swarbreck, S.M.; Wang, M.; Wang, Y.; Kindred, D.; Sylvester-Bradley, R.; Shi, W.; Varinderpal-Singh; Bentley, A.R.; Griffiths, H. A roadmap for lowering crop nitrogen requirement. Trends Plant Sci. 2019, 24, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Sylvester-Bradley, R.; Kindred, D.; Berry, P.M.; Storer, K.; Kendall, S.; Welham, S. Development of Appropriate Testing Methodology for Assessing Nitrogen Requirements of Wheat and Oilseed Rape Varieties; DEFRA Evidence Project Final Report; IF01110; HMSO: London, UK, 2015. [Google Scholar]
- De Oliveira Silva, A.; Slafer, G.A.; Fritz, A.K.; Lollato, R.P. Physiological basis of genotypic response to management in dryland wheat. Front. Plant Sci. 2020, 10, 1644. [Google Scholar] [CrossRef] [PubMed]
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing environmental risk by improving n management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Liu, X.; He, P.; Jin, J.; Zhou, W.; Sulewski, G.; Phillips, S. Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China. Agron. J. 2011, 103, 1452. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/Fertilizer Use Efficiency: Measurement, Current Situation, and Trends. Managing Water and Fertilizer for Sustainable Agricultural Intensification. 2015, Volume 270, pp. 1–30. Available online: https://ageconsearch.umn.edu/record/208412/files/managing_water_and_fertilizer_for_sustainable_agricultural_intensification.pdf#page=21 (accessed on 28 February 2023).
- Maiti, D.; Das, D.K.; Pathak, H. Simulation of fertilizer requirement for irrigated wheat in eastern india using the quefts model. Sci. World J. 2006, 6, 231–245. [Google Scholar] [CrossRef]
- Pathak, H.; Aggarwal, P.K.; Roetter, R.; Kalra, N.; Bandyopadhaya, S.K.; Prasad, S.; Van Keulen, H. Modelling the quantitative evaluation of soil nutrient supply, nutrient use efficiency, and fertilizer requirements of wheat in india. Nutr. Cycl. Agroecosyst. 2003, 65, 105–113. [Google Scholar] [CrossRef]
- Ramanjaneyulu, A.V.; Shankar, V.G.; Neelima, T.L.; Shashibhusahn, D. Genetic analysis of rice (Oryza sativa L.) genotypes under aerobic conditions on Alfisols. SABRAO J. Breed. Genet. 2014, 46, 99–111. [Google Scholar]
- Huang, M.; Chen, J.; Cao, F.; Jiang, L.; Zou, Y.; Deng, G. Improving physiological n-use efficiency by increasing harvest index in rice: A case in super-hybrid cultivar guiliangyou 2. Arch. Agron. Soil Sci. 2015, 62, 725–743. [Google Scholar] [CrossRef]
- Wang, W.; Huang, L.; Zhu, G.; Zhang, H.; Wang, Z.; Adnan, M.; Saud, S.; Hayat, Z.; Fahad, S. Screening of rice cultivars for nitrogen use efficiency and yield stability under varying nitrogen levels. J. Plant Growth Regul. 2021, 41, 1808–1819. [Google Scholar] [CrossRef]
- Singh, U.; Ladha, J.K.; Castillo, E.G.; Punzalan, G.; Tirol-Padre, A.; Duqueza, M. genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Res. 1998, 58, 35–53. [Google Scholar] [CrossRef]
- Samonte, S.O.P.B.; Wilson, L.T.; Medley, J.C.; Pinson, S.R.M.; McClung, A.M.; Lales, J.S. nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice. Agron. J. 2006, 98, 168–176. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Wang, C.; Ma, G.; Wei, Q.; Lu, H.; Xie, Y.; Ma, D.; Kang, G. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in north China Plain. Front. Plant Sci. 2018, 9, 1798. [Google Scholar] [CrossRef]
- Nazim Ud Dowla, M.A.N.; Edwards, I.; O’Hara, G.; Islam, S.; Ma, W. developing wheat for improved yield and adaptation under a changing climate: Optimization of a few key genes. Engineering 2018, 4, 514–522. [Google Scholar] [CrossRef]
- Nouri, A.; Etminan, A.; Silva, J.A.T.; Mohammadi, R. Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum vardurum Desf.). Aust. J. Crop Sci. 2011, 5, 8–16. [Google Scholar]
- Gawdiya, S.; Kumar, D.; Shivay, Y.S.; Bhatia, A.; Mehrotra, S.; Chandra, M.S.; Kumawat, A.; Kumar, R.; Price, A.H.; Raghuram, N.; et al. Field-based evaluation of rice genotypes for enhanced growth, yield attributes, yield and grain yield efficiency index in irrigated lowlands of the Indo-Gangetic plains. Sustainability 2023, 15, 8793. [Google Scholar] [CrossRef]
- Glass, A.D.M. Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption. Crit. Rev. Plant Sci. 2003, 22, 453–470. [Google Scholar] [CrossRef]
- Available online: https://icar.org.in/index.php/node/12081 (accessed on 21 September 2023).
