Sustainable Grazing by Cattle and Sheep for Semi-Natural Grasslands in Sweden
Abstract
:1. Introduction
2. Material and Methods for the Additional Data Analyses
2.1. Data Acquisition
2.2. Statistical Analysis
3. Variation in Biodiversity Value and Environmental Conditions of Grasslands
4. Incentives and Attitudes to Agri-Environmental Payment among Farmers
5. Cost-Effectiveness of Policy Measures
6. Data Quality and Availability for Evaluating Grazing Effects and Sustainability Goals
7. Farmers’ Attitudes towards Agri-Environmental Schemes
- On average, farms are smaller and have a high proportion of semi-natural grasslands.
- Focus on landscape care rather than production—especially on small part-time farms.
- More concerned about costs for attendance and fencing
- More sensitive to wild predators (wolves, etc.)
- Animal care is more sensitive to parasites.
- A higher proportion of these farms are in forest regions and in northern Sweden.
- A larger proportion of farmers are above retirement age.
- More reluctant to the administrative effort of applying for payment.
- Fewer animals per unit area
- More pressure on the farm economy because of lower income in relation to costs
- Often, farmers apply for agri-environmental payments.
- Smaller area proportion of semi-natural grassland
- Semi-natural grasslands are grazed mainly by heifers.
- Milk cows graze only productive land because of higher energy requirements.
- Bulls are kept indoors all year around.
- Only focus on meat production
- Less interest in grazing or landscape care
- Land ownership and leasing affect the ability to apply for payment since it is often the landowner that applies for payment, not the leaser of land for grazing.
- Result-based payment may have higher efficiency and acceptance.
8. Evaluation of Existing Data
9. Variation among Grassland Types in Soil Moisture and Nutrient Availability
10. Consideration of Local and Regional Variation in Design and Evaluation of Policy Measures
11. Weaknesses, Potential Shortcomings and Suggestions for Future Research
12. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maes, J.; Teller, A.; Erhard, M.; Condé, S.; Vallecillo, S.; Barredo, J.I.; Paracchini, M.L.; Malak, D.A.; Trombetti, M.; Vigiak, O.; et al. Mapping and Assessment of Ecosystems and Their Services: An EU Ecosystem Assessment; EUR 30161 EN; Publications Office of the European Union: Ispra, Italy, 2020. [Google Scholar]
- Henle, K.; Alard, D.; Clitherow, J.; Cobb, P.; Firbank, L.; Kull, T.; McCracken, D.; Moritz, R.F.A.; Niemelä, J.; Rebane, M.; et al. Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe—A review. Agric. Ecosyst. Environ. 2008, 124, 60–71. [Google Scholar] [CrossRef]
- Hejcman, M.; Hejcmanová, P.; Pavlů, V.; Beneš, J. Origin and history of grasslands in Central Europe—A review. Grass Forage Sci. 2013, 68, 345–363. [Google Scholar] [CrossRef]
- Beilin, R.; Lindborg, R.; Stenseke, M.; Pereira, H.M.; Llausàs, A.; Slätmo, E.; Cerqueira, Y.; Navarro, L.; Rodrigues, P.; Reichelt, N.; et al. Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy 2014, 36, 60–72. [Google Scholar] [CrossRef]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef]
- Karlík, P.; Poschlod, P. Identifying plant and environmental indicators of ancient and recent calcareous grasslands. Ecol. Indic. 2019, 104, 405–421. [Google Scholar] [CrossRef]
- Lemaire, G.; Wilkins, R.; Hodgson, J. Challenges for grassland science: Managing research priorities. Agric. Ecosyst. Environ. 2005, 108, 99–108. [Google Scholar] [CrossRef]
- Schils, R.L.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; Berge, H.T.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Karlsson, J.O.; Tidåker, P.; Röös, E. Smaller farm size and ruminant animals are associated with increased supply of non-provisioning ecosystem services. Ambio 2022, 51, 2025–2042. [Google Scholar] [CrossRef]
