Effect of Different Plant Growth-Promoting Rhizobacteria on Biological Soil Properties, Growth, Yield and Quality of Oregano (Origanum onites L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Identification of Bacterial Isolates by 16S rRNA Gene Amplification
2.3. Sequencing and Phylogenetic Analyses
2.4. Acetylene Reduction Assay and Phosphate Solubilization
2.5. Quantification of IAA Production and Activity of ACC Deaminase
2.6. Greenhouse Experiment and Growth Conditions
2.7. Microbial Biomass and Enzyme Activities Analysis
2.8. Essential Oil Extraction and GC-MS Analysis
2.9. Plant Analysis
2.10. Statistical Analysis
3. Results
3.1. PGPR and Their Characteristics
3.2. Plant Growth Parameters
3.3. Oil Yield, Content and Chemoarray
3.4. Nutrient Uptake
3.5. Biological Soil Properties
3.6. Identification of Bacterial Isolates by 16S rRNA Gene Amplification and Sequencing and Phylogenetic Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonk, F.A.; Yüce, S.; Bayram, E.; Akçali Giachino, R.R.; Sönmez, Ç.; Telci, I.; Furan, M.A. Chemical and genetic variability of selected Turkish oregano (Origanum onites L.) clones. Plant Syst. Evol. 2010, 288, 157–165. [Google Scholar] [CrossRef]
- Pangloli, P.; Hung, Y.C. Effects of water hardness and pH on efficacy of chlorine-based sanitizers for inactivating Escherichia coli O157: H7 and Listeria monocytogenes. Food Control. 2013, 32, 626–631. [Google Scholar] [CrossRef]
- Bokov, D.; Morokhina, S.; Popov, D. Phytochemical study of essential oil from Turkish oregano (Origanum onites L.) by gas chromatography/mass spectrometry. Pharm. Chem. J. 2015, 49, 259–267. [Google Scholar] [CrossRef]
- Baser, K.H.C. The Turkish Origanum Species; Taylor & Francis: London, UK, 2002; Volume 109. [Google Scholar]
- Bansleben, A.C.; Schellenberg, I.; Einax, J.W.; Schaefer, K.; Ulrich, D.; Bansleben, D. Chemometric tools for identification of volatile aroma-active compounds in oregano. Anal. Bioanal. Chem. 2009, 395, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Buchbauer, G.; Erkic, M. Antioxidative Properties of Essential Oils and Single Fragrance Compounds; CRC Press: Boca Raton, FL, USA, 2015; pp. 323–344. [Google Scholar]
- Çakmakçı, R.; Mosber, G.; Milton, A.H.; Alatürk, F.; Ali, B. The effect of auxin and auxin-producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Curr. Microbiol. 2020, 77, 564–577. [Google Scholar] [PubMed]
- Çakmakçi, R.; Dönmez, F.; Aydın, A.; Şahin, F. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 2006, 38, 1482–1487. [Google Scholar] [CrossRef]
- Ateş, Ö.; Çakmakçi, R.; Yalçin, G.; Taşpinar, K.; Alveroğlu, V. Isolation and characterization of phosphate solubilizing bacteria and effect of growth and nutrient uptake of maize under pot and field conditions. Commun. Soil Sci. Plant Anal. 2022, 53, 2114–2124. [Google Scholar] [CrossRef]
- Lotfi, N.; Soleimani, A.; Çakmakçı, R.; Vahdati, K.; Mohammadi, P. Characterization of plant growth-promoting rhizobacteria (PGPR) in Persian walnut associated with drought stress tolerance. Sci. Rep. 2022, 12, 12725. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.D.C.; Santoyo, G.; Glick, B.R. Recent advances in the bacterial phytohormone modulation of plant growth. Plants 2023, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- del Rosario Cappellari, L.; Santoro, M.V.; Reinoso, H.; Travaglia, C.; Giordano, W.; Banchio, E. Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (Mentha piperita). J. Chem. Ecol. 2015, 41, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Nurzynska-Wierdak, R. Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci. Pol. Hortorum Cultus 2013, 12, 3–16. [Google Scholar]
