Mitigating Salinity Stress and Improving Cotton Productivity with Agronomic Practices
Abstract
:1. Introduction
2. Negative Impacts of Salinity on Cotton
2.1. Salinity-Caused Osmotic Stress
2.2. Salinity-Caused Toxic Damage
2.3. Salinity-Caused Nutrient Disturbance
3. Strategies for Alleviating Salt Stress
3.1. Improvements of Root Zone Environment
3.2. Enhancing Cotton Salinity Tolerance
3.2.1. Unequal Salt Distribution in the Root Zone
3.2.2. Chemical and Agronomical Enhancement
4. Agronomic Practices to Alleviate Salinity Stress
4.1. Plastic Mulching
4.2. Furrow Seeding
4.3. Delayed Planting
4.4. Fertilizer Management
4.5. Seed Priming
4.6. Increase in Seeding Rate and Plant Density
4.7. Utilization of Root-Associated Microorganism
4.8. Concave and Convex Cultivation
5. Summary and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haque, S.A. Salinity problems and crop production in coastal regions of Bangladesh. Pak. J. Bot. 2006, 38, 1359–1365. [Google Scholar]
- Maas, E.V. Crop Salt Tolerance. 1990. Available online: https://www.researchgate.net/publication/279887397_Crop_Salt_Tolerance (accessed on 1 September 2023).
- Qadir, M.; Shams, M. Some agronomic and physiological aspects of salt tolerance in cotton (Gossypium hirsutum L.). J. Agron. Crop Sci. 1997, 179, 101–106. [Google Scholar] [CrossRef]
- Higbie, S.M.; Wang, F.; Stewart, J.; Mc, D.; Sterling, T.M.; Lindemann, W.C.; Hughs, E.; Zhang, J. Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. Int. J. Agron. 2010, 2010, 643475. [Google Scholar] [CrossRef]
- Silva, J.A.; Uchida, R.S. Chapter 0: Plant Nutrient Management in Hawaii’s Soils: Approaches for Tropical and Subtropical Agriculture; University of Hawaii: Honolulu, HI, USA, 2000. [Google Scholar]
- Khorsandi, F.; Anagholi, A. Reproductive compensation of cotton after salt stress relief at different growth stages. J. Agron. Crop Sci. 2009, 195, 278–283. [Google Scholar] [CrossRef]
- Maryum, Z.; Luqman, T.; Nadeem, S.; Khan, S.M.U.D.; Wang, B.; Ditta, A.; Khan, M.K.R. An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Front. Plant Sci. 2022, 13, 907937. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil. 2010, 326, 61–73. [Google Scholar] [CrossRef]
- Maas, E.V.; Grattan, S.R. Crop Yields As Affected by Salinity; Wiley: Hoboken, NJ, USA, 1999; pp. 55–108. [Google Scholar]
- Ashraf, M. Salt tolerance of cotton: Some new advances. Crit. Rev. Plant Sci. 2002, 21, 1–30. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, N.U.I.; Iqbal, M.Z.; Hussain, A. Salt tolerance of cotton (Gossypium hirsutum L.). Asian J. Plant Sci. 2002, 1, 78–86. [Google Scholar] [CrossRef]
- Lubbers, E.L.; Chee, P.W.; Saranga, Y.; Paterson, A.H. Recent Advances and Future Prospective in Molecular Breeding of Cotton for Drought and Salinity Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Gorham, J.; Lauchli, A.; Leidi, E.O. Plant responses to salinity. In Physiology of Cotton. National Cotton Council of America, Memphis, Tenn; Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R., Eds.; Springer: London, UK, 2009; pp. 130–142. [Google Scholar]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- Nawaz, K.; Hussain, K.; Majeed, A.; Khan, F.; Afghan, S.; Ali, K. Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr. J. Biotech. 2010, 9, 5475–5480. [Google Scholar] [CrossRef]
- Greenway, H.; Munns, R. Mechanisms of salt tolerance in Nonhalophytes. Ann. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Qureshi, A.N.K.R.H.; Ahmad, N. Effect of external sodium chloride salinity on ionic composition of leaves of cotton cultivars II. cell sap, chloride and osmotic pressure. Int. J. Agric. Biol. 2004, 6, 784–785. [Google Scholar]