- Wästfelt, A.; Saltzman, K.; Berg, E.G.; Dahlberg, A. Landscape care paradoxes: Swedish landscape care arrangements in a European context. Geoforum 2012, 43, 1171–1181. [Google Scholar] [CrossRef]
- Cederberg, C.; Henriksson, M.; Rosenqvist, H. Ekonomi och Ekosystemtjänster i Gräsbaserad Mjölk-och Nötköttsproduktion [Economy and Ecosystem Services in Grass-Based Dairy and Cattle Beef Production]; Chalmers Tekniska Högskola: Göteborg, Sweden, 2018. [Google Scholar]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands–more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Johansen, L.; Taugourdeau, S.; Hovstad, K.A.; Wehn, S. Ceased grazing management changes the ecosystem services of semi-natural grasslands. Ecosys. People 2019, 15, 192–203. [Google Scholar] [CrossRef]
- Le Clec’h, S.; Finger, R.; Buchmann, N.; Gosal, A.S.; Hörtnagl, L.; Huguenin-Elie, O.; Jeanneret, P.; Lüscher, A.; Schneider, M.K.; Huber, R. Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. J. Environ. Manage. 2019, 251, 109372. [Google Scholar] [CrossRef]
- Paudel, S.; Cobb, A.B.; Boughton, E.H.; Spiegal, S.; Boughton, R.K.; Silveira, M.L.; Swain, H.M.; Reuter, R.; Goodman, L.E.; Steiner, J.L. A framework for sustainable management of ecosystem services and disservices in perennial grassland agroecosystems. Ecosphere 2021, 12, e03837. [Google Scholar] [CrossRef]
- Lindborg, R.; Bengtsson, J.; Berg, Å.; Cousins, S.A.O.; Eriksson, O.; Gustafsson, T.; Hasund, K.P.; Lenoir, L.; Pihlgren, A.; Sjödin, E.; et al. A landscape perspective on conservation of semi-natural grasslands. Agric. Ecosyst. Environ. 2008, 125, 213–222. [Google Scholar] [CrossRef]
- FAO. Biodiversity and the Livestock Sector—Guidelines for Quantitative Assessment—Version 1. In Livestock Environmental Assessment and Performance Partnership (FAO LEAP); FAO: Rome, Italy, 2020. [Google Scholar]
- Söderström, B.; Svensson, B.; Vessby, K.; Glimskär, A. Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers. Conserv. 2001, 10, 1839–1863. [Google Scholar] [CrossRef]
- Cousins, S.A.O.; Auffret, A.G.; Lindgren, J.; Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 2015, 44 (Suppl. S1), S17–S27. [Google Scholar] [CrossRef]
- Eriksson, O. The importance of traditional agricultural landscapes for preventing species extinctions. Biodiv. Conserv. 2021, 30, 1341–1357. [Google Scholar] [CrossRef]
- Emanuelsson, U. The Rural Landscape of Europe: How Man Has Shaped European Nature; The Swedish Research Council Formas: Stockholm, Sweden, 2009. [Google Scholar]
- Eriksson, O.; Cousins, S.A.O. Historical landscape perspectives on grasslands in Sweden and the Baltic region. Land 2014, 3, 300–321. [Google Scholar] [CrossRef]
- Diekmann, M.; Andres, C.; Becker, T.; Bennie, J.; Blüml, V.; Bullock, J.M.; Culmsee, H.; Fanigliulo, M.; Hahn, A.; Heinken, T.; et al. Patterns of long-term vegetation change vary between different types of semi-natural grasslands in Western and Central Europe. J. Veg. Sci. 2019, 31, 187–202. [Google Scholar] [CrossRef]
- Huyghe, C.; De Vliegher, A.; van Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies; Éditions Quae: Versailles, France, 2014. [Google Scholar]
- Pe’er, G.; Dicks, L.V.; Visconti, P.; Arlettaz, R.; Báldi, A.; Benton, T.G.; Collins, S.; Dieterich, M.; Gregory, R.D.; Hartig, F.; et al. EU agricultural reform fails on biodiversity. Science 2014, 344, 1090–1092. [Google Scholar] [CrossRef]
- FAO. A review of indicators and methods to assess biodiversity–application to livestock production at global scale. In Livestock Environmental Assessment and Performance Partnership (FAO LEAP); FAO: Rome, Italy, 2015. [Google Scholar]
- Harpole, W.S.; Sullivan, L.L.; Lind, E.M.; Firn, J.; Adler, P.B.; Borer, E.T.; Chase, J.; Fay, P.A.; Hautier, Y.; Hillebrand, H.; et al. Addition of multiple limiting resources reduces grassland diversity. Nature 2016, 537, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Sartorello, Y.; Pastorino, A.; Bogliani, G.; Ghidotti, S.; Viterbi, R.; Cerrato, C. The impact of pastoral activities on animal biodiversity in Europe: A systematic review and meta-analysis. J. Nat. Conserv. 2020, 56, 125863. [Google Scholar] [CrossRef]