- Banchio, E.; Bogino, P.C.; Santoro, M.; Torres, L.; Zygadlo, J.; Giordano, W. Systemic induction of monoterpene biosynthesis in Origanum × majoricum by soil bacteria. J. Agri. Food Chem. 2010, 58, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Leithy, S.; EL-Meseiry, T.; Abdallah, E. Effect of biofertilizers, cell stabilizer and irrigation regime on rosemary herbage oil yield and quality. J. Appl. Sci. Res. 2006, 2, 773–779. [Google Scholar]
- Mishra, R.K.; Prakash, O.; Alam, M.; Dikshit, A. Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. herit. Recent Res. Sci. Technol. 2010, 2, 53–57. [Google Scholar]
- Moradi, R.; Moghaddam, P.R.; Mahallati, M.N.; Nezhadali, A. Effects of organic and biological fertilizers on fruit yield and essential oil of sweet fennel (Foeniculum vulgare var. dulce). Span. J. Agri. Res. 2011, 9, 546–553. [Google Scholar] [CrossRef]
- Hellal, F.; Mahfouz, S.; Hassan, F. Partial substitution of mineral nitrogen fertilizer by bio-fertilizer on (Anethum graveolens L.) plant. Agric. Biol. JN Am. 2011, 2, 652–660. [Google Scholar] [CrossRef]
- Ordookhani, K.; Sharafzadeh, S.; Zare, M. Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Adv. Environ. Biol. 2011, 5, 672–677. [Google Scholar]
- Hassan, F.; Ali, E.; Mahfouz, S. Comparison between different fertilization sources, irrigation frequency and their combinations on the growth and yield of coriander plant. Aust. J. Basic Appl. Sci. 2012, 6, 600–615. [Google Scholar]
- del Rosario Cappellari, L.; Santoro, M.V.; Nievas, F.; Giordano, W.; Banchio, E. Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl. Soil Eco. 2013, 70, 16–22. [Google Scholar] [CrossRef]
- Bahadori, F.; Ashorabadi, E.S.; Mirza, M.; Matinizade, M.; Abdosi, V. Improved growth, essential oil yield and quality in Thymus daenensis Celak on mycorrhizal and plant growth promoting rhizobacteria inoculation. Int. J. Agron. Plant Prod. 2013, 4, 3384–3391. [Google Scholar]
- Farahani, E. The influence of different biofertilizers, chemical fertilizer and humic acid on grow parameter biomass, essence content and essential oil components of Satureja hortensis. Int. J. Rev. Life Sci. 2015, 5, 391–397. [Google Scholar]
- Santoro, M.V.; Zygadlo, J.; Giordano, W.; Banchio, E. Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol. Biochem. 2011, 49, 1177–1182. [Google Scholar] [CrossRef]
- Banchio, E.; Bogino, P.C.; Zygadlo, J.; Giordano, W. Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem. Syst. Ecol. 2008, 36, 766–771. [Google Scholar] [CrossRef]
- Eivazi, F.; Bayan, M. Effect of long-term fertilisation and cropping systems on selected soil enzyme activities. In Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research; Springer: Berlin/Heidelberg, Germany, 2001; pp. 686–687. [Google Scholar]
- Nannipieri, P.; Giagnoni, L.; Renella, G.; Puglisi, E.; Ceccanti, B.; Masciandaro, G.; Fornasier, F.; Moscatelli, M.C.; Marinari, S. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils 2012, 48, 743–762. [Google Scholar] [CrossRef]
- Cao, D.; Shi, F.; Koike, T.; Lu, Z.; Sun, J. Halophyte plant communities affecting enzyme activity and microbes in saline soils of the Yellow River Delta in China. CLEAN–Soil Air Water 2014, 42, 1433–1440. [Google Scholar] [CrossRef]