- Available online: https://www.iari.res.in/iari-varieties/crops.php?grp=bkY2T0dYUC9uS1VoMzM0ZkM4SmtLdz09&crp=eElpNlpJOU1TOUY4TzlVMnFVamNZZz09 (accessed on 21 September 2023).
- Available online: https://www.isgpb.org/article/wheat-variety-pusa-wheat-3249-hd-3249 (accessed on 21 September 2023).
- Available online: http://ztmbpd.iari.res.in/technologies/varietieshybrids/cereals/wheat/ (accessed on 21 September 2023).
- Available online: https://www.pau.edu/coa/index.php?_act=manageDepartments&DO=viewMatter&intDepTitleID=20&intLinkID=9&strDepTitle=Important%20Achievements (accessed on 21 September 2023).
- Available online: https://epubs.icar.org.in/index.php/JWR/article/view/123981 (accessed on 21 September 2023).
Nitrogen × Variety | HD 3226 | HDCSW 18 | HD 2967 | HD 3086 | HD 3249 | HD 2733 | PBW 550 | PBW 343 | HD 3117 | HD 3298 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Straw yield—SY (t/ha) | ||||||||||||
2020–2021 | N0 | 3.03 k | 3.36 ijk | 4.10 gh | 4.12 fgh | 4.57 fg | 3.59 hij | 4.12 fgh | 3.19 jk | 4.66 f | 3.75 hi | 3.85 b |
N75 | 4.40 fg | 5.87 e | 6.39 de | 6.44 d | 7.28 c | 6.11 de | 6.50 d | 5.86 e | 6.58 d | 6.14 de | 6.16 a | |
N150 | 6.57 d | 8.04 b | 8.55 ab | 8.78 a | 8.87 a | 8.03 b | 8.33 ab | 6.44 d | 8.39 ab | 8.41 ab | 8.04 a | |
Mean | 4.67 g | 5.76 e | 6.34 bc | 6.45 b | 6.91 a | 5.91 de | 6.31 bc | 5.16 f | 6.54 b | 6.10 cd | ||
* N × V = 0.6/* V × N = 2 | ||||||||||||
2021–2022 | N0 | 3.18 lm | 3.13 m | 3.91 ijklm | 4.08 hijk | 4.68 hi | 3.62 jklm | 4.28 hij | 3.30 klm | 4.75 h | 3.75 jklm | 3.87 c |
N75 | 3.76 jklm | 3.84 jklm | 8.07 bcd | 6.96 fg | 7.13 efg | 7.41 def | 6.72 fg | 4.00 hijkl | 7.09 efg | 7.91 cde | 6.29 b | |
N150 | 6.44 g | 8.05 bcd | 8.80 ab | 8.78 ab | 8.97 a | 8.26 abc | 8.82 ab | 6.44 g | 8.86 ab | 8.76 ab | 8.22 a | |
Mean | 4.46 d | 5.01 c | 6.93 a | 6.61 ab | 6.93 a | 6.43 b | 6.61 ab | 4.58 cd | 6.90 ab | 6.81 ab | ||
* N × V = 0.8/* V × N = 1.8 | ||||||||||||
Pooled | 4.6 f | 5.4 d | 6.6 b | 6.5 b | 6.9 a | 6.2 c | 6.5 b | 4.9 e | 6.7 ab | 6.5 b | ||
Year-1 = 6/Year-2 = 6.1/*SY × Year = 0.72/*SY × V = 0.28 | ||||||||||||
Biological yield—BY (t/ha) | ||||||||||||
2020–2021 | N0 | 4.67 q | 5.33 opq | 6.64 mn | 6.82 mn | 7.77 kl | 5.72 op | 6.91 lmn | 4.99 pq | 7.86 k | 6.05 no | 6.28 b |
N75 | 7.01 klm | 9.64 j | 10.80 ghi | 10.94 ghi | 12.59 f | 10.16 ij | 11.09 gh | 9.55 j | 11.35 g | 10.26 hij | 10.34 a | |
N150 | 10.57 ghi | 13.36 ef | 14.89 bc | 15.44 ab | 16.26 a | 13.58 de | 15.12 bc | 10.60 ghi | 15.28 bc | 14.41 cd | 13.95 a | |
