Single-Time Mechanical Deep Placement Fertilization Using Bulk Blending Fertilizer on Machine-Transplanted Rice: Balanced Yield, Nitrogen Utilization Efficiency, and Economic Benefits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Crop and Water Management
2.4. Sampling and Analysis
2.4.1. N Release Patterns of CRNF and Soil NH4+-N
2.4.2. Plant Sampling and Analysis
2.4.3. NUE Calculation
2.4.4. Economic Benefit Analysis
2.5. Statistical Analysis
3. Results
3.1. Cumulative N Release Curve of CRNF
3.2. Soil NH4+-N Concentrations
3.3. Rice Tillering Dynamics
3.4. Rice Plant Dry Matter Accumulation
3.5. Rice Yield and NUE
3.6. Rice Yield Components
3.7. Economic Benefits
4. Discussion
4.1. Different Fertilizer Types and Application Methods Affected the Temporal and Spatial Distributions of Soil NH4+-N
4.2. Single-Time Broadcast Application of CRNF Cannot Be a Substitute for Split Application of Urea
4.3. Optimization N Management Synchronized N Supply and Requirements and Raised Net Income
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. FAO World Fertilizer Trends and Outlook to 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/zh/#data/QCL%20(2023-4-21) (accessed on 1 May 2023).
- Seck, P.; Diagne, A.; Mohanty, S.; Wopereis, M.C. Crops That Feed the World 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Ma, R.Y.; Zou, J.W.; Han, Z.Q.; Yu, K.; Wu, S.; Li, Z.F.; Liu, S.W.; Niu, S.L.; Horwath, W.; Xia, Z.B. Global Soil-derived Ammonia Emissions from Agricultural Nitrogen Fertilizer Application: A Refinement Based on Regional and Crop-specific Emission Factors. Glob. Change Biol. 2020, 27, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Grant, C.A.; Wu, R.; Selles, F.; Harker, K.N.; Clayton, G.W.; Bittman, S.; Zebarth, B.J.; Lupwayi, N.Z. Crop Yield and Nitrogen Concentration with Controlled Release Urea and Split Applications of Nitrogen as Compared to Non-Coated Urea Applied at Seeding. Field Crops Res. 2012, 127, 170–180. [Google Scholar] [CrossRef]
- Ghaley, B.B. Uptake and Utilization of 5-Split Nitrogen Topdressing in an Improved and a Traditional Rice Cultivar in the Bhutan Highlands. Exp. Agric. 2012, 48, 536–550. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Chu, G.; Liu, L.J.; Wang, Z.Q.; Wang, X.M.; Zhang, H.; Yang, J.C.; Zhang, J.H. Mid-Season Nitrogen Application Strategies for Rice Varieties Differing in Panicle Size. Field Crops Res. 2013, 150, 9–18. [Google Scholar] [CrossRef]
- Zhong, X.M.; Peng, J.W.; Kang, X.R.; Wu, Y.F.; Luo, G.W.; Hu, W.F.; Zhou, X. Optimizing Agronomic Traits and Increasing Economic Returns of Machine-Transplanted Rice with Side-Deep Fertilization of Double-Cropping Rice System in Southern China. Field Crops Res. 2021, 270, 108191. [Google Scholar] [CrossRef]