- Munns, R.; James, R.A.; Lauchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2002, 53, 1–30. [Google Scholar] [CrossRef]
- Tang, W.; Luo, Z.; Wen, S.; Dong, H.; Xin, C.; Li, W. Comparison of inhibitory effects on leaf photosynthesis in cotton seedlings between drought and salinity stress. Cotton Sci. 2007, 19, 28–32. [Google Scholar]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef] [PubMed]
- Gouia, H.; Ghorbal, M.H.; Touraine, B. Effects of NaCI on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol. 1994, 105, 1409–1418. [Google Scholar] [CrossRef]
- Hirayama, O.; Mihara, M. Characterization of membrane lipids of high plants, different in salt tolerance. Agric. Biol. Chem. 1987, 51, 3215–3221. [Google Scholar] [CrossRef]
- Rathert, G. Influence of extreme K/Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance.6. Mineral distribution variability among different salt tolerant cotton varieties. J. Plant Nutr. 1982, 5, 183–194. [Google Scholar] [CrossRef]
- Karimi, G.; Ghorbanli, M.; Heidari, H.; Khavarinejad, R.A.; Assareh, M.H. The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrate. Biol. Plant. 2005, 49, 301–304. [Google Scholar] [CrossRef]
- Booth, W.A.; Beardall, J. Effect of salinity on inorganic carbon utilization and carbonic anhydrase activity in the halotolerant algae Dunaliella salina (Chlorophyta). Phycologia 1991, 30, 220–225. [Google Scholar] [CrossRef]
- Cramer, G.R.; Jonathan, L.; Andre, L.; Emanuel, E. Influx of Na+, K+, Ca2+ into roots of salt-stressed cotton seedling. Plant Physiol. 1987, 83, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Yeo, A. Molecular biology of salt tolerance in the context of whole plant physiology. J. Exp. Bot. 1998, 49, 915–929. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Zhou, X.; Zhai, C.; Li, R. Effects of partial replacement of potassium by sodium on cotton seedling development and yield. J. Plant Nutr. 2006, 29, 1845–1854. [Google Scholar] [CrossRef]
- Lü, N. Effects of soil salinity on nutrients and ions uptake in cotton with drip irrigation under film. Plant Nutr. Fertil. Sci. 2009, 15, 670–676. [Google Scholar] [CrossRef]
- Brugnoli, E.; Björkman, O. Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 1992, 187, 335–347. [Google Scholar] [CrossRef]
- Pessarakli, M.; Tucker, T.C. Uptake of Nitrogen-15 by Cotton under Salt Stress. Soil Sci. Soc. Am. J. 1985, 49, 149–152. [Google Scholar] [CrossRef]
- Martinez, V.; Läuchli, A. Phosphorus translocation in salt-stressed cotton. Physiol. Plant. 1991, 83, 627–632. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Wan, X.; Li, J.; Wei, X.; Zhang, Z. Effect of organic matter amendment on nitrogen availability and salinity leaching in coastal saline soil. Sci. Agric. Sin. 2020, 53, 3809–3821. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salt tolerance in plants. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Qadir, M.; Noble, A.D.; Schubert, S.; Thomas, R.J. Salinity-induced land and water degradation: Mechanisms, impact, and management. In Advances in Water Resources Management; Springer: Dordrecht, The Netherlands, 2014; pp. 437–465. [Google Scholar]
- Huang, G.; Guo, J.; Ding, Y.; Shi, L. The role of intercropping in mitigating the effect of saline stress on root-zone CO2, CH4 and N2O fluxes from a constructed wetland-microalgal system. Water Res. 2016, 106, 315–323. [Google Scholar]
- Neumann, P.M.; Munns, R. Root-zone salinity. In The Leaf: A Platform for Performing Photosynthesis; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 577–592. [Google Scholar]