Mean | 7.42 g | 9.45 e | 10.78 c | 11.07 bc | 12.21 a | 9.82 de | 11.04 bc | 8.38 f | 11.50 b | 10.24 d | ||
* N × V = 0.9/* V × N = 3.7 | ||||||||||||
2021–2022 | N0 | 4.90 m | 5.02 lm | 6.37 jk | 6.71 ij | 7.96 i | 5.83 jklm | 7.15 ij | 5.18 klm | 8.03 i | 6.05 jklm | 6.32 c |
N75 | 5.96 jklm | 6.24 jkl | 13.42 de | 11.76 fgh | 12.48 efg | 12.11 efg | 11.52 gh | 6.45 jk | 12.19 efg | 13.01 def | 10.51 b | |
N150 | 10.56 h | 13.37 de | 15.14 abc | 15.32 ab | 16.37 a | 13.82 cd | 15.60 ab | 10.60 h | 15.87 ab | 14.88 bc | 14.15 a | |
Mean | 7.14 e | 8.21 d | 11.64 ab | 11.26 bc | 12.27 a | 10.59 c | 11.42 b | 7.41 e | 12.03 ab | 11.31 bc | ||
* N × V = 1.3/* V × N = 3.4 | ||||||||||||
Pooled | 7.3 h | 8.8 f | 11.2 cd | 11.2 cd | 12.2 a | 10.2 e | 11.2 c | 7.9 g | 11.8 b | 10.8 d | ||
Year-1 = 10.2/Year-2 = 10.3/*BY × Year = 2.2/* BY × V = 0.45 |
Nitrogen × Variety | N Concentration in Grain (NCG-%) | N Concentration in Straw (NCS-%) | ||||
---|---|---|---|---|---|---|
2020–2021 | 2021–2022 | Pooled | 2020–2021 | 2021–2022 | Pooled | |
N0 | 1.60 c | 1.61 b | 1.60 c | 0.392 b | 0.393 c | 0.392 c |
N75 | 1.97 b | 1.98 a | 1.98 b | 0.474 a | 0.477 b | 0.476 b |
N150 | 2.13 a | 2.14 a | 2.13 a | 0.509 a | 0.510 a | 0.509 a |
LSD (p = 0.05) | 0.10 | 0.15 | 0.06 | 0.062 | 0.015 | 0.02 |
HD 3226 | 1.60 f | 1.62 f | 1.61 f | 0.443 def | 0.446 ef | 0.445 fg |
HDCSW 18 | 1.99 b | 2.00 b | 2.00 b | 0.443 def | 0.437 fg | 0.44 gh |
HD 2967 | 1.65 ef | 1.66 ef | 1.66 f | 0.453 cde | 0.458 d | 0.455 ef |
HD 3086 | 2.01 b | 2.03 b | 2.02 b | 0.433 ef | 0.436 fg | 0.435 gh |
HD 3249 | 2.20 a | 2.20 a | 2.20 a | 0.487 ab | 0.487 ab | 0.487 ab |
HD 2733 | 1.97 b | 1.98 bc | 1.97 b | 0.460 cd | 0.456 de | 0.458 de |
PBW 550 | 1.71 e | 1.72 e | 1.71 e | 0.427 f | 0.433 g | 0.430 h |
PBW 343 | 1.81 d | 1.82 d | 1.81 d | 0.467 bc | 0.471 c | 0.469 cd |
HD 3117 | 2.16 a | 2.16 a | 2.16 a | 0.497 a | 0.498 a | 0.498 a |
HD 3298 | 1.90 c | 1.91 c | 1.90 c | 0.473 bc | 0.477 bc | 0.475 bc |
LSD (p = 0.05) | 0.07 | 0.07 | 0.05 | 0.022 | 0.011 | 0.012 |
Interaction | ns | ns | ns | ns | ns | ns |
Year-1 | 1.91 a | 0.458 a | ||||
Year-2 | 1.90 a | 0.460 a | ||||
NCG/NCS × Year | 0.022 | 0.33 | ||||
NCG/NCS × V | 0.05 | 0.012 |
Nitrogen × Variety | HD 3226 | HDCSW 18 | HD 2967 | HD 3086 | HD 3249 | HD 2733 | PBW 550 | PBW 343 | HD 3117 | HD 3298 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
N uptake of grain (NUG—kg ha−1) | ||||||||||||