- Hu, K.B.; Zhao, P.; Wu, K.X.; Yang, H.L.; Yang, Q.X.; Fan, M.P.; Long, G.Q. Reduced and Deep Application of Controlled-Release Urea Maintained Yield and Improved Nitrogen-Use Efficiency. Field Crops Res. 2023, 295, 108876. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, S.; Chen, X.; Pang, Q.; Xu, Y.; Qi, S.; Yu, W.; Dai, H. Controlled Release Urea Improves Rice Production and Reduces Environmental Pollution: A Research Based on Meta-Analysis and Machine Learning. Environ. Sci. Pollut. Res. 2022, 29, 3587–3599. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, D.; Liu, S.; Liao, Y.; Han, J. Can Controlled-Release Urea Replace the Split Application of Normal Urea in China? A Meta-Analysis Based on Crop Grain Yield and Nitrogen Use Efficiency. Field Crops Res. 2022, 275, 108343. [Google Scholar] [CrossRef]
- Ke, J.; He, R.; Hou, P.; Ding, C.; Ding, Y.; Wang, S.; Liu, Z.; Tang, S.; Ding, C.; Chen, L.; et al. Combined Controlled-Released Nitrogen Fertilizers and Deep Placement Effects of N Leaching, Rice Yield and N Recovery in Machine-Transplanted Rice. Agric. Ecosyst. Environ. 2018, 265, 402–412. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhao, X.; Xing, G.X.; Yang, Y.C.; Zhang, M.; Chen, H.K. Improving Grain Yield and Reducing N Loss Using Polymer-Coated Urea in Southeast China. Agron. Sustain. Dev. 2015, 35, 1103–1115. [Google Scholar] [CrossRef]
- Ke, J.; Xing, X.; Li, G.; Ding, Y.; Dou, F.; Wang, S.; Liu, Z.; Tang, S.; Ding, C.; Chen, L. Effects of Different Controlled-Release Nitrogen Fertilisers on Ammonia Volatilisation, Nitrogen Use Efficiency and Yield of Blanket-Seedling Machine-Transplanted Rice. Field Crops Res. 2017, 205, 147–156. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.H.; Ding, Y.F.; Tao, W.K.; Gao, S.; Li, Q.X.; Li, W.W.; Liu, Z.H.; Li, G.H. Effects of Different Types of Slow- and Controlled-Release Fertilizers on Rice Yield. J. Integr. Agric. 2021, 20, 1503–1514. [Google Scholar] [CrossRef]
- Guo, J.M.; Wang, Y.H.; Blaylock, A.D.; Chen, X.P. Mixture of Controlled Release and Normal Urea to Optimize Nitrogen Management for High-Yielding (>15 Mg Ha −1) Maize. Field Crops Res. 2017, 204, 23–30. [Google Scholar] [CrossRef]
- Li, W.W.; Ahmad, S.; Liu, D.; Gao, S.; Wang, Y.H.; Tao, W.K.; Chen, L.; Liu, Z.H.; Jiang, Y.; Li, G.H.; et al. Subsurface Banding of Blended Controlled-Release Urea Can Optimize Rice Yields While Minimizing Yield-Scaled Greenhouse Gas Emissions. Crop J. 2022, 11, 914–921. [Google Scholar] [CrossRef]
- Bhuiyan, M.S.I.; Rahman, A.; Loladze, I.; Das, S.; Kim, P.J. Subsurface Fertilization Boosts Crop Yields and Lowers Greenhouse Gas Emissions: A Global Meta-Analysis. Sci. Total Environ. 2023, 876, 162712. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.G.; Wen, X.C.; Wang, Z.M.; Ashraf, U.; Tian, H.; Duan, M.Y.; Mo, Z.W.; Fan, P.S.; Tang, X.R. Benefits of Mechanized Deep Placement of Nitrogen Fertilizer in Direct-Seeded Rice in South China. Field Crops Res. 2017, 203, 139–149. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Ma, J.; Zhao, J.; Huai, Y.; Ma, J.; Ye, J.; Yu, Q.; Zou, P.; Sun, W.; et al. Combing Mechanical Side-Deep Fertilization and Controlled-Release Nitrogen Fertilizer to Increase Nitrogen Use Efficiency by Reducing Ammonia Volatilization in a Double Rice Cropping System. Front. Environ. Sci. 2022, 10, 1006606. [Google Scholar] [CrossRef]