- Dong, H. Underlying mechanisms and related techniques of stand establishment of cotton on coastal saline-alkali soil. Chin. J. Appl. Ecol. 2012, 23, 566–572. [Google Scholar]
- Dong, H.; Kong, X.; Luo, Z.; Li, W.; Xin, C. Unequal salt distribution in the root zone increases growth and yield of cotton. Eur. J. Agron. 2010, 33, 285–292. [Google Scholar] [CrossRef]
- Kong, X.; Luo, Z.; Dong, H.; Eneji, A.E.; Li, W. Effects of non-uniform root zone salinity on water use, Na+ recirculation, and Na+ and H+ flux in cotton. J. Exp. Bot. 2012, 63, 2105–2116. [Google Scholar] [CrossRef]
- Johnson, R.; Puthur, J.T. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol. Biochem. 2021, 162, 247–257. [Google Scholar] [CrossRef]
- Chen, L.; Lu, B.; Liu, L.; Duan, W.; Jiang, D.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Li, C.; et al. Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 2021, 162, 506–516. [Google Scholar] [CrossRef]
- Saleem, M.F.; Raza, M.A.S.; Ahmad, S.; Khan, I.H.; Shahid, A.M. Understanding and mitigating the impacts of drought stress in cotton–A review. Pak. J. Agric. Sci. 2016, 53. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, J.; Zeng, N.; Yu, J. Effects of saline water irrigation and plastic mulching on cotton survival, growth, and yield in coastal saline soil. Agric. Water Manag. 2021, 243, 106489. [Google Scholar]
- Bezborodov, G.A.; Shadmanov, D.K.; Mirhashimov, R.T.; Yuldashev, T.; Qureshi, A.S.; Noble, A.D.; Qadir, M. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric. Ecosyst. Environ. 2010, 138, 95–102. [Google Scholar] [CrossRef]
- Xu, H.; Luo, Z.; Yue, P. Effects of different mulching and low-quality water irrigation methods on cotton growth and water use in a saline–alkali soil. Irrig. Sci. 2019, 37, 653–664. [Google Scholar]
- Wang, H.; Zhou, D.; Chen, X.; Xie, H.; Zhang, H. Mulch and saline water irrigation improved cotton growth, soil environment, and soil enzyme activities. Agron. J. 2018, 110, 207–215. [Google Scholar]
- Zheng, J.; Liu, Q.; Yang, G.; Chen, Y.; Zhang, H. Effects of plastic mulch and drip irrigation on growth, photosynthesis, and quality of cotton in arid northwest China. Agron. J. 2017, 109, 947–958. [Google Scholar]
- Dong, H.; Li, W.; Tang, W.; Zhang, D. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res. 2009, 111, 269–275. [Google Scholar] [CrossRef]
- Abrol, I.P.; Yadav, J.S.P.; Massoud, F.I. Salt-Affected Soils and Their Management; FAO Soils Bulletin 39; Food and Agriculture Organization of the United Nations: Rome, Italy, 1988; pp. 120–200. [Google Scholar]
- Dong, H.; Li, W.; Tang, W.; Zhang, D. Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field. Agron. J. 2008, 100, 1640–1646. [Google Scholar] [CrossRef]
- Boquet, D.J.; Patil, R.M.; Alley, M.M. Delayed cotton planting for salinity control. Agron. J. 1996, 88, 418–423. [Google Scholar]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Planting date effects on the salt tolerance of several crops. Agric. Water Manag. 1997, 34, 201–218. [Google Scholar]
- Shannon, M.C.; Grieve, C.M.; Francois, L.E. Whole plant response to salinity. In Plant Hormones: Physiology, Biochemistry and Molecular biology; Davies, W.J., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 521–548. [Google Scholar]
- Dong, H.; Li, W.; Tang, W.; Li, Z.; Zhang, D. Enhanced plant growth, development and fiber yield of Bt transgenic cotton by an integration of plastic mulching and seedling transplanting. Ind. Crops Prod. 2007, 26, 298–306. [Google Scholar] [CrossRef]
