Quality Characteristics of White Leaf Tea of ‘Baiye 1’ (Camellia sinensis) in Different Producing Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
Reagents
2.2. Sample Analysis
2.2.1. Soil Physicochemical Properties
2.2.2. Tea Biochemical Components
2.2.3. Tea Mineral Elements
2.2.4. Tea Stable Isotope Ratios
2.3. Statistic Analysis
3. Results and Discussion
3.1. Difference in the Contents of Biochemical Components in WLT from Different Planting Regions
3.2. Difference in the Contents of Mineral Elements among WLT from Different Production Regions
3.3. Comparative Analysis of Stable Isotope Features in WLT from Different Regions
3.4. Correlation Analysis with Geographical Environment
3.4.1. Analysis of the Correlation of Soil Factors with Biochemical Composition and Mineral Elements of Tea Leaves
3.4.2. Correlation Analysis of Meteorological Variables with the Stable Isotope Ratio of Tea Leaves
3.5. Chemometric Analysis to Distinguish the WLT Samples of Different Origins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dufresne, C.J.; Farnworth, E.R. A Review of Latest Research Findings on the Health Promotion Properties of Tea. J. Nutr. Biochem. 2001, 12, 404–421. [Google Scholar] [CrossRef]
- Song, M.; Li, Q.; Guan, X.; Wang, T.; Bi, K. Novel HPLC Method to Evaluate the Quality and Identify the Origins of Longjing Green Tea. Anal. Lett. 2013, 46, 60–73. [Google Scholar] [CrossRef]
- Zhao, H.; Yu, C.; Li, M. Effects of Geographical Origin, Variety, Season and Their Interactions on Minerals in Tea for Traceability. J. Food Compos. Anal. 2017, 63, 15–20. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, L.; Ren, T.; Zhang, L.; Gu, J. Geochemical Characteristics Affecting the Cultivation and Quality of Longjing Tea. J. Geochem. Explor. 1995, 55, 183–191. [Google Scholar] [CrossRef]
- Mao, Q.; Lu, X.; Zhou, K.; Chen, H.; Zhu, X.; Mori, T.; Mo, J. Effects of Long-Term Nitrogen and Phosphorus Additions on Soil Acidification in an N-Rich Tropical Forest. Geoderma 2017, 285, 57–63. [Google Scholar] [CrossRef]
- Ye, J.H.; Chen, X.T.; Liu, G.Y.; Jia, X.L.; Zhang, Q.; Zhu, C.L.; Wang, Y.H.; Jia, M.; Wang, H.B. Effect of Tea Soil Acidification on the Diversity and Function of Fungi Community. J. Appl. Bot. Food Qual. 2021, 94, 199–205. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Qi, Y.-P.; Chen, R.-B.; Zhang, F.-Z.; Chen, L.-S. Effects of Phosphorus Supply on the Quality of Green Tea. Food Chem. 2012, 130, 908–914. [Google Scholar] [CrossRef]
- Wang, Z.; Geng, Y.; Liang, T. Optimization of Reduced Chemical Fertilizer Use in Tea Gardens Based on the Assessment of Related Environmental and Economic Benefits. Sci. Total Environ. 2020, 713, 136439. [Google Scholar] [CrossRef]
- Huang, W.; Lin, M.; Liao, J.; Li, A.; Tsewang, W.; Chen, X.; Sun, B.; Liu, S.; Zheng, P. Effects of Potassium Deficiency on the Growth of Tea (Camelia Sinensis) and Strategies for Optimizing Potassium Levels in Soil: A Critical Review. Horticulturae 2022, 8, 660. [Google Scholar] [CrossRef]
- He, D.; Chen, X.; Zhang, Y.; Huang, Z.; Yin, J.; Weng, X.; Yang, W.; Wu, H.; Zhang, F.; Wu, L. Magnesium Is a Nutritional Tool for the Yield and Quality of Oolong Tea (Camellia sinensis L.) and Reduces Reactive Nitrogen Loss. Sci. Hortic. 2023, 308, 111590. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, M.; Liu, X.; Mao, Q.; Shi, C.; Kochian, L.V.; Liao, H. Aluminium Is Essential for Root Growth and Development of Tea Plants (Camellia sinensis). J. Integr. Plant Biol. 2020, 62, 984–997. [Google Scholar] [CrossRef]