- Jiang, Y.; Arafat, Y.; Letuma, P.; Ali, L.; Tayyab, M.; Waqas, M.; Li, Y.; Lin, W.; Lin, S.; Lin, W. Restoration of long-term monoculture degraded tea orchard by green and goat manures applications system. Sustainability 2019, 11, 1011. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Zhang, H.; Zhang, J.; Chen, Y.; Yao, F.; Chen, Y. Effects of exogenous organic matter addition on agricultural soil microbial communities and relevant enzyme activities in southern China. Sci. Rep. 2023, 13, 8045. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Shi, Y.; Zhang, Y.; Yang, D.; Guo, C. Effects of plant-growth-promoting rhizobacteria on soil bacterial community, soil physicochemical properties, and soil enzyme activities in the Rhizosphere of alfalfa under field conditions. Diversity 2023, 15, 537. [Google Scholar] [CrossRef]
- Johnson, J.; Spakowicz, D.; Hong, B.; Petersen, L.; Demkowicz, P.; Chen, L.; Leopold, S.; Hanson, B.; Agresta, H.; Gerstein, M. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Handelsman, J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 2005, 71, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Mignard, S.; Flandrois, J.P. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J. Microbiol. Method. 2006, 67, 574–581. [Google Scholar] [CrossRef]
- Kutlu, M.; Cakmakci, R.; Hosseinpour, A.; Karagöz, H. The use of plant growth promoting rhizobacteria (PGPR)’s effect on essential oil rate, essential oil content, some morphological parameters and nutrient uptake of Turkish oregano. Appl. Ecol. Environ. Res. 2019, 17, 1641–1653. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Dönmez, M.F.; Ertürk, Y.; Erat, M.; Haznedar, A.; Sekban, R. Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant Soil 2010, 332, 299–318. [Google Scholar] [CrossRef]
- Miller, L.T. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol. 1982, 16, 584–586. [Google Scholar] [CrossRef]
- Dadaşoğlu, F.; Calmasur, O.; Karagoz, K.; Kotan, R. Insecticidal effect of some bacteria on cherry slugworm (Caliroa cerasi (Linnaeus, 1758) (Hymenoptera: Tenthredinidae). Fresenius Environ. Bull. 2014, 23, 2011–2015. [Google Scholar]
- Pitcher, D.; Saunders, N.; Owen, R. Rapid extraction of bacterial genomic DNA with Guanidium thiocyanate. Lett. Appl. Microbiol. 1989, 8, 151–156. [Google Scholar] [CrossRef]
- Ambardar, S.; Vakhlu, J. Plant growth promoting bacteria from Crocus Sativus rhizosphere. World J. Microbiol. Biotechnol. 2013, 29, 2271–2279. [Google Scholar] [CrossRef] [PubMed]
- Hardy, R.W.; Holsten, R.D.; Jackson, E.; Burns, R. The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiol. 1968, 43, 1185–1207. [Google Scholar] [CrossRef] [PubMed]
- Pikovskaya, R. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 1948, 17, 362–370. [Google Scholar]
- Çakmakçı, R. Screening of multi-trait rhizobacteria for improving the growth, enzyme activities, and nutrient uptake of tea (Camellia sinensis). Commun. Soil Sci. Plant Anal. 2016, 47, 1680–1690. [Google Scholar] [CrossRef]
- Dworkin, M.; Foster, J. Studies on Pseudomonas methanica (Söhngen) nov. comb. J. Bacteriol. 1956, 72, 646–659. [Google Scholar] [CrossRef]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant 2003, 118, 10–15. [Google Scholar] [CrossRef]
- Honma, M.; Shimomura, T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Chem. Biol. Technol. Agric. 1978, 42, 1825–1831. [Google Scholar]
- Çakmakçı, R.; Turan, M.; Kıtır, N.; Güneş, A.; Nikerel, E.; Özdemir, B.S.; Yıldırım, E.; Olgun, M.; Topçuoğlu, B.L.; Tüfenkçi, Ş. The role of soil beneficial bacteria in wheat production: A review. Wheat Improv. Manag. Util. 2017, 24, 115–149. [Google Scholar]