- Nitsch, U. Bönder, myndigheter och naturbetesmarker. [Farmers, authorities and semi-natural pastures]. In CBM:s Skriftserie 23. SLU; Centrum för Biologisk Mångfald: Uppsala, Sweden, 2009. [Google Scholar]
- Nordberg, A.; Asplund, L. Förenkling av åtagandeplaner för betesmarker och slåtterängar. [Simplification of commitment plans for pastures and meadows.]. In Swedish Board of Agriculture, Report 2002/5; Swedish Board of Agriculture: Jönköping, Sweden, 2020. [Google Scholar]
- Wallander, J.; Karlsson, L.; Berglund, H.; Mebus, F.; Nilsson, L.; Bruun, M.; Johansson, L. Plan för odlingslandskapets biologiska mångfald. [Plan for biological diversity in the agricultural landscape]. In Swedish Board of Agriculture, Report 2019/1; Swedish Board of Agriculture: Jönköping, Sweden, 2019. [Google Scholar]
- Brady, M.; Hristov, J.; Höjgård, S.; Jansson, T.; Johansson, H.; Larsson, C.; Nordin, I.; Rabinowicz, E. Impacts of direct payments. Lessons for CAP post-2020 from a quantitative analysis. In AgriFood Economics Centre, Report 2017/2; Lund University and Swedish University of Agricultural Sciences: Lund, Sweden, 2017. [Google Scholar]
- Blom, S. (Ed.) Utveckling av ängs- och betesmarker–går, idag och imorgon [Development of meadows and pastures–yesterday, today and tomorrow]. In Swedish Board of Agriculture, Report 2009/10; Swedish Board of Agriculture: Jönköping, Sweden, 2009. [Google Scholar]
- Berg, Å.; Cronvall, E.; Eriksson, Å.; Glimskär, A.; Hiron, M.; Knape, J.; Pärt, T.; Wissman, J.; Żmihorski, M.; Öckinger, E. Assessing agri-environmental schemes for semi-natural pastures during a 5-year period: Can we see positive effects for vascular plants and pollinators? Biodivers. Conserv. 2019, 28, 3989–4005. [Google Scholar] [CrossRef]
- Larsson, C.; Boke Olén, N.; Brady, M. Naturbetesmarkens framtid–en fråga om lönsamhet [The future om semi-natural grasslands–a question about profitability]. In AgriFood Economics Centre, Report 2020/1; Lund University and Swedish University of Agricultural Sciences: Lund, Sweden, 2020. [Google Scholar]
- Milberg, P.; Bergman, K.-O.; Glimskär, A.; Nilsson, S.; Tälle, M. Site factors are more important than management for indicator species in semi-natural grasslands in southern Sweden. Plant Ecol. 2020, 221, 577–594. [Google Scholar] [CrossRef]
- Rosén, E.; Borgegård, S.-O. The open cultural landscape. In Swedish Plant Geography; Rydin, H., Shoeijs, P., Diekmann, M., Eds.; Acta Phytogeographica Suecica 84; Swedish Phytogeographical Society: Uppsala, Sweden, 1999. [Google Scholar]
- Ihse, M.; Lindahl, C. A holistic model for landscape ecology in practice: The Swedish survey and management of ancient meadows and pastures. Landsc. Urban Plan. 2000, 50, 59–84. [Google Scholar] [CrossRef]
- Vik, J.; McElwee, G. Diversification and the entrepreneurial motivations of farmers in Norway. J. Small Bus. Manag. 2011, 49, 390–410. [Google Scholar] [CrossRef]
- Kristensen, S.B.P.; Busck, A.G.; van der Sluis, T.; Gaube, V. Patterns and drivers of farm-level land use change in selected European rural landscapes. Land Use Policy 2016, 57, 786–799. [Google Scholar] [CrossRef]
- Dessart, F.J.; Barreiro-Hurlé, J.; van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review. Eur. Rev. Agric. Econ. 2019, 46, 417–471. [Google Scholar] [CrossRef]
- Brown, C.; Kovács, E.; Herzon, I.; Villamayor-Tomas, S.; Albizua, A.; Galanaki, A.; Grammatikopoulou, I.; McCracken, D.; Olsson, J.A.; Zinngrebe, Y. Simplistic understandings of farmer motivations could undermine the environmental potential of the common agricultural policy. Land Use Policy 2021, 101, 105136. [Google Scholar] [CrossRef]