- Li, L.; Wu, T.Y.; Li, Y.S.; Hu, X.; Wang, Z.X.; Liu, J.F.; Qin, W.; Ashraf, U. Deep Fertilization Improves Rice Productivity and Reduces Ammonia Emissions from Rice Fields in China; a Meta-Analysis. Field Crops Res. 2022, 289, 108704. [Google Scholar] [CrossRef]
- Wei, H.; Chen, Z.; Xing, Z.; Zhou, L.; Liu, Q.; Zhang, Z.; Jiang, Y.; Hu, Y.; Zhu, J.; Cui, P.; et al. Effects of Slow or Controlled Release Fertilizer Types and Fertilization Modes on Yield and Quality of Rice. J. Integr. Agric. 2018, 17, 2222–2234. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analytical Methods; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Zhang, A.P.; Gao, J.; Liu, R.L.; Zhang, Q.W.; Chen, Z.; Yang, S.Q.; Yang, Z.L. Using Side-Dressing Technique to Reduce Nitrogen Leaching and Improve Nitrogen Recovery Efficiency under an Irrigated Rice System in the Upper Reaches of Yellow River Basin, Northwest China. J. Integr. Agric. 2016, 15, 220–231. [Google Scholar] [CrossRef]
- Hofmeier, M.; Roelcke, M.; Han, Y.; Lan, T.; Bergmann, H.; Böhm, D.; Cai, Z.C.; Nieder, R. Nitrogen Management in a Rice–Wheat System in the Taihu Region: Recommendations Based on Field Experiments and Surveys. Agric. Ecosyst. Environ. 2015, 209, 60–73. [Google Scholar] [CrossRef]
- Wilson, M.L.; Rosen, C.J.; Moncrief, J.F. Potato Response to a Polymer-Coated Urea on an Irrigated, Coarse-Textured Soil. Agron. J. 2009, 101, 897–905. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of Nitrogen in Soil by the Kjeldahl Method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Dong, N.M.; Brandt, K.K.; Sørensen, J.; Hung, N.N.; Hach, C.V.; Tan, P.S.; Dalsgaard, T. Effects of Alternating Wetting and Drying versus Continuous Flooding on Fertilizer Nitrogen Fate in Rice Fields in the Mekong Delta, Vietnam. Soil Biol. Biochem. 2012, 47, 166–174. [Google Scholar] [CrossRef]
- Qiao, J.; Yang, L.Z.; Yan, T.M.; Xue, F.; Zhao, D. Rice Dry Matter and Nitrogen Accumulation, Soil Mineral N around Root and N Leaching, with Increasing Application Rates of Fertilizer. Eur. J. Agron. 2013, 49, 93–103. [Google Scholar] [CrossRef]
- Li, G.H.; Xue, L.H.; Gu, W.; Yang, C.; Wang, S.H.; Ling, Q.H.; Qin, X.; Ding, Y.F. Comparison of Yield Components and Plant Type Characteristics of High-Yield Rice between Taoyuan, a ‘Special Eco-Site’ and Nanjing, China. Field Crops Res. 2009, 112, 214–221. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Redondo, R. Nitrogen Efficiency in Wheat under Rainfed Mediterranean Conditions as Affected by Split Nitrogen Application. Field Crops Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Xu, X.K.; Boeckx, P.; Van Cleemput, O.; Kazuyuki, I. Mineral Nitrogen in a Rhizosphere Soil and in Standing Water during Rice (Oryza sativa L.) Growth: Effect of Hydroquinone and Dicyandiamide. Agric. Ecosyst. Environ. 2005, 109, 107–117. [Google Scholar] [CrossRef]