2020 | N0 | 20.0 p | 36.8 mno | 32.6 no | 47.7 m | 64.8 l | 35.4 no | 37.8 mn | 26.0 op | 63.7 l | 35.4 no | 40.03 b |
N75 | 43.7 mn | 81.6 hijk | 75.1 jkl | 92.9 gh | 118.5 f | 82.8 hij | 81.0 ijk | 70.7 kl | 104.4 g | 82.6 hij | 83.35 ab | |
N150 | 77.2 ijk | 104.6 g | 126.7 ef | 149.2 bc | 175.0 a | 124.8 ef | 139.8 cd | 87.7 hi | 160.7 b | 130.6 de | 127.62 a | |
Mean | 47.0 h | 74.3 f | 78.1 ef | 96.6 c | 119.4 a | 81.0 def | 86.2 d | 61.5 g | 109.6 b | 82.9 de | ||
* N × V = 11.70/* V × N = 49.97 | ||||||||||||
2021 | N0 | 21.5 q | 35.1 opq | 31.5 pq | 46.3 no | 66.6 kl | 36.9 op | 38.9 nop | 27.3 pq | 65.3 lm | 35.6 opq | 40.5 b |
N75 | 37.1 op | 52.2 mn | 91.8 hij | 99.2 ghi | 120.3 ef | 96.6 hi | 85.1 ij | 47.4 no | 112.0 fg | 102.8 gh | 84.4 ab | |
N150 | 79.8 jk | 104.9 gh | 126.8 de | 149.4 bc | 174.8 a | 125.1 ef | 139.9 cd | 87.5 ij | 163.2 ab | 133.5 de | 128.5 a | |
Mean | 46.1 e | 64.1 d | 83.4 c | 98.3 b | 120.6 a | 86.2 c | 88.0 c | 54.1 e | 113.5 a | 90.6 bc | ||
* N × V = 52.5/* V × N = 8.2 | ||||||||||||
Pooled | 46.6 h | 69.2 f | 80.8 e | 97.5 c | 120.0 a | 83.6 de | 87.1 d | 57.8 g | 111.6 b | 86.8 d | ||
Year-1 = 83.7 a/Year-2 = 84.5 a/* NUG × Year = 3.1/*NUG × V = 5.2 | ||||||||||||
N uptake of straw (NUS—kg ha−1) | ||||||||||||
2020 | N0 | 11.6 m | 12.9 lm | 16.1 kl | 15.3 l | 19.3 jk | 14.1 lm | 14.9 lm | 12.8 lm | 20.2 j | 15.1 lm | 15.2 b |
N75 | 20.3 j | 27.3 i | 30.1 ghi | 29.1 hi | 36.6 ef | 29.6 hi | 28.7 i | 28.2 i | 33.8 fg | 30.2 ghi | 29.4 a | |
N150 | 32.5 gh | 39.6 de | 43.0 bcd | 42.2 cd | 48.1 a | 41.1 d | 40.1 de | 33.8 fg | 46.4 ab | 44.8 abc | 41.1 a | |
Mean | 21.5 f | 26.6 de | 29.7 bc | 28.9 bc | 34.6 a | 28.3 bcd | 27.9 cd | 24.9 e | 33.4 a | 30.0 b | ||
* N × V = 1.27/* V × N = 2.28 | ||||||||||||
2021 | N0 | 12.0 l | 11.8 l | 15.3 jkl | 14.9 jkl | 19.7 hi | 13.9 jkl | 15.6 ijkl | 13.1 kl | 20.8 h | 15.1 jkl | 15.2 c |
N75 | 17.7 hij | 17.1 hijk | 38.8 de | 31.9 fg | 35.9 ef | 34.5 fg | 30.3 g | 19.6 hi | 36.0 ef | 39.4 de | 30.1 b | |
N150 | 31.5 g | 39.4 de | 43.9 bc | 42.5 cd | 48.1 ab | 42.6 cd | 42.6 cd | 33.6 fg | 48.6 a | 46.2 abc | 41.9 a | |
Mean | 20.4 d | 22.8 d | 32.7 ab | 29.8 c | 34.6 a | 30.3 bc | 29.5 c | 22.1 d | 35.1 a | 33.6 a | ||
* N × V = 9.9/* V × N = 2.5 | ||||||||||||
Pooled | 20.9 e | 24.7 d | 31.2 b | 29.3 c | 34.6 a | 29.3 c | 28.7 c | 23.5 d | 34.3 a | 31.8 b | ||
Year-1 = 28.6 a/Year-2 = 29.1 a/*NUS × Year = 28.9/* NUS × V = 1.6 |