- Jamieson, A.; Hessle, A. Hinder och möjligheter för ökad naturbetesdrift ur ett lantbrukarperspektiv–en kunskapsöversikt. [Obstacles and opportunies for increased grazing of semi-natural pastures from a farmer’s perspective–a literature review]. In SustAinimal Reports 1; SLU, Institutionen för Husdjurens Utfodring Och Vård: Uppsala, Sweden, 2021. [Google Scholar]
- Ansell, D.; Freudenberger, D.; Munro, N.; Gibbons, P. The cost-effectiveness of agri-environment schemes for biodiversity conservation: A quantitative review. Agric. Ecosyst. Environ. 2016, 225, 184–191. [Google Scholar] [CrossRef]
- Pavlis, E.S.; Terkenli, T.S.; Kristensen, S.B.P.; Busck, A.G.; Cosor, G.L. Patterns of agri-environmental scheme participation in Europe: Indicative trends from selected case studies. Land Use Policy 2016, 57, 800–812. [Google Scholar] [CrossRef]
- Holmström, K.; Kumm, K.-I.; Andersson, H.; Nadeau, E.; Arvidsson-Segerkvist, K.; Hessle, A. Economic incentives for preserving biodiverse semi-natural pastures with calves from dairy cows. J. Nat. Conserv. 2021, 62, 126010. [Google Scholar] [CrossRef]
- Karlsson, K. Management of Pastures–Whas Is Affecting the Farmers' Priority? Independent project in biology; SLU, Department of Ecology: Uppsala, Sweden, 2020. [Google Scholar]
- Karlsson, L.; Cristvall, C.; Edman, T.; Lindberg, G. Betesmarker och slåtterängar med miljöersättning [Pastures and meadows with agri-environmental payment]. In Swedish Board of Agriculture, Report 2012/41; Swedish Board of Agriculture: Jönköping, Sweden, 2012. [Google Scholar]
- Lundin, A.; Kindström, M.; Glimskär, A.; Gunnarsson, U.; Hedenbo, P.; Rygne, H. Metodik för Regional Miljöövervakning av Gräsmarker och Våtmarker 2015–2020 [Methods for Regional Environmental Monitoring of Grasslands and Wetlands 2015–2020]; County Administrative Board in Örebro, Report 2016/21; Swedish Board of Agriculture: Örebro, Sweden, 2016.
- Glimskär, A.; Skånes, H. Land type categories as a complement to land use and land cover attributes in landscape mapping and monitoring. In Land Use and Land Cover Semantics–Principles, Best Practices and Prospects; Ahlqvist, O., Janowicz, K., Varanka, D., Fritz, S., Eds.; CLC Press/Taylor & Francis: Boca Raton, FL, USA, 2015; pp. 171–190. [Google Scholar] [CrossRef]
- Green, R.H. Power analysis and practical strategies for environmental monitoring. Environ. Res. 1989, 50, 195–205. [Google Scholar] [CrossRef]
- Vos, P.; Meelis, E.; ter Keurs, W.J. Framework for the design of ecological monitoring programs as a tool for environmental and nature management. Environ. Monit. Assess. 2000, 61, 317–344. [Google Scholar] [CrossRef]
- McDonald, T.L. Review of environmental monitoring methods: Survey designs. Environ. Monit. Assess. 2003, 85, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Grafström, A.; Schelin, L. How to select representative samples. Scand. J. Statist. 2014, 41, 277–290. [Google Scholar] [CrossRef]
- Cousins, S.A.O.; Ihse, M. A methodological study for biotope and landscape mapping based on CIR aerial photographs. Landsc. Urban Plan. 1998, 41, 183–192. [Google Scholar] [CrossRef]
- Ihse, M. Colour infrared aerial photography as a tool for vegetation mapping and change detection in environmental studies of Nordic ecosystems: A review. Nor. J. Geogr. 2007, 61, 170–191. [Google Scholar] [CrossRef]
- Tyler, T.; Herbertsson, L.; Olofsson, J.; Olsson, P.A. Ecological indicator and traits values for Swedish vascular plants. Ecol. Indic. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Löfgren, O.; Hall, K.; Schmid, B.C.; Prentice, H.C. Grasslands ancient and modern: Soil nutrients, habitat age and their relation to Ellenberg N. J. Veg. Sci. 2019, 31, 367–379. [Google Scholar] [CrossRef]
- Diekmann, M. Species indicator values as an important tool in applied plant ecology—A review. Basic Appl. Ecol. 2003, 4, 493–506. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Paulissen, D. Zeigerwerte von Pflanzen in Mitteleuropa. Scr. Geobot. 1992, 18, 1–248. [Google Scholar]