- Fan, J.B.; Zhang, Y.L.; Turner, D.; Duan, Y.H.; Wang, D.S.; Shen, Q.R. Root Physiological and Morphological Characteristics of Two Rice Cultivars with Different Nitrogen-Use Efficiency. Pedosphere 2010, 20, 446–455. [Google Scholar] [CrossRef]
- Liu, S.; Pubu, C.; Zhu, Y.; Hao, W.; Zhang, G.; Han, J. Optimizing Nitrogen Application Depth Can Improve Crop Yield and Nitrogen Uptake—A Global Meta-Analysis. Field Crops Res. 2023, 295, 108895. [Google Scholar] [CrossRef]
- Huda, A.; Gaihre, Y.; Islam, M.; Singh, U.; Islam, M.; Sanabria, J.; Satter, M.; Afroz, H.; Halder, A.; Jahiruddin, M. Floodwater Ammonium, Nitrogen Use Efficiency and Rice Yields with Fertilizer Deep Placement and Alternate Wetting and Drying under Triple Rice Cropping Systems. Nutr. Cycl. Agroecosyst. 2016, 104, 53–66. [Google Scholar] [CrossRef]
- Islam, S.; Gaihre, Y.; Biswas, J.; Jahan, M.; Singh, U.; Adhikary, S.; Satter, M.; Saleque, M. Different Nitrogen Rates and Methods of Application for Dry Season Rice Cultivation with Alternate Wetting and Drying Irrigation: Fate of Nitrogen and Grain Yield. Agric. Water Manag. 2018, 196, 144–153. [Google Scholar] [CrossRef]
- Li, G.; Fu, P.; Cheng, G.; Lu, W.; Lu, D. Delaying Application Time of Slow-Release Fertilizer Increases Soil Rhizosphere Nitrogen Content, Root Activity, and Grain Yield of Spring Maize. Crop J. 2022, 10, 1798–1806. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhou, J.M. Root-Zone Fertilization: A Key and Necessary Approach to Improve Fertilizer Use Efficiency and Reduce Non-Point Pollution from the Cropland. Soils 2014, 45, 785–790. [Google Scholar]
- Savant, N.; Stangel, P. Deep Placement of Urea Supergranules in Transplanted Rice: Principles and Practices. Fertil. Res. 1990, 25, 1–83. [Google Scholar] [CrossRef]
- Fernández, F.G.; Schaefer, D. Assessment of Soil Phosphorus and Potassium Following Real Time Kinematic-Guided Broadcast and Deep-Band Placement in Strip-Till and No-Till. Soil Sci. Soc. Am. J. 2012, 76, 1090–1099. [Google Scholar] [CrossRef]
- Malhi, S.S.; Grant, C.A.; Johnston, A.M.; Gill, K.S. Nitrogen Fertilization Management for No-till Cereal Production in the Canadian Great Plains: A Review. Soil Tillage Res. 2001, 60, 101–122. [Google Scholar] [CrossRef]
- Su, W.; Liu, B.; Liu, X.W.; Li, X.K.; Ren, T.; Cong, R.H.; Lu, J. Effect of Depth of Fertilizer Banded-Placement on Growth, Nutrient Uptake and Yield of Oilseed Rape (Brassica napus L.). Eur. J. Agron. 2015, 62, 38–45. [Google Scholar] [CrossRef]
- Heffer, P.; Prud’homme, M. Fertilizer Outlook 2016–2017. In Proceedings of the IFA Strategic Forum, Dubai, United Arab Emirates, 26–28 November 2016. [Google Scholar]