Nitrogen × Variety | HD 3226 | HDCSW 18 | HD 2967 | HD 3086 | HD 3249 | HD 2733 | PBW 550 | PBW 343 | HD 3117 | HD 3298 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total N uptake (TNU kg ha−1) | ||||||||||||
2020 | N0 | 31.6 q | 49.7 nop | 48.7 op | 63.0 mn | 84.1 l | 49.5 nop | 52.7 mno | 38.8 pq | 83.8 l | 50.6 mnop | 55.3 b |
N75 | 64.1 m | 109.0 ijk | 105.3 jk | 122.0 i | 155.1 fg | 112.4 ijk | 109.6 ijk | 98.9 k | 138.2 h | 112.8 ij | 112.7 ab | |
N150 | 109.7 ijk | 144.2 gh | 169.7 de | 191.4 c | 223.1 a | 165.8 ef | 179.9 cd | 121.4 i | 207.1 b | 175.4 de | 168.8 a | |
Mean | 68.5 g | 100.9 e | 107.9 de | 125.5 c | 154.1 a | 109.2 d | 114.1 d | 86.4 f | 143.1 b | 112.9 d | ||
* N × V = 13.80/* V × N = 61.55 | ||||||||||||
2021 | N0 | 33.4 o | 46.9 mno | 46.9 mno | 61.2 klm | 86.3 j | 50.8 lmn | 54.5 klmn | 40.4 no | 86.1 j | 50.7 lmn | 55.7 b |
N75 | 54.8 klmn | 69.3 jk | 130.6 gh | 131.1 fgh | 156.2 de | 131.0 fgh | 115.3 hi | 67.0 kl | 148.0 ef | 142.1 efg | 114.6 ab | |
N150 | 111.3 i | 144.3 efg | 170.7 cd | 191.8 b | 222.9 a | 167.7 cd | 182.5 bc | 121.2 hi | 211.8 a | 179.7 bc | 170.4 a | |
Mean | 66.5 e | 86.8 d | 116.0 c | 128.1 b | 155.1 a | 116.5 c | 117.4 c | 76.2 e | 148.6 a | 124.2 bc | ||
* N × V = 62.2/* V × N = 9.8 | ||||||||||||
Pooled | 67.5 h | 93.9 f | 112.0 e | 126.8 c | 154.6 a | 112.9 de | 115.8 de | 81.3 g | 145.8 b | 118.5 d | ||
Year-1 = 112.3 a/Year-2 = 113.6 a/*TNU × Year = 32.1/*TNU × V = 6.2 |
Nitrogen × Variety | HD 3226 | HDCSW 18 | HD 2967 | HD 3086 | HD 3249 | HD 2733 | PBW 550 | PBW 343 | HD 3117 | HD 3298 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Partial N balance—PNB (Kg N removed per kg N applied) | ||||||||||||
2020–2021 (N) | N75 | 1.07 jk | 1.82 de | 1.75 def | 2.03 c | 2.59 a | 1.87 cd | 1.83 d | 1.65 efg | 2.30 b | 1.88 cd | 1.88 a |
N150 | 0.91 k | 1.20 j | 1.41 i | 1.59 fgh | 1.86 cd | 1.38 i | 1.50 ghi | 1.01 k | 1.73 def | 1.46 hi | 1.41 b | |
Mean | 0.99 g | 1.51 e | 1.58 de | 1.81 c | 2.22 a | 1.63 de | 1.66 d | 1.33 f | 2.01 b | 1.67 d | ||
* N × V = 0.179/* V × N = 0.176 | ||||||||||||
2021–2022 | N75 | 0.93 i | 1.20 gh | 2.18 c | 2.19 c | 2.60 a | 2.18 c | 1.92 d | 1.12 hi | 2.47 ab | 2.37 bc | 1.91 a |
N150 | 0.91 i | 1.16 h | 1.42 fg | 1.60 ef | 1.86 d | 1.40 fg | 1.52 f | 1.01 hi | 1.77 de | 1.50 f | 1.42 a | |
Mean | 0.92 e | 1.18 d | 1.80 bc | 1.89 b | 2.23 a | 1.79 bc | 1.72 c | 1.06 de | 2.12 a | 1.93 b | ||
* N × V = 0.22/* V × N = 0.48 | ||||||||||||
Pooled | 0.96 d | 1.34 c | 1.69 b | 1.85 b | 2.23 a | 1.71 b | 1.69 b | 1.20 c | 2.07 a | 1.80 b | ||