- European Commission. Interpretation Manual of European Union Habitats, EUR 28; European Commission–DG Environment: Brussels, Belgium, 2013. [Google Scholar]
- Dahlström, A.; Cousins, S.A.O.; Eriksson, O. The History (1620–2003) of land use, people and livestock, and the relationship to present plant species diversity in a rural landscape in Sweden. Environ. Hist. 2006, 12, 191–212. [Google Scholar] [CrossRef]
- Käyhkö, N.; Skånes, H. Change trajectories and key biotopes—Assessing landscape dynamics and sustainability. Landsc. Urban Plan. 2006, 75, 300–321. [Google Scholar] [CrossRef]
- Schmid, B.C.; Poschlod, P.; Prentice, H.C. The contribution of successional grasslands to the conservation of semi-natural grasslands species—A landscape perspective. Biol. Conserv. 2017, 206, 112–119. [Google Scholar] [CrossRef]
- Mescher, B. Relations between Animal Welfare and Biodiversity in Swedish Beef and Dairy Farms. Master’s Thesis, Animal Production Systems Group, Wageningen University, Wageningen, The Netherlands, 2020. [Google Scholar]
- Spörndly, E.; Glimskär, A. Betesdjur och betestryck i naturbetesmarker [Grazing animals and grazing intensity in semi-natural grasslands]. In Rapport 297; SLU, Institute för Husdjurens Utfodring och Vård: Uppsala, Sweden, 2018. [Google Scholar]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B 2013, 280, 20132025. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, M.; Jakobsson, S. Trees are all around us: Farmers’ management of wood pastures in the light of a controversial policy. J. Environ. Manag. 2018, 212, 228–235. [Google Scholar] [CrossRef]
- Pihlgren, A.; Lennartsson, T. Shrub effects on herbs and grasses in semi-natural grasslands: Positive, negative or neutral relationships? Grass Forage Sci. 2008, 63, 9–21. [Google Scholar] [CrossRef]
- Waldén, E.; Lindborg, R. Facing the future for grassland restoration—What about the farmers? J. Environ. Manag. 2018, 227, 305–312. [Google Scholar] [CrossRef]
- Kumm, K.-I. Sustainable management of Swedish seminatural pastures with high species diversity. J. Nat. Conserv. 2003, 11, 117–125. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Bartolini, F.; Vergamini, D.; Longhitano, D.; Povellato, A. Do differential payments for agri-environmental schemes affect the environmental benefits? A case study in the North-Eastern Italy. Land Use Policy 2021, 107, 104862. [Google Scholar] [CrossRef]
- Elahi, E.; Zhang, H.; Lirong, X.; Khalid, Z.; Xu, H. Understanding cognitive and socio-psychological factors determining farmers’ intentions to use improved grassland: Implications of land use policy for sustainable pasture production. Land Use Policy 2021, 102, 105250. [Google Scholar] [CrossRef]
- Hansson, H.; Ferguson, R. Factors influencing the strategic decision to further develop dairy production—A study of farmers in central Sweden. Livest. Sci. 2011, 135, 110–123. [Google Scholar] [CrossRef]
- Belfrage, K.; Björklund, J.; Salomonsson, L. Effects of farm size and on-farm landscape heterogeneity on biodiversity—Case study of twelve farms in a Swedish landscape. Agroecol. Sustain. Food Syst. 2015, 39, 170–188. [Google Scholar] [CrossRef]
- Methorst, R.; Roep, D.; Verhees, F.; Verstegen, J. Drivers for differences in dairy farmers’ perceptions of farm development strategies in an area with nature and landscape as protected public goods. Local Econ. 2016, 31, 554–571. [Google Scholar] [CrossRef]
- Andersen, P.S.; Vejre, H.; Dalgaard, T.; Brandt, J. An indicator-based method for quantifying farm multifunctionality. Ecol. Indic. 2013, 25, 166–179. [Google Scholar] [CrossRef]
- Burton, R.J.F. The influence of farmer demographic characteristics on environmental behaviour: A review. J. Environ. Manag. 2014, 135, 19–26. [Google Scholar] [CrossRef]