- Dong, H.; Li, W.; Xin, C.; Tang, W.; Zhang, D. Late-planting of short-season cotton in saline fields of the Yellow River Delta. Crop Sci. 2010, 50, 292–300. [Google Scholar] [CrossRef]
- Isaev, S.; Rajabov, T.; Goziev, G.; Khojasov, A. Effect of fertilizer application on the ‘Bukhara-102’ variety of cotton yield in salt-affected cotton fields of Uzbekistan. E3S Web Conf. 2021, 258, 03015. [Google Scholar] [CrossRef]
- Ganiev, S.E.; Muminov, K.M.; Bakiev, D.T.; Kurbanov, I.G. Effectiveness of some elements of agro technics to increase the productivity of saline glacial soils and cotton yields. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 105–110. [Google Scholar]
- Yao, L.; Tao, J.; Li, H.; Li, Y.J.; Li, C. Effects of microorganism coupled with boron and zinc on plant growth and na~+ distribution in cotton seedlings under salt stress. Crops 2009, 25, 66–70. [Google Scholar]
- Ahmad, M.; Akhtar, M.E.; Amin, M.; Iqbal, A.; Saleem, M.F. Controlled release fertilizer application under saline-sodic conditions improves growth parameters and yield of upland cotton. Int. J. Agric. Biol. 2018, 20, 1235–1242. [Google Scholar]
- Rahman, M.S.; Rahman, S.A.; Rabbani, M.G.; Sarker, M.A.; Hossain, M.K. Effect of drip fertigation on yield and yield components of cotton in saline soils. J. Soil Sci. Plant Nutr. 2019, 19, 940–951. [Google Scholar]
- Hassan, M.U.; Abbas, T.; Gao, L.; Ullah, H.; Aslam, M.; Amin, M. Silicon mediation in improving nutrients uptake and antioxidant activities under saline environment in cotton. Pak. J. Agric. Sci. 2020, 57, 833–840. [Google Scholar]
- Zou, C.; Chen, A.; Xiao, X.; Zhang, B.; Xiang, X.; Li, Y. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in the upland cotton. Euphytica 2017, 213, 1–15. [Google Scholar]
- Khan, M.I.; Raza, A.; Abbas, T.; Khan, M.Z.; Bashir, M.; Ahmad, K. Potassium application enhances growth, yield, and fiber quality of cotton under saline conditions. J. Plant Nutr. 2019, 42, 1561–1571. [Google Scholar]
- Zeng, L.; Zou, Y.; Tan, X.; Lin, X.; Fu, Z. Calcium deficiency alleviates the inhibitory effects of potassium on cotton root growth and alleviates plant potassium toxicity. J. Plant Nutr. Soil Sci. 2020, 183, 464–474. [Google Scholar]
- Abbas, T.; Raza, M.A.; Khan, M.I.; Bashir, M.U.; Shaukat, A.N. Improving soil structure and salt tolerance of cotton crop using gypsum and organic amendments. J. Plant Nutr. 2021, 44, 2202–2216. [Google Scholar]
- Hou, Z.; Chen, W.; Li, X.; Xiu, L.; Wu, L. Effects of salinity and fertigation practice on cotton yield and 15N recovery. Agric. Water Manag. 2009, 96, 1483–1489. [Google Scholar] [CrossRef]
- Keshavarz, P.; Norihoseini, M.; Malakouti, M.J. Effect of soil salinity on K critical level for cotton and its response to sources and rates of K Fertilizers. In Proceedings of the IPI Regional Workshop on Potassium and Fertigation Development in West Asia and North Africa, Rabat, Morocco, 24–28 November 2004. [Google Scholar]
- Jabeen, R.; Ahmad, R. Alleviation of the adverse effects of salt stress by foliar application of sodium antagonistic essential minerals of cotton (Gossypium hirsutum L.). Pak. J. Bot. 2009, 41, 2199–2208. [Google Scholar] [CrossRef]
- Sharif, I.; Aleem, S.; Farooq, J.; Rizwan, M.; Younas, A.; Sarwar, G.; Chohan, S.M. Salinity stress in cotton: Effects, mechanism of tolerance and its management strategies. Physiol. Mol. Biol. Plants 2019, 25, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y. Effect on Cotton Resistant to Salt Stress of Salt-Relieving and Plant Growth Promoting Bacteria Strain. Master’s Thesis, Shihezi University, Ürümqi, China, 2007. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Qayyum, M.F.; Irshad, M.K.; Bharwana, S.A. Priming-induced antioxidative responses in cotton (Gossypium hirsutum L.) seeds under saline stress. Arh. Hig. Rada Toksikol. 2018, 69, 102–113. [Google Scholar]