- Brookes, P.; Landman, A.; Pruden, G.; Jenkinson, D. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil. Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ceccanti, B.; Cervelli, S.; Matarese, E. Extraction of phosphatase, urease, proteases, organic carbon, and nitrogen from soil. Soil Sci. Soc. Am. J. 1980, 44, 1011–1016. [Google Scholar] [CrossRef]
- Thalmann, A. Zur Methodik der Bestimmung der DehydrogenaseaktivitAt im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch 1968, 21, 249–258. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008, 99, 8788–8795. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Texensis Publishing: Gruver, TX, USA, 2017. [Google Scholar]
- Aalipour, H.; Nikbakht, A.; Sabzalian, M.R. Essential oil composition and total phenolic content in Cupressus arizonica G. in response to microbial inoculation under water stress conditions. Sci. Rep. 2023, 13, 1209. [Google Scholar] [CrossRef]
- Djerrad, Z.; Terfi, S.; Brakchi, L. Variability in chemical composition and antimicrobial activity of Mentha pulegium L. essential oil, cultivated under different plant growth promoting rhizobacteria. Chem. Biodiver. 2023, 2023, e202300002. [Google Scholar] [CrossRef]
- Alraey, D.A.; Haroun, S.A.; Omar, M.N.; Abd-ElGawad, A.M.; El-Shobaky, A.M.; Mowafy, A.M. Fluctuation of essential oil constituents in Origanum syriacum subsp. sinaicum in response to plant growth promoting bacteria. J. Essent. Oil-Bear Plants 2019, 22, 1022–1033. [Google Scholar]
- Del Rosario Cappellari, L.; Santoro, M.V.; Schmidt, A.; Gershenzon, J.; Banchio, E. Induction of essential oil production in Mentha x Piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. Plant Physiol. Biochem. 2019, 141, 142–153. [Google Scholar] [CrossRef]
- Sammak, A.S.; Anvari, M.; Matinizadeh, M.; Mirza, M. The synergistic effect of Arbuscular mycorrhizal fungi and Pseudomonas fluorescens on growth and qualitative and quantitative yield of Thymus kotschyanus essential oil. J. Essent. Oil-Bear Plants 2020, 23, 532–547. [Google Scholar] [CrossRef]
- Riahi, L.; Cherif, H.; Miladi, S.; Neifar, M.; Bejaoui, B.; Chouchane, H.; Masmoudi, A.S.; Cherif, A. Use of plant growth promoting bacteria as an efficient biotechnological tool to enhance the biomass and secondary metabolites production of the industrial crop Pelargonium graveolens L’Hér. under semi-controlled conditions. Ind. Crops Prod. 2020, 154, 112721. [Google Scholar] [CrossRef]
- Kryzhko, A.V. Features of the Bacillus thuringiensis 888 strain’s influence on the content of essential oil, antioxidants and flavonoids in Origanum vulgare L. Izv. Vuzov-Prikl. Khim. 2021, 11, 430–440. [Google Scholar] [CrossRef]
- Eshaghi Gorgi, O.; Fallah, H.; Niknejad, Y.; Barari Tari, D. Effect of plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress. Biologia 2022, 77, 11–20. [Google Scholar] [CrossRef]
- Khalediyan, N.; Weisany, W.; Schenk, P.M. Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis. Ind. Crops Prod. 2021, 160, 113163. [Google Scholar] [CrossRef]
- Mendez-Mayboca, F.R.; Plascencia-Jatomea, M.; Del-Toro-Sanchez, C.L.; Wong-Corral, F.J.; Borboa-Flores, J.; Guerra, K.; Murillo-Amador, B.; Rueda-Puente, E.O. Plant growth promoting halobacteria associated to plant growth promoting halobacteria associated to Lippia palmeri (Verbenaceae) in the arid zone of northwestern Mexico. Acta Biol. Colomb. 2021, 26, 439–448. [Google Scholar]
- Elgaml, N.M.; Salama, A.B.; Shehata, H.S.; Abdelhamid, M.T. Effective microorganisms improve growth, nutrients uptake, normalized difference vegetation index, photosystem ii, and essential oil while reducing canopy temperature in water-stressed Salvia sclarea plants. Int. J. Agron. 2022, 2022, 1767347. [Google Scholar] [CrossRef]