- Boke Olén, N.; Roger, F.; Brady, M.V.; Larsson, C.; Andersson, G.K.S.; Ekroos, J.; Caplat, P.; Smith, H.G.; Dänhardt, J.; Clough, Y. Effects of farm type on food production, landscape openness, grassland biodiversity, and greenhouse gas emissions in mixed agricultural-forestry regions. Agric. Syst. 2021, 189, 103071. [Google Scholar] [CrossRef]
- Batáry, P.; Dicks, L.V.; Kleijn, D.; Sutherland, W.J. The role of agri-environment schemes in conservation and environmental management. Conserv. Biol. 2015, 29, 1006–1016. [Google Scholar] [CrossRef]
- Concepción, E.D.; Aneva, I.; Jay, M.; Lukanov, S.; Marsden, K.; Moreno, G.; Oppermann, R.; Pardo, A.; Piskol, S.; Rolo, V.; et al. Optimizing biodiversity gain of European agriculture through regional targeting and adaptive management of conservation tools. Biol. Conserv. 2020, 241, 108384. [Google Scholar] [CrossRef]
- Pardo, A.; Rolo, V.; Concepción, E.D.; Díaz, M.; Kazakova, Y.; Stefanova, V.; Marsden, K.; Brandt, K.; Jay, M.; Piskol, S.; et al. To what extent does the European common agricultural policy affect key landscape determinants of biodiversity? Environ. Sci. Policy 2020, 114, 595–605. [Google Scholar] [CrossRef]
- Forbord, M.; Bjørkhaug, H.; Burton, R.J.F. Drivers of change in Norwegian agricultural land control and the emergence of rental farming. J. Rural Stud. 2014, 33, 9–19. [Google Scholar] [CrossRef]
- Bele, B.; Norderhaug, A.; Sickel, H. Localized agri-food systems and biodiversity. Agriculture 2018, 8, 22. [Google Scholar] [CrossRef]
- Schulz, T.; Lauber, S.; Herzog, F. Summer farms in Switzerland: Profitability and public financial support. Mt. Res. Dev. 2018, 28, 14–23. [Google Scholar] [CrossRef]
- Burton, J.F.; Schwarz, G. Result-oriented agri-environmental schemes in Europe and their potential for promoting behavioural change. Land Use Policy 2013, 30, 628–641. [Google Scholar] [CrossRef]
- Herzon, I.; Birge, T.; Allen, B.; Povellato, A.; Vanni, F.; Hart, K.; Radley, G.; Tucker, G.; Keenleyside, C.; Oppermann, R.; et al. Time to look for evidence: Results-based approach to biodiversity conservation on farmland in Europe. Land Use Policy 2018, 71, 347–354. [Google Scholar] [CrossRef]
- Bartkowski, B.; Droste, N.; Liess, M.; Sidemo-Holm, W.; Weller, U.; Brady, M.V. Payments by modelled results: A novel design for agri-environmental schemes. Land Use Policy 2021, 102, 105230. [Google Scholar] [CrossRef]
- Ruas, S.; Rotchés, R.; Huallacháin, D.; Ahmed, K.D.; Gormally, M.; Stout, J.C.; White, B.; Moran, J. Selecting appropriate plant indicator species for result-based agri-environment payments schemes. Ecol. Indic. 2021, 126, 107679. [Google Scholar] [CrossRef]
- Birge, T.; Herzon, I. Exploring cultural acceptability of a hypothetical results-based agri-environment payment for grassland biodiversity. J. Rural Stud. 2019, 67, 1–11. [Google Scholar] [CrossRef]
- McGurk, E.; Hynes, S.; Thorne, F. Participation in agri-environmental schemes: A contingent valuation study of farmers in Ireland. J. Envir. Manage. 2020, 262, 110243. [Google Scholar] [CrossRef]
- Niskanen, O.; Tienhaara, A.; Haltia, E.; Pouta, E. Farmers’ heterogeneous preferences towards results-based environmental policies. Land Use Policy 2021, 102, 105227. [Google Scholar] [CrossRef]
- Massfeller, A.; Meraner, M.; Hüttel, S.; Uehleke, R. Farmers’ acceptance of results-based agri-environmental schemes: A German perspective. Land Use Policy 2022, 120, 106281. [Google Scholar] [CrossRef]
- Rudnicki, R.; Wiśniewski, Ł.; Biczkowski, M. A spatial typography of environmentally friendly common agricultural policy support relevant to European Green Deal objectives. Land 2021, 10, 1092. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Hauck, J.; Schindler, S.; Dittrich, A.; Zingg, S.; Tscharntke, T.; Oppermann, R.; Sutcliffe, L.M.E.; Sirami, C.; et al. Adding some green to the greening: Improving the EU’s Ecological Focus Areas for biodiversity and farmers. Conserv. Lett. 2017, 10, 517–530. [Google Scholar] [CrossRef]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- Bazzan, G.; Daugbjerg, C.; Tosun, J. Attaining policy integration through the integration of new policy instruments: The case of the Farm to Fork Strategy. Appl. Econ. Perspect. Policy 2023, 45, 803–818. [Google Scholar] [CrossRef]