- Sutton, M.; Howard, C.; Erisman, J.W. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives; Cambridge University Press: Cambridge, UK, 2011; ISBN 978-1-107-00612-6. [Google Scholar]
- Geng, J.B.; Ma, Q.; Zhang, M.; Li, C.L.; Liu, Z.G.; Lyu, X.X.; Zheng, W.K. Synchronized Relationships between Nitrogen Release of Controlled Release Nitrogen Fertilizers and Nitrogen Requirements of Cotton. Field Crops Res. 2015, 184, 9–16. [Google Scholar] [CrossRef]
- Ntanos, D.A.; Koutroubas, S.D. Dry Matter and N Accumulation and Translocation for Indica and Japonica Rice under Mediterranean Conditions. Field Crops Res. 2002, 74, 93–101. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, L.; Zhang, J.W.; Li, W.W.; Jiang, Y.; Wang, S.H.; Ding, Y.F.; Liu, Z.H.; Li, G.H. Low N Apparent Surplus with Higher Rice Yield under Long-Term Fertilizer Postponing in the Rice-Wheat Cropping System. Crop J. 2022, 10, 1178–1186. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.J.; Wang, Y.; Pan, Y.F.; Kronzucker, H.; Zhao, D.Q.; Shi, W.M. Mechanical Side-Deep Fertilization Mitigates Ammonia Volatilization and Nitrogen Runoff and Increases Profitability in Rice Production Independent of Fertilizer Type and Split Ratio. J. Clean. Prod. 2021, 316, 128370. [Google Scholar] [CrossRef]
- Bandaogo, A.; Bidjokazo, F.; Sansan, Y.; Safo, E.Y.; Abaidoo, R.; Opoku, A. Effect of Fertilizer Deep Placement with Urea Supergranule on Nitrogen Use Efficiency of Irrigated Rice in Sourou Valley (Burkina Faso). Nutr. Cycl. Agroecosyst. 2014, 102, 79–89. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Xie, J.; Deng, G.; Tu, T.; Guan, X.; Yang, Z.; Huang, S.; Chen, X.; Qiu, C.; et al. Reducing Nitrogen Application with Dense Planting Increases Nitrogen Use Efficiency by Maintaining Root Growth in a Double-Rice Cropping System. Crop J. 2021, 9, 805–815. [Google Scholar] [CrossRef]
- Liu, T.Q.; Fan, D.J.; Zhang, X.X.; Chen, J.; Li, C.F.; Cao, C.G. Deep Placement of Nitrogen Fertilizers Reduces Ammonia Volatilization and Increases Nitrogen Utilization Efficiency in No-Tillage Paddy Fields in Central China. Field Crops Res. 2015, 184, 80–90. [Google Scholar] [CrossRef]
- Wang, S.H.; Cao, W.X.; Wang, Q.S.; Ding, Y.F.; Huang, P.S.; Ling, Q.H. Positional Distribution of Leaf Color and Diagnosis of Nitrogen Nutrition in Rice Plant. Sci. Agric. Sin. 2002, 12, 1461–1466. [Google Scholar]
- Yao, Y.L.; Zhang, M.; Tian, Y.H.; Zhao, M.; Zhang, B.W.; Zhao, M.; Zeng, K.; Yin, B. Urea Deep Placement for Minimizing NH3 Loss in an Intensive Rice Cropping System. Field Crops Res. 2018, 218, 254–266. [Google Scholar] [CrossRef]
Year | Fertilizer Application Method | Fertilizer Type | Dry Matter Accumulations (t ha−1) | |||
---|---|---|---|---|---|---|
Tillering | Panicle Initiation | Heading | Maturity | |||
2015 | CK | 0.70 ± 0.02 | 4.19 ± 0.22 | 10.73 ± 0.13 | 20.10 ± 0.11 | |
Broadcast | SCU | 0.63 ± 0.01 | 3.68 ± 0.04 | 11.01 ± 0.08 | 19.06 ± 0.40 | |