- Hassani, F.; Abyavi, T.; Taheri Mirghaed, A.; Payghan, R.; Alishahi, M. Evaluation of antifungal and antibacterial activity of essential oils of Ziziphora clinopodioides, Thymus vulgaris and Salvia rosmarinus to some fungal and bacterial pathogens of aquatic animals. Exp. Anim. Biol. 2023, 11, 55–66. [Google Scholar]
- Hashemi, M.; Behboodian, B.; Karimi, E.; Oskoueian, E. Azotobacter chroococcum inoculation under low drought stress condition improves Trachyspermum ammi seeds’ essential oil bioactivity. Biochem. Syst. Ecol. 2022, 105, 104537. [Google Scholar] [CrossRef]
- Ekren, S.; Yerlikaya, O.; Tokul, H.E.; Akpınar, A.; Açu, M. Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. Afr. J. Microbiol. Res. 2013, 7, 383–388. [Google Scholar]
- Chamkhi, I.; Sbabou, L.; Aurag, J. Improved growth and quality of saffron (Crocus sativus L.) in the field conditions through inoculation with selected native plant growth-promoting rhizobacteria (PGPR). Ind. Crops Prod. 2023, 197, 116606. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Biosynthesis and accumulation of isoprenoid carotenoids and chlorophylls and emission of isoprene by leaf chloroplasts. Bull. Georgian. Natl. Acad. Sci. 2009, 3, 81–94. [Google Scholar]
- Dordas, C. Foliar application of calcium and magnesium improves growth, yield, and essential oil yield of oregano (Origanum vulgare ssp. hirtum). Ind. Crops Prod. 2009, 29, 599–608. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Shrivastava, S.; Varma, A. Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants; Springer International Publishing: Cham, Switzerland, 2015; Volume 42. [Google Scholar]
- Saharan, B.; Nehra, V. Plant growth promoting rhizobacteria: A critical review. Life Sci. Med. Res. 2011, 21, 30. [Google Scholar]
- Vafadar, F.; Amooaghaie, R.; Otroshy, M. Effects of plant-growth-promoting rhizobacteria and Arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J. Plant Interact. 2014, 9, 128–136. [Google Scholar] [CrossRef]
- Balota, E.L.; Kanashiro, M.; Colozzi Filho, A.; Andrade, D.S.; Dick, R.P. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agro-ecosystems. Braz. J. Microbiol. 2004, 35, 300–306. [Google Scholar] [CrossRef]
- Visser, S.; Parkinson, D. Soil biological criteria as indicators of soil quality: Soil microorganisms. Am. J. Agric. Econ. 1992, 7, 33–37. [Google Scholar] [CrossRef]
- Li, J.; Xie, T.; Zhu, H.; Zhou, J.; Li, C.; Xiong, W.; Xu, L.; Wu, Y.; He, Z.; Li, X. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma 2021, 404, 115376. [Google Scholar] [CrossRef]
- Bowles, T.M.; Acosta-Martínez, V.; Calderón, F.; Jackson, L.E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 2014, 68, 252–262. [Google Scholar] [CrossRef]
- Newman, M.M.; Hoilett, N.; Lorenz, N.; Dick, R.P.; Liles, M.R.; Ramsier, C.; Kloepper, J.W. Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci. Total Environ. 2016, 543, 155–160. [Google Scholar] [CrossRef]
- Balota, E.L.; Yada, I.F.; Amaral, H.; Nakatani, A.S.; Dick, R.P.; Coyne, M.S. Long-term land use influences soil microbial biomass P and S, phosphatase and arylsulfatase activities, and S mineralization in a Brazilian oxisol. Land Degrad. Dev. 2014, 25, 397–406. [Google Scholar] [CrossRef]
- Taktek, S.; Trépanier, M.; Servin, P.M.; St-Arnaud, M.; Piché, Y.; Fortin, J.A.; Antoun, H. Trapping of phosphate solubilizing bacteria on hyphae of the Arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198. Soil Biol. Bioch. 2015, 90, 1–9. [Google Scholar] [CrossRef]