- Ashraf, M.; Ali, Q. Relative salt tolerance and glycinebetaine accumulation in eggplant (Solanum melongena) and tomato (Lycopersicon esculentum) cultivars. J. Plant Physiol. 2010, 167, 889–895. [Google Scholar]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Francois, L.E. Narrow row cotton (Gossypium hirsutum L.) under saline conditions. Irrig. Sci. 1982, 3, 149–156. [Google Scholar] [CrossRef]
- Feinerman, E. Crop density and irrigation with saline water. West. J. Agric. Econom. 1983, 8, 134–140. [Google Scholar]
- Fowler, J.L.; Ray, L.L. Response of two cotton genotypes to five equidistant spacing patterns. Agron. J. 1977, 69, 733–738. [Google Scholar] [CrossRef]
- Liu, S.; Guo, X.; Feng, G.; Maimaitiaili, B.; Fan, J.; He, X. Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant Soil 2016, 398, 195–206. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Jabborova, D.; Hashem, A. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J. Biol. Sci. 2015, 22, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Kang, A.; Zhang, N.; Xun, W.; Dong, X.; Xiao, M.; Liu, Z.; Xu, Z.; Feng, H.; Zou, J.; Shen, Q.; et al. Nitrogen fertilization modulates beneficial rhizosphere interactions through signaling effect of nitric oxide. Plant Physiol. 2022, 4, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Lu, B.; Liu, L.; Duan, W.; Meng, Y.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Dong, H.; et al. Exogenous melatonin improves the salt tolerance of cotton by removing active oxygen and protecting photosynthetic organs. BMC Plant Biol. 2021, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, M.; Saleem, M.F.; Tahir, M.; Iqbal, M.; Raza, M.A. Plant growth-promoting rhizobacteria confer salt tolerance in cotton (Gossypium hirsutum) by inducing antioxidative defense mechanisms. Commun. Soil Sci. Plant Anal. 2019, 50, 1485–1501. [Google Scholar]
- Islam, F.; Yasmeen, T.; Ali, Q.; Ali, S.; Arif, M.S.; Hussain, S.; Riaz, M.; Shahzad, S.M.; Abbas, F. Plant growth-promoting bacteria confer resistance against salinity-induced adversities in soybean. Acta Physiol. Plant. 2017, 39, 174. [Google Scholar]
- Khan, A.L.; Waqas, M.; Kang, S.M.; Al-Harrasi, A.; Hussain, J.S.M.; Hamayun, M.; Lee, I.J. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Sci. Rep. 2016, 6, 22567. [Google Scholar] [CrossRef]
- Shi, M.; Wei, X.; Xu, X.; Xie, K.; Chen, H. Effects of application of Trichoderma asperellum T6 and biochar on salt tolerance of cotton seedlings in saline soil. Ecol. Eng. 2020, 156, 80–91. [Google Scholar]
- Nouman, W.; Naveed, M.; Hussain, M.B.; Zain, M.; Nadeem, S.M.; Shahid, M.; Imran, M.; Ashraf, M. Organic amendments improved growth, physiological responses, and productivity of cotton through enrichment of soil microbiome. J. Soils Sediments 2018, 18, 2368–2378. [Google Scholar]
- Zhang, F.; Wang, J.; Zhao, Q.; Chen, M.; Gao, P.; Lv, Y. Effect of water management and nutrient application on cotton yield, water productivity and soil salinity under drip irrigation in saline region. Agric. Water Manag. 2020, 238, 106189. [Google Scholar]
- Zhou, J.; Dai, J.; Feng, L.; Zhang, Y.; Wan, S.; Dong, H. Research progress in theory and technology for modern cotton cultivation in China. J. Tarim Univ. 2023, 1–12. [Google Scholar]