PCU | 0.48 ± 0.02 | 4.56 ± 0.08 | 11.19 ± 0.05 | 19.82 ± 0.48 | ||
BBF | 0.58 ± 0.01 | 5.01 ± 0.07 | 11.67 ± 0.33 | 22.39 ± 0.53 | ||
Deep placement | SCU | 0.86 ± 0.03 | 4.49 ± 0.31 | 11.97 ± 0.08 | 23.21 ± 0.41 | |
PCU | 0.75 ± 0.02 | 5.96 ± 0.22 | 12.40 ± 0.08 | 18.93 ± 0.57 | ||
BBF | 0.70 ± 0.01 | 5.90 ± 0.14 | 11.45 ± 0.04 | 22.39 ± 0.30 | ||
LSD0.05 | 0.07 | 0.69 | 0.57 | 1.49 | ||
2016 | CK | 0.93 ± 0.04 | 5.35 ± 0.04 | 12.60 ± 0.34 | 18.56 ± 0.33 | |
Broadcast | SCU | 0.84 ± 0.01 | 3.91 ± 0.03 | 11.21 ± 0.11 | 17.84 ± 0.08 | |
PCU | 0.43 ± 0.02 | 4.17 ± 0.05 | 10.17 ± 0.06 | 16.88 ± 0.13 | ||
BBF | 0.70 ± 0.01 | 5.33 ± 0.01 | 12.50 ± 0.23 | 18.93 ± 0.17 | ||
Deep placement | SCU | 1.10 ± 0.04 | 5.98 ± 0.12 | 12.89 ± 0.48 | 20.71 ± 0.23 | |
PCU | 0.66 ± 0.04 | 5.08 ± 0.18 | 11.88 ± | 17.18 ± 0.41 | ||
BBF | 0.80 ± 0.01 | 6.74 ± 0.02 | 12.60 ± | 19.29 ± 0.04 | ||
LSD0.05 | 0.12 | 0.32 | 1.40 | 0.93 | ||
p-value | Year (Y) | ** | ns | ns | ** | |
Fertilizer placement (P) | ** | ** | ** | ** | ||
Fertilizer type (T) | ** | ** | * | ** | ||
Y × P | ns | ns | ns | ns | ||
Y × T | ** | ** | ** | ns | ||
P × T | ** | ns | ** | ** | ||
Y × P × T | ns | * | ns | ns |
Year | Fertilizer Application Method | Fertilizer Type | Panicles m−2 | Spikelets Panicle−1 | Total Spikelets | Filled Grain Rate | Filled Grain Weight |
---|---|---|---|---|---|---|---|
(×103 m−2) | (%) | (mg) | |||||
2015 | CK | 263 ± 3.76 | 207 ± 0.85 | 54.6 ± 0.65 | 75.9 ± 0.54 | 28.2 ± 0.01 | |
Broadcast | SCU | 273 ± 5.53 | 188 ± 1.24 | 51.5 ± 1.22 | 73.1 ± 0.83 | 27.5 ± 0.18 | |
PCU | 287 ± 8.18 | 193 ± 2.13 | 55.4 ± 0.99 | 71.7 ± 0.70 | 26.8 ± 0.12 | ||
BBF | 313 ± 5.08 | 197 ± 0.24 | 61.9 ± 1.08 | 72.7 ± 0.63 | 27.1 ± 0.14 | ||
Deep placement | SCU | 308 ± 2.36 | 207 ± 2.83 | 63.9 ± 0.39 | 72.3 ± 0.54 | 27.7 ± 0.05 | |
PCU | 332 ± 9.24 | 185 ± 1.67 | 61.5 ± 1.24 | 64.4 ± 2.38 | 27.0 ± 0.04 | ||
BBF | 325 ± 0.11 | 197 ± 1.66 | 64.1 ± 0.53 | 72.1 ± 0.95 | 27.4 ± 0.1 | ||
LSD0.05 | 20.65 | 7.47 | 2.34 | 4.86 | 0.45 | ||
2016 | CK | 279 ± 5.22 | 162 ± 0.90 | 45.4 ± 0.72 | 91.5 ± 0.06 | 27.9 ± 0.01 | |
Broadcast | SCU | 280 ± 0.67 | 153 ± 0.54 | 43.0 ± 0.25 | 87.0 ± 1.05 | 28.1 ± 0.01 | |
PCU | 316 ± 2.34 | 142 ± 1.48 | 45.0 ± 0.78 | 84.9 ± 1.04 | 27.4 ± 0.12 | ||
BBF | 320 ± 2.99 | 157 ± 3.30 | 50.2 ± 1.31 | 86.8 ± 0.96 | 27.6 ± 0.20 | ||
Deep placement | SCU | 302 ± 2.47 | 161 ± 3.75 | 48.6 ± 0.96 | 92.2 ± 0.38 | 28.0 ± 0.09 | |
PCU | 348 ± 1.90 | 142 ± 4.69 | 49.6 ± 1.39 | 79.1 ± 0.28 | 26.5 ± 0.17 | ||
BBF | 333 ± 1.91 | 156 ± 0.82 | 52.0 ± 0.28 | 86.0 ± 3.03 | 27.0 ± 0.35 | ||
LSD0.05 | 10.96 | 11.35 | 3.71 | 2.14 | 0.67 | ||
p-value | Year (Y) | * | ** | ** | ** | ns | |
Fertilizer placement (P) | ** | ns | ** | ns | ns | ||
Fertilizer type (T) | ** | ** | ** | ** | * | ||
Y × P | ns | ns | ns | ns | ** | ||
Y × T | * | ns | ns | ns | ** | ||
P × T | ns | * | ns | ** | ns | ||