Closest NCBI Match/Closest Type Strain | SIM Index | BSI | Nitrogenase Activity (nmol C2H4, 107 CFU h−1) | P-Solubilization (µg P mL−1d−1) | ACC-Deaminase Activity (nmol α-Ketobutyrate mg−1 Protein h−1) | IAA-Production (µg mL−1 OD600 unit−1) | Number of Carbon Sources Used |
---|---|---|---|---|---|---|---|
Bacillus amyloliquefaciens RC613 | 0.600 | 0.50 | 0.74 ± 0.17 | 34.6 ± 0.08 | 972.0 ± 28.3 | 41.4 ± 2.5 | 35 |
Bacillus licheniformis RC636 | 0.397 | 0.28 | 0.48 ± 0.12 | 39.3 ± 1.5 | 138.1 ± 6.5 | 29.7 ± 1.9 | 55 |
Bacillus megaterium RC213 | 0.797 | 0.44 | 0.65 ± 0.13 | 48.3 ± 1.7 | 688.3 ± 27.4 | 26.6 ± 2.5 | 65 |
Bacillus megaterium RC42 | 0.857 | 0.59 | 0.52 ± 0.15 | 24 ± 0.09 | 62.3 ± 9.4 | 26 ± 1.4 | 48 |
Bacillus pumilus RC125 | 0.726 | 0.47 | 0.58 ± 0.12 | 26.5 ± 1.6 | 32.5 ± 8.6 | 35.6 ± 6.1 | 42 |
Bacillus pumilus RC39 | 0.543 | 0.43 | 0.28 ± 0.5 | 14.3 ± 1.1 | 443.4 ± 22.7 | 6.3 ± 1.2 | 37 |
Bacillus simplex RC236 | 0.676 | 0.57 | 0.33 ± 0.12 | 15.6 ± 0.43 | ND | 41.3 ± 3.6 | 51 |
Bacillus simplex TE142 | 0.507 | 0.41 | 0.81 ± 0.21 | 37.8 ± 1.2 | 321.3 ± 18.5 | 63.8 ±1.1 | 57 |
Bacillus subtilis TE565 | 0.494 | 0.27 | 0.51 ± 0.11 | 42.2 ± 2.3 | 236.5 ± 14.4 | 21.6 ± 1.3 | 39 |
Bacillus subtilis TE28 | 0.608 | 0.44 | 0.24 ± 0.06 | 23.4 ± 0.07 | 94.8 ± 4.9 | 23.1 ± 0.7 | 33 |
Bacillus velezensis RC521 | 0.682 | 0.42 | 0.86 ± 0.14 | 124.7 ± 6.18 | 317.8 ± 13.6 | 71.6 ± 7.4 | 41 |
Paenibacillus barcinonensis RC43 | 0.426 | 0.23 | 0.61 ± 0.13 | 28.8 ± 1.2 | 132.1 ± 16.5 | ND | 45 |
Paenibacillus castaneae RC66 | 0.728 | 0.50 | 0.78 ± 0.17 | 25.8 ± 0.9 | 132.1 ± 16.5 | 36 ± 2.2 | 27 |
Arthrobacter ramosus RC32 | 0.595 | 0.42 | 0.24 ± 0.06 | 33.8 ± 1.1 | ND | ND | 63 |
Stenotrophomonas maltophilia RC96 | 0.808 | 0.58 | 0.39 ± 0.11 | 29.4 ± 1.6 | 77.8 ± 9.7 | 52.6 ± 0.9 | 36 |
Treat-ments a | Plant Height (cm) | Canopy Diameter (cm) | Chlorophyll Content (SPAD Unit) | Fresh Herbage Yield (g Plant−1) | Dry Herbage Yield (g Plant−1) | Dry Leaf Yield (g Plant−1) | Essential Oil Content (%) | Oil Yield (mL Dry Herb−1) |
---|---|---|---|---|---|---|---|---|
Control | 39.1 cd | 38.4 d | 39.9 de | 54.4 b–d | 14.9 de | 8.5 c | 2.02 d | 0.32 e |
RC613 | 44.7 a–c | 45.7 a | 45.6 a–c | 63.2 ab | 18.1 a–c | 11.3 ab | 2.83 a | 0.55 a |
RC636 | 43.5 a–d | 45.0 ab | 45.6 a–c | 62.6 ab | 17.9 a–c | 10.9 ab | 2.62 ab | 0.50 ab |
RC213 | 47.2 a | 44.5 a–c | 46.7 ab | 66.2 a | 18.8 ab | 10.9 ab | 2.39 bc | 0.48 ab |
RC42 | 42.7 a–d | 41.5 a–d | 45.6 a–c | 61.9 a–c | 17.4 a–c | 9.7 bc | 2.03 d | 0.37 c–e |
RC125 | 37.9 d | 38.4 d | 39.7 e | 48.1 d | 14.6 e | 8.1 c | 2.26 cd | 0.35 de |
RC39 | 40.6 b–d | 40.5 b–d | 42.7 b–e | 59.7 a–c | 17.1 b–d | 9.7 bc | 2.30 cd | 0.42 b–d |
RC236 | 38.0 d | 38.3 d | 42.2 b–e | 51.0 cd | 14.7 e | 8.3 c | 2.04 d | 0.34 e |
TE142 | 48.5 a | 44.8 ab | 47.4 a | 67.8 a | 19.7 a | 11.5 a | 2.36 bc | 0.50 ab |
TE565 | 45.0 ab | 43.9 a–c | 45.8 a–c | 65.2 ab | 17.9 a–c | 10.9 ab | 2.36 bc | 0.45 b–c |
TE28 | 42.9 a–d | 40.0 cd | 40.3 de | 54.5 b–d | 14.6 e | 8.1 c | 2.07 d | 0.34 e |
RC521 | 44.1 a–c | 45.9 a | 47.5 a | 66.2 a | 19.1 ab | 11.6 a | 2.72 a | 0.55 a |
RC43 | 44.1 a–c | 42.6 a–d | 43.2 a–e | 58.7 a–d | 16.3 c–e | 9.7 bc | 2.15 cd | 0.37 c–e |
RC66 | 46.4 ab | 44.1 a–c | 46.8 ab | 66.1 a | 19.1 ab | 11.4 a | 2.34 bc | 0.48 ab |
RC32 | 43.5 a–d | 43.5 a–c | 42.0 b–e | 58.9 a–d | 16.1 c–e | 9.1 c | 2.03 d | 0.35 de |
RC96 | 47.0 a | 38.8 d | 44.1 a–d | 62.9 ab | 16.4 c–e | 9.6 bc | 2.25 cd | 0.39 c–e |
Average | 43.5 | 42.2 | 44.1 | 60.5 | 17.0 | 10.0 | 2.29 | 0.42 |
Treatments | p-Cymene | γ-Terpinene | Linalool | Borneol | Terpinen-4-ol | Thymol | Carvacrol | β-Caryop-Hyllene | β-Bisabolene | Caryophyllene Oxide |