- Liu, L.; Wang, B. Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. Biology 2021, 22, 353. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Nasrullah, H.; Shahzad, H.T. Comparative response of cotton genotypes to waterlogging and saline stresses: Growth, ionic partitioning, yield and fibre quality. Physiol. Mol. Biol. Plants 2019, 25, 867–883. [Google Scholar]
- Li, X.; Jin, X.; Wang, J.; Munan, M.; Zhao, H.; Chen, Y.; Ma, Q. iTRAQ-based quantitative analysis reveals salt-responsive pathways during seed germination and early seedling growth of cotton (Gossypium hirsutum L.). PeerJ 2020, 8, e8516. [Google Scholar]
- Singh, A.; Yadav, V.; Singh, D.K. Gypsum amendment mitigates soil salinity and improves growth, yield, and fiber quality of cotton under saline conditions. Commun. Soil Sci. Plant Anal. 2019, 50, 2361–2378. [Google Scholar]
- Egamberdieva, D. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol. Plant. 2009, 31, 861–864. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, K.; Qin, K.; Yang, L.; Hu, Y.; Ren, Y.; Zhu, Y. Evaluating hyperspectral chlorophyll content of cotton under salinity stress using spectral reflectance indices. Remote Sens. 2020, 12, 1481. [Google Scholar]
- Zhang, L.; Liu, S.; Zhou, X.; Zhang, L.; Zhang, L. Evaluation and analysis of cotton irrigation system based on sensors in field. In Proceedings of the 2nd International Conference on Agricultural and Food Sciences, Nusa Dua, Bali, Indonesia, 2–3 November 2019; p. 127. [Google Scholar]
Agronomic Measures | Implementation Period | Effect | References |
---|---|---|---|
Plastic mulching | 30 days before sowing or after sowing | Enhances soil water retention Minimizes evaporation Reduces root zone salt accumulation | [40,46,47,48,49,50,51] |
Furrow seeding | Sowing period | Unequal salt distribution in the root zone | [41,52,53] |
Delayed planting | Sowing period | Promotes water absorption Reduces ionic toxicity | [54,55,56,57,58] |
Fertilizer management | Growth stage | Promotes balanced nutrient uptake; reduces toxicity Enhances cotton salinity tolerance | [59,60,61,62,63,64,65,66,67,68,69,70,71] |
Seed priming | Pre-sowing | Promotes seed germination and seedling growth Improves stress resistance | [72,73,74] |
Increase in seeding rate and plant density | Sowing period | Improves plant growth Increases production Promotes earlier cotton maturation | [42,75,76,77,78,79] |
Utilization of root-associated microorganism | Seed inoculation used in field as soil amendments | Mitigates salinity stress Improves cotton productivity | [85,86,87,88,89] |
Concave and convex cultivation | Pre-sowing | Facilitates cotton seedling emergence Improves drainage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhang, Y.; Sun, L.; Dai, J.; Dong, H. Mitigating Salinity Stress and Improving Cotton Productivity with Agronomic Practices. Agronomy 2023, 13, 2486. https://doi.org/10.3390/agronomy13102486
Zhang D, Zhang Y, Sun L, Dai J, Dong H. Mitigating Salinity Stress and Improving Cotton Productivity with Agronomic Practices. Agronomy. 2023; 13(10):2486. https://doi.org/10.3390/agronomy13102486
Chicago/Turabian StyleZhang, Dongmei, Yanjun Zhang, Lin Sun, Jianlong Dai, and Hezhong Dong. 2023. "Mitigating Salinity Stress and Improving Cotton Productivity with Agronomic Practices" Agronomy 13, no. 10: 2486. https://doi.org/10.3390/agronomy13102486
APA StyleZhang, D., Zhang, Y., Sun, L., Dai, J., & Dong, H. (2023). Mitigating Salinity Stress and Improving Cotton Productivity with Agronomic Practices. Agronomy, 13(10), 2486. https://doi.org/10.3390/agronomy13102486