Year-1 = 1.64 a/Year-2 = 1.66 a/*PNB × Year = 0.52/*PNB × V = 0.10 |
Nitrogen × Variety | HD 3226 | HDCSW 18 | HD 2967 | HD 3086 | HD 3249 | HD 2733 | PBW 550 | PBW 343 | HD 3117 | HD 3298 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020–2021 (N) | N75 | 40.8 a | 37.0 b | 42.0 a | 36.9 b | 34.3 e | 36.5 bcd | 41.9 a | 37.4 b | 34.7 de | 36.6 bc | 37.6 a |
N150 | 36.6 bc | 35.0 cde | 37.5 b | 34.9 cde | 33.3 e | 33.8 e | 38.0 b | 34.5 e | 33.5 e | 34.3 e | 35.3 b | |
Mean | 38.7 a | 36.0 b | 39.8 a | 35.9 b | 33.8 d | 35.1 bc | 39.9 a | 36.0 b | 34.1 cd | 35.5 b | ||
* N × V = 1.7/* V × N = 1.8 | ||||||||||||
2021–2022 | N75 | 40.1 a | 36.8 b | 40.9 a | 36.6 bc | 34.2 def | 36.0 bcd | 41.6 a | 36.5 bc | 34.5 def | 35.8 bcde | 37.1 a |
N150 | 37.0 b | 34.8 cdef | 37.2 b | 34.2 def | 33.3 f | 33.4 f | 37.3 b | 34.5 def | 33.2 f | 34.1 ef | 35.1 a | |
Mean | 38.5 a | 35.8 b | 39.1 a | 35.4 b | 33.7 c | 34.7 bc | 39.5 a | 35.5 b | 33.9 c | 34.9 bc | ||
* N × V = 1.86/* V × N = 1.91 | ||||||||||||
Pooled | 38.6 b | 35.9 c | 39.4 ab | 35.7 cd | 33.8 e | 34.9 d | 39.7 a | 35.7 cd | 34.0 e | 35.2 cd | ||
Year-1 = 36.5 a/Year-2 = 36.1 a/* INUE × Year = 2/* INUE × V = 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawdiya, S.; Kumar, D.; Shivay, Y.S.; Radheshyam; Nayak, S.; Ahmed, B.; Kour, B.; Singh, S.; Sadhukhan, R.; Malik, S.; et al. Nitrogen-Driven Genotypic Diversity of Wheat (Triticum aestivum L.) Genotypes. Agronomy 2023, 13, 2447. https://doi.org/10.3390/agronomy13102447
Gawdiya S, Kumar D, Shivay YS, Radheshyam, Nayak S, Ahmed B, Kour B, Singh S, Sadhukhan R, Malik S, et al. Nitrogen-Driven Genotypic Diversity of Wheat (Triticum aestivum L.) Genotypes. Agronomy. 2023; 13(10):2447. https://doi.org/10.3390/agronomy13102447
Chicago/Turabian StyleGawdiya, Sandeep, Dinesh Kumar, Yashbir Singh Shivay, Radheshyam, Somanath Nayak, Bulbul Ahmed, Babanpreet Kour, Sahadeva Singh, Rahul Sadhukhan, Sintu Malik, and et al. 2023. "Nitrogen-Driven Genotypic Diversity of Wheat (Triticum aestivum L.) Genotypes" Agronomy 13, no. 10: 2447. https://doi.org/10.3390/agronomy13102447
APA StyleGawdiya, S., Kumar, D., Shivay, Y. S., Radheshyam, Nayak, S., Ahmed, B., Kour, B., Singh, S., Sadhukhan, R., Malik, S., Saini, R., Kumawat, A., Malik, N., Dewidar, A. Z., & Mattar, M. A. (2023). Nitrogen-Driven Genotypic Diversity of Wheat (Triticum aestivum L.) Genotypes. Agronomy, 13(10), 2447. https://doi.org/10.3390/agronomy13102447