---|---|---|---|---|---|---|---|---|---|---|
Control | 3.91 a | 3.92 a | 3.67 a | 1.43 e | 0.73 d | 14.47 c | 66.13 e | 1.46 cd | 0.54 d | 0.20 cd |
RC613 | 2.19 cd | 0.69 de | 2.03 cd | 1.89 d | 0.83 b–d | 15.40 bc | 70.19 a–c | 1.51 b–d | 1.13 c | 0.36 ab |
RC636 | 2.42 b–d | 1.43 b | 1.38 d | 2.32 ab | 1.01 a–c | 14.58 c | 70.42 ab | 1.70 a | 1.37 ab | 0.35 ab |
RC213 | 1.92 d | 1.04 b–e | 2.25 cd | 2.34 ab | 1.04 ab | 15.75 ab | 68.60 b–d | 1.69 a | 1.42 a | 0.21 cd |
RC42 | 2.52 bc | 1.04 b–e | 2.89 a–c | 2.34 ab | 1.04 ab | 16.74 a | 67.33 de | 1.69 a | 1.42 a | 0.22 cd |
RC125 | 1.99 d | 1.03 b–e | 2.45 b–d | 2.30 ab | 1.09 a | 16.13 ab | 69.99 a–c | 1.39 d | 1.32 a–c | 0.39 a |
RC39 | 1.98 d | 0.63 e | 3.28 ab | 1.95 cd | 0.74 d | 15.98 ab | 68.64 b–d | 1.39 d | 1.15 c | 0.28 bc |
RC236 | 2.76 b | 0.96 c–e | 3.68 a | 2.25 a–c | 0.99 a–c | 16.79 a | 66.43 e | 1.57 a–c | 1.33 a–c | 0.19 d |
TE142 | 1.94 d | 1.36 bc | 2.05 cd | 2.14 a–d | 0.88 a–d | 15.87 ab | 68.77 b–d | 1.62 ab | 1.21 bc | 0.36 ab |
TE565 | 2.04 cd | 0.76 de | 2.02 cd | 2.31 ab | 0.85 b–d | 16.89 a | 68.05 c–e | 1.46 cd | 1.19 bc | 0.32 ab |
TE28 | 2.12 cd | 1.11 b–d | 2.18 cd | 2.20 a–c | 1.09 a | 15.80 ab | 69.49 bc | 1.40 d | 1.26 a–c | 0.36 ab |
RC521 | 2.12 cd | 0.73 de | 1.44 d | 1.94 cd | 0.84 b–d | 16.34 ab | 70.47 ab | 1.49 cd | 1.17 c | 0.35 ab |
RC43 | 2.12 cd | 0.74 de | 3.67 a | 1.95 cd | 0.73 d | 16.71 a | 66.30 e | 1.46 cd | 1.21 bc | 0.21 cd |
RC66 | 1.97 d | 0.75 de | 2.18 cd | 2.36 a | 0.91 a–d | 16.56 a | 70.16 a–c | 1.49 b–d | 1.14 c | 0.19 d |
RC32 | 2.39 b–d | 0.93 de | 2.04 cd | 2.04 b–d | 0.80 cd | 15.30 bc | 70.24 ab | 1.52 b–d | 1.18 c | 0.33 ab |
RC96 | 2.13 cd | 0.83 de | 1.86 cd | 2.03 b–d | 0.80 cd | 14.48 c | 72.19 a | 1.52 b–d | 1.16 c | 0.34 ab |
Treatments | (%) N | Macronutrient (g kg−1 DW) | Micronutrient (mg kg−1 DW) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | K | Ca | Mg | S | Al | Na | Fe | Cu | Mn | Zn | B | Mo | ||
Control | 1.93 d | 2.17 e | 31.1 e | 9.5 ef | 2.5 ef | 9.2 de | 0.47 ab | 1.08 d | 601 e | 16.5 ef | 41.8 f | 101 f | 58.3 e | 3.1 e |
RC613 | 3.49 ab | 2.94 a | 43.1 a | 12.3 a | 3.4 a | 22.4 ab | 0.50 ab | 1.72 a | 712 a–d | 19.3 a | 50.6 a | 138 b | 82.0 a | 6.8 a |
RC636 | 3.18 ab | 2.66 a–c | 38.1 a–d | 11.6 a–d | 3.1 a–c | 27.1 a | 0.56 a | 1.48 a–c | 786 a | 18.9 a–d | 47.8 a–e | 161 a | 72.2 a–d | 5.2 a–d |
RC213 | 3.33 ab | 2.91 a | 39.7 a–c | 10.3 b–f | 2.7 c–f | 11.3 c–e | 0.58 a | 1.27 b–d | 726 a–c | 17.3 a–f | 43.7 b–f | 126 b–d | 62.9 de | 5.0 a–e |
RC42 | 2.91 bc | 2.67 a–c | 35.7 b–e | 10.6 a–f | 2.8 b–f | 18.4 a–c | 0.52 ab | 1.32 b–d | 610 e | 18.2 a–f | 43.8 b–f | 110 ef | 66.3 b–e | 5.6 a–d |
RC125 | 2.12 d | 2.20 e | 31.9 de | 9.4 ef | 2.5 ef | 11.0 c–e | 0.49 ab | 1.23 cd | 654 c–e | 16.9 c–f | 42.8 c–f | 106 f | 63.8 de | 3.9 de |
RC39 | 2.06 d | 2.19 e | 30.9 e | 9.0 f | 2.4 f | 10.8 c–e | 0.46 ab | 1.24 cd | 608 e | 16.1 f | 40.1 f | 101 f | 65.6 c–e | 4.0 c–e |
RC236 | 1.96 d | 2.42 c–e | 31.4 de | 9.0 f | 2.4 f | 8.0 e | 0.46 ab | 1.27 b–d | 654 c–e | 16.1 f | 42.4 d–f | 101 f | 64.6 de | 4.2 c–e |
TE142 | 3.04 ab | 2.72 ab | 39.6 a–c | 9.7 d–f | 2.6 d–f | 8.1 e | 0.53 ab | 1.33 b–d | 784 a | 17.4 a–f | 48.4 a–c | 132 b–d | 66.7 b–e | 5.2 a–d |
TE565 | 3.10 ab | 2.66 a–c | 38.0 a–d | 11.5 a–d | 3.0 a–d | 17.6 b–d | 0.44 ab | 1.52 a–c | 770 ab | 17.1 b–f | 44.2 b–f | 124 cd | 77.6 a–c | 5.9 a–c |
TE28 | 2.24 cd | 2.42 c–e | 35.3 b–e | 10.0 c–f | 2.7 c–f | 9.4 de | 0.45 ab | 1.44 a–c | 601 e | 16.9 c–f | 43.4 b–f | 108 ef | 71.9 a–d | 5.0 a–e |