- Pinto-Correia, T.; Ferraz-de-Oliveira, I.; Guimarães, M.H.; Sales-Baptista, E.; Pinto-Cruz, C.; Godinho, C.; Vieira Santos, R. Result-based payments as a tool to preserve the High Nature Value of complex silvo-pastoral systems: Progress toward farm-based indicators. Ecol. Soc. 2022, 27, 39. [Google Scholar] [CrossRef]
- Vessby, K.; Söderström, B.; Glimskär, A.; Svensson, B. Species-richness correlations of six different taxa in Swedish semi-natural grasslands. Conserv. Biol. 2002, 16, 430–439. [Google Scholar] [CrossRef]
- Wissman, J.; Lennartsson, T. Betestryck ur Ekologisk Synvinkel [Grazing Intensity from an Ecological Viewpoint]; CBM Swedish Biodiversity Centre: Uppsala, Sweden, 2010. [Google Scholar]
- Bonari, G.; Fajmon, K.; Malenovský, I.; Zelený, D.; Holuša, J.; Jongepierová, I.; Kočárek, P.; Konvička, O.; Uřičář, J.; Chytrý, M. Management of semi-natural grasslands benefiting both plant and insect diversity: The importance of heterogeneity and tradition. Agric. Ecosyst. Environ. 2017, 246, 243–252. [Google Scholar] [CrossRef]
- Pelve, M.E.; Spörndly, E.; Olsson, I.; Glimskär, A. Grazing and fouling behaviour of cattle on different vegetation types within heterogeneous semi-natural and naturalized pastures. Livest. Sci. 2020, 241, 104253. [Google Scholar] [CrossRef]
- Josefsson, J.; Hiron, M.; Arlt, D.; Auffret, A.G.; Berg, Å.; Chevalier, M.; Glimskär, A.; Hartman, G.; Kačergytė, I.; Klein, J.; et al. Improving scientific rigour in conservation evaluations and a plea deal for transparency on potential biases. Conserv. Lett. 2020, 2020, e12726. [Google Scholar] [CrossRef]
- Stufflebeam, D.L. The Metaevaluation Imperative. Am. J. Eval. 2001, 22, 183–209. [Google Scholar] [CrossRef]
- Ministry of Foreign Affairs. Meta-Evaluation–Private and Business Sector Development Interventions; Danida/Ministry of Foreign Affairs: Aarhus, Denmark, 2004.
- Hultgren, J.; Hiron, M.; Glimskär, A.; Bokkers, E.A.M.; Keeling, L.J. Environmental quality and compliance with animal welfare legislation at Swedish cattle and sheep farms. Sustainability 2022, 14, 1095. [Google Scholar] [CrossRef]
- Persson, K. Ängs- och betesmarksinventeringen–inventeringsmetod [National Inventory of Meadows and Pastures–inventory method]. In Swedish Board of Agriculture, Report 2005/2; Swedish Board of Agriculture: Jönköping, Sweden, 2005. [Google Scholar]
- Nordberg, A. Utvärdering av Ängs-och Betesmarksinventeringen och Databasen TUVA [Evaluation of the Meadow and Pasture Inventory and the TUVA Database]. In Swedish Board of Agriculture, Report 2013; Swedish Board of Agriculture: Jönköping, Sweden, 2013; p. 32. [Google Scholar]
- Nordberg, A. National Meadow and Pasture Inventory (TUVA). GBIF-Sweden. Occurrence Dataset. 2023. Available online: https://www.gbif.org/dataset/59bc8df0-0c71-11dd-84d4-b8a03c50a862 (accessed on 12 September 2023).
- Board of Agriculture. Instruktion för Fältinventering av Brukarblock [Instruction for Field Control of Arable Fields in LPIS]; Version 1; Swedish Board of Agriculture: Jönköping, Sweden, 2009.
- Board of Agriculture. Uppdatering av blockdatabasen med stöd av satellitdata [Updating arable fields in LPIS with use of satellite data]. In Swedish Board of Agriculture, Report 2009/3; Swedish Board of Agriculture: Jönköping, Sweden, 2009. [Google Scholar]
- Andersen, E.; Verhoog, A.D.; Elbersen, B.S.; Godeschalk, F.E.; Koole, B. A Multidimensional Farming System Typology; SEAMLESS Integrated Project, Report no. 12. EU 6th Framework Programme; 2006; Available online: https://edepot.wur.nl/144237 (accessed on 12 September 2023).