Y × P × T | ns | ns | ns | ns | ns |
Year | Fertilizer Application Method | Fertilizer Type | Gross Income | N Fertilizer Cost | Cost of N Application | Other Costs | Net Income |
---|---|---|---|---|---|---|---|
(USD ha−1) | |||||||
2015 | CK | 4462.2 ± 68.9 | 124.2 | 176.4 | 1672.8 | 2488.8 ± 68.9 | |
Broadcast | SCU | 3942.4 ± 39.2 | 214.5 | 78.1 | 1672.8 | 1977.0 ± 39.2 | |
PCU | 4045.5 ± 15.8 | 224.7 | 68.8 | 1672.8 | 2079.2 ± 15.8 | ||
BBF | 4652.3 ± 87.3 | 212.3 | 72.3 | 1672.8 | 2694.9 ± 87.3 | ||
Deep placement | SCU | 4867.8 ± 15.9 | 214.5 | 33.3 | 1672.8 | 2947.2 ± 15.9 | |
PCU | 4056.5 ± 79.7 | 224.7 | 33.3 | 1672.8 | 2125.7 ± 79.7 | ||
BBF | 4842.5 ± 63.5 | 212.3 | 33.3 | 1672.8 | 2924.1 ± 63.5 | ||
LSD0.05 | 965.7 | - | - | - | 373.9 | ||
2016 | CK | 4424.2 ± 56.6 | 124.2 | 176.4 | 1672.8 | 2450.8 ± 56.6 | |
Broadcast | SCU | 4005.8 ± 20.5 | 214.5 | 78.1 | 1672.8 | 2040.4 ± 20.5 | |
PCU | 3994.8 ± 50.7 | 224.7 | 68.8 | 1672.8 | 2028.5 ± 50.7 | ||
BBF | 4576.3 ± 32.5 | 212.3 | 72.3 | 1672.8 | 2618.9 ± 32.5 | ||
Deep placement | SCU | 4766.4 ± 59.7 | 214.5 | 33.3 | 1672.8 | 2845.8 ± 59.7 | |
PCU | 3955.1 ± 116.5 | 224.7 | 33.3 | 1672.8 | 2024.3 ± 116.5 | ||
BBF | 4601.6 ± 73.8 | 212.3 | 33.3 | 1672.8 | 2683.2 ± 73.8 | ||
LSD0.05 | 830.9 | - | - | - | 401.6 | ||
p-value | Year (Y) | ** | ns | ||||
Fertilizer placement (P) | ** | ** | |||||
Fertilizer type (T) | ** | ** | |||||
Y × P | ** | ns | |||||
Y × T | ** | ns | |||||
P × T | ** | ** | |||||
Y × P × T | ** | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, R.; Wang, Y.; Li, J.; Qian, H.; Yang, F.; Li, G.; Ding, Y.; Ke, J.; Li, W. Single-Time Mechanical Deep Placement Fertilization Using Bulk Blending Fertilizer on Machine-Transplanted Rice: Balanced Yield, Nitrogen Utilization Efficiency, and Economic Benefits. Agronomy 2023, 13, 2473. https://doi.org/10.3390/agronomy13102473
He R, Wang Y, Li J, Qian H, Yang F, Li G, Ding Y, Ke J, Li W. Single-Time Mechanical Deep Placement Fertilization Using Bulk Blending Fertilizer on Machine-Transplanted Rice: Balanced Yield, Nitrogen Utilization Efficiency, and Economic Benefits. Agronomy. 2023; 13(10):2473. https://doi.org/10.3390/agronomy13102473
Chicago/Turabian StyleHe, Rongchuan, Yuhui Wang, Jiaqi Li, Haoyu Qian, Fei Yang, Ganghua Li, Yanfeng Ding, Jian Ke, and Weiwei Li. 2023. "Single-Time Mechanical Deep Placement Fertilization Using Bulk Blending Fertilizer on Machine-Transplanted Rice: Balanced Yield, Nitrogen Utilization Efficiency, and Economic Benefits" Agronomy 13, no. 10: 2473. https://doi.org/10.3390/agronomy13102473
APA StyleHe, R., Wang, Y., Li, J., Qian, H., Yang, F., Li, G., Ding, Y., Ke, J., & Li, W. (2023). Single-Time Mechanical Deep Placement Fertilization Using Bulk Blending Fertilizer on Machine-Transplanted Rice: Balanced Yield, Nitrogen Utilization Efficiency, and Economic Benefits. Agronomy, 13(10), 2473. https://doi.org/10.3390/agronomy13102473