RC521 | 3.75 a | 2.94 a | 41.6 ab | 12.0 ab | 3.3 ab | 21.1 ab | 0.52 ab | 1.61 ab | 760 ab | 19.1 ab | 50.6 a | 129 b–d | 78.2 ab | 6.2 ab |
RC43 | 2.91 bc | 2.57 b–d | 38.1 a–d | 12.1 ab | 3.2 a–c | 26.3 ab | 0.52 ab | 1.53 a–c | 679 b–e | 19.0 a–c | 49.3 ab | 124 cd | 73.8 a–d | 5.4 a–d |
RC66 | 3.39 ab | 2.94 a | 39.3 a–c | 11.8 a–c | 3.1 a–c | 23.3 ab | 0.51 ab | 1.49 a–c | 768 ab | 19.3 a | 48.2 a–d | 120 de | 75.1 a–d | 5.8 a–d |
RC32 | 2.23 cd | 2.35 de | 34.0 c–e | 9.6 ef | 2.6 d–f | 21.5 ab | 0.42 b | 1.41 a–d | 619 de | 16.8 d–f | 42.2 ef | 131 b–d | 67.7 b–e | 4.7 b–e |
RC96 | 3.32 ab | 2.54 b–d | 35.9 b–e | 10.8 a–f | 2.9 a–e | 26.8 a | 0.56 ab | 1.35 b–d | 728 a–c | 18.5 a–e | 43.6 b–f | 136 bc | 67.9 b–e | 4.4 b–e |
Closest NCBI Match/Closest Type Strain | Max Score | Query Cover (%) | E-Value | Percent Identity (%) | Accession Lenght | Accession |
---|---|---|---|---|---|---|
Bacillus amyloliquefaciens RC613 | 878 | 97 | 0.0 | 98.60 | 4,034,955 | CP122460.1 |
Bacillus licheniformis RC636 | 902 | 98 | 0.0 | 99.40 | 1513 | KF242348.1 |
Bacillus megaterium RC213 | 857 | 96 | 0.0 | 97.98 | 1517 | KC443085.1 |
Bacillus megaterium RC42 | 887 | 95 | 0.0 | 99.39 | 1475 | FJ796434.2 |
Bacillus pumilus RC125 | 889 | 96 | 0.0 | 99.19 | 1505 | OQ473589.1 |
Bacillus pumilus RC39 | 876 | 96 | 0.0 | 99.18 | 1513 | EU855197.1 |
Bacillus simplex RC236 | 601 | 88 | 6 × 10−167 | 91.11 | 1485 | OL851775.1 |
Bacillus simplex TE142 | 835 | 93 | 0.0 | 98.13 | 870 | MK484264.1 |
Bacillus subtilis TE565 | 1871 | 98 | 0.0 | 99.51 | 1488 | KR061403.1 |
Bacillus subtilis TE28 | 881 | 46 | 0.0 | 100 | 1041 | LN885092.1 |
Bacillus velezensis RC521 | 896 | 96 | 0.0 | 99.59 | 3,929,662 | CP055160.1 |
Paenibacillus barcinonensis RC43 | 869 | 96 | 0.0 | 98.19 | 6,393,895 | CP054614.1 |
Paenibacillus castaneae RC66 | 758 | 97 | 0.0 | 94.37 | 1483 | KJ589459.1 |
Arthrobacter ramosus RC32 | 798 | 44 | 0.0 | 99.54 | 1663 | LN890160.1 |
Stenotrophomonas maltophilia RC96 | 782 | 95 | 0.0 | 96.24 | 1500 | EF690418.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çakmakçı, R.; Haliloglu, K.; Türkoğlu, A.; Özkan, G.; Kutlu, M.; Varmazyari, A.; Molnar, Z.; Jamshidi, B.; Pour-Aboughadareh, A.; Bocianowski, J. Effect of Different Plant Growth-Promoting Rhizobacteria on Biological Soil Properties, Growth, Yield and Quality of Oregano (Origanum onites L.). Agronomy 2023, 13, 2511. https://doi.org/10.3390/agronomy13102511
Çakmakçı R, Haliloglu K, Türkoğlu A, Özkan G, Kutlu M, Varmazyari A, Molnar Z, Jamshidi B, Pour-Aboughadareh A, Bocianowski J. Effect of Different Plant Growth-Promoting Rhizobacteria on Biological Soil Properties, Growth, Yield and Quality of Oregano (Origanum onites L.). Agronomy. 2023; 13(10):2511. https://doi.org/10.3390/agronomy13102511
Chicago/Turabian StyleÇakmakçı, Ramazan, Kamil Haliloglu, Aras Türkoğlu, Güller Özkan, Meral Kutlu, Atefeh Varmazyari, Zoltan Molnar, Bita Jamshidi, Alireza Pour-Aboughadareh, and Jan Bocianowski. 2023. "Effect of Different Plant Growth-Promoting Rhizobacteria on Biological Soil Properties, Growth, Yield and Quality of Oregano (Origanum onites L.)" Agronomy 13, no. 10: 2511. https://doi.org/10.3390/agronomy13102511
APA StyleÇakmakçı, R., Haliloglu, K., Türkoğlu, A., Özkan, G., Kutlu, M., Varmazyari, A., Molnar, Z., Jamshidi, B., Pour-Aboughadareh, A., & Bocianowski, J. (2023). Effect of Different Plant Growth-Promoting Rhizobacteria on Biological Soil Properties, Growth, Yield and Quality of Oregano (Origanum onites L.). Agronomy, 13(10), 2511. https://doi.org/10.3390/agronomy13102511