- Tonn, B.; ten Berge, H.; Eggers, S.; Hiron, M.; Klaus, V.H.; Korevaar, H.; Newell-Price, P.; Sacco, D.; Schils, R. Permanent Grassland Typology. Level-1 and Level-2 Classes; Milestone M2.1. Super-G, Sustainable Permanent Grasslands; EU Horizon 2020 Research and Innovation Programme: Göttingen, Germany, 2018. [Google Scholar]
- Slabbert, E.L.; Knight, T.M.; Wubet, T.; Kautzner, A.; Baessler, C.; Auge, H.; Roscher, C.; Schweiger, O. Abiotic factors are more important than land management and biotic interactions in shaping vascular plant and soil fungal communities. Glob. Ecol. Conserv. 2022, 33, e01960. [Google Scholar] [CrossRef]
- Chytrý, M.; Tichý, L.; Hennekens, S.M.; Knollová, I.; Janssen, J.A.M.; Rodwell, J.S.; Peterka, T.; Marcenò, C.; Landucci, F.; Danihelka, J.; et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 2020, 23, 648–675. [Google Scholar] [CrossRef]
- Normander, B.; Levin, G.; Auvinen, A.-P.; Bratli, H.; Stabbetorp, O.; Hedblom, M.; Glimskär, A.; Gudmundsson, G.A. Indicator framework for measuring quantity and quality of biodiversity—Exemplified in the Nordic countries. Ecol. Indic. 2012, 13, 104–116. [Google Scholar] [CrossRef]
- Spörndly, E.; Widén, O. Grazing semi-natural pastures late in the season or every second year–effects on the weight gain of steers and composition of selected vegetation. Acta Agric. Scand. Sect. A Anim. Sci. 2012, 57, 159–172. [Google Scholar] [CrossRef]
- Grandin, U.; Lenoir, L.; Glimskär, A. Are restricted species checklists or ant communities useful for assessing plant community composition and biodiversity in grazed pastures? Biodiv. Conserv. 2013, 22, 1415–1434. [Google Scholar] [CrossRef]
- Bergmeier, E.; Petermann, J.; Schröder, E. Geobotanical survey of wood-pasture habitats in Europe: Diversity, threats and conservation. Biodivers. Conserv. 2020, 19, 2995–3014. [Google Scholar] [CrossRef]
- Clough, Y.; Kirchweger, S.; Kantelhardt, J. Field sizes and the future of farmland biodiversity in European landscapes. Conserv. Lett. 2019, 13, e12752. [Google Scholar] [CrossRef] [PubMed]
Area (ha) | |||
---|---|---|---|
Mean | SE | RSE | |
Semi-natural grassland | 320,000 | 50,000 | 15.6% |
Improved permanent grassland | 580,000 | 80,000 | 13.8% |
Arable land, including temporal grassland | 1,800,000 | 370,000 | 20.6% |
Semi-natural within TUVA | 130,000 | 15,000 | 12.5% |
Semi-natural outside TUVA | 190,000 | 20,000 | 10.5% |
Semi-natural outside TUVA but within LPIS | 130,000 | 20,000 | 15.4% |
Semi-natural within TUVA but outside LPIS | 10,000 | 2500 | 25.0% |
Semi-natural outside both TUVA and LPIS | 60,000 | 12,000 | 20.0% |
EUNIS Level 2 | Dry Matter (kg ha−1) |
---|---|
Dry grasslands | 1800 |
Mesic grasslands | 3000 |
Seasonally wet and wet grasslands | 4400 |
Sparsely wooded grasslands | 1400 |
Arable land and market gardens | 4100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glimskär, A.; Hultgren, J.; Hiron, M.; Westin, R.; Bokkers, E.A.M.; Keeling, L.J. Sustainable Grazing by Cattle and Sheep for Semi-Natural Grasslands in Sweden. Agronomy 2023, 13, 2469. https://doi.org/10.3390/agronomy13102469
Glimskär A, Hultgren J, Hiron M, Westin R, Bokkers EAM, Keeling LJ. Sustainable Grazing by Cattle and Sheep for Semi-Natural Grasslands in Sweden. Agronomy. 2023; 13(10):2469. https://doi.org/10.3390/agronomy13102469
Chicago/Turabian StyleGlimskär, Anders, Jan Hultgren, Matthew Hiron, Rebecka Westin, Eddie A. M. Bokkers, and Linda J. Keeling. 2023. "Sustainable Grazing by Cattle and Sheep for Semi-Natural Grasslands in Sweden" Agronomy 13, no. 10: 2469. https://doi.org/10.3390/agronomy13102469
APA StyleGlimskär, A., Hultgren, J., Hiron, M., Westin, R., Bokkers, E. A. M., & Keeling, L. J. (2023). Sustainable Grazing by Cattle and Sheep for Semi-Natural Grasslands in Sweden. Agronomy, 13(10), 2469. https://doi.org/10.3390/agronomy13102469