- Zaman, F.; Zhang, E.; Ihtisham, M.; Ilyas, M.; Khattak, W.A.; Guo, F.; Wang, P.; Wang, M.; Wang, Y.; Ni, D.; et al. Metabolic Profiling, Pigment Component Responses to Foliar Application of Fe, Zn, Cu, and Mn for Tea Plants (Camellia sinensis). Sci. Hortic. 2023, 319, 112149. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, Z.; Wang, H.; Song, L.; Jia, S.; Ma, D. Zinc Stress Affects Ionome and Metabolome in Tea Plants. Plant Physiol. Biochem. 2017, 111, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Brand, W.A. Stable Isotope Ratio Mass Spectrometry in Global Climate Change Research. Int. J. Mass Spectrom. 2003, 228, 1–33. [Google Scholar] [CrossRef]
- Xia, W.; Li, C.; Nie, J.; Shao, S.; Rogers, K.M.; Zhang, Y.; Li, Z.; Yuan, Y. Stable Isotope and Photosynthetic Response of Tea Grown under Different Temperature and Light Conditions. Food Chem. 2022, 368, 130771. [Google Scholar] [CrossRef]
- Long, W.; Bai, X.; Wang, S.; Chen, H.; Yin, X.-L.; Gu, H.-W.; Yang, J.; Fu, H. UHPLC-QTOF-MS-Based Untargeted Metabolomics and Mineral Element Analysis Insight into the Geographical Differences of Chrysanthemum Morifolium Ramat Cv. “Hangbaiju” from Different Origins. Food Res. Int. 2022, 163, 112186. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Cao, Q.; Su, H.; Zhu, X.; Wang, K.; Wan, X.; Zhang, Z. Discrimination of Six Tea Categories Coming from Different Origins Depending on Polyphenols, Caffeine, and Theanine Combined with Different Discriminant Analysis. Int. J. Food Prop. 2017, 20, 1838–1847. [Google Scholar] [CrossRef]
- Kanrar, B.; Kundu, S.; Khan, P.; Jain, V. Elemental Profiling for Discrimination of Geographical Origin of Tea (Camellia sinensis) in North-East Region of India by ICP-MS Coupled with Chemometric Techniques. Food Chem. Adv. 2022, 1, 100073. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, Y.; Zhang, Y.; Shi, Y.; Hu, G.; Zhu, J.; Rogers, K.M. Geographical Traceability of Chinese Green Tea Using Stable Isotope and Multi-Element Chemometrics. Rapid Commun. Mass Spectrom. 2019, 33, 778–788. [Google Scholar] [CrossRef]
- Xiong, F.; Yuan, Y.; Li, C.; Lyu, C.; Wan, X.; Nie, J.; Li, H.; Yang, J.; Guo, L. Stable Isotopic and Elemental Characteristics with Chemometrics for the Geographical Origin Authentication of Dendrobium Officinale at Two Spatial Scales. LWT 2022, 167, 113871. [Google Scholar] [CrossRef]
- Wang, Z.; Gan, S.; Sun, W.; Chen, Z. Quality Characteristics of Oolong Tea Products in Different Regions and the Contribution of Thirteen Phytochemical Components to Its Taste. Horticulturae 2022, 8, 278. [Google Scholar] [CrossRef]
- Fang, S.; Huang, W.-J.; Wei, Y.; Tao, M.; Hu, X.; Li, T.; Kalkhajeh, Y.K.; Deng, W.-W.; Ning, J. Geographical Origin Traceability of Keemun Black Tea Based on Its Non-Volatile Composition Combined with Chemometrics. J. Sci. Food Agric. 2019, 99, 6937–6943. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Xu, M.; Liao, X.; Luo, Q.; Lin, Y.; Wang, P.; Fang, D.; Huang, Y.; Jin, S.; Ye, N. Production Regions Discrimination of Huangguanyin Oolong Tea by Using the Content of Chemical Components and Rare Earth Elements. Food Res. Int. 2023, 165, 112522. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Fu, X.; Yu, X.; Ye, Z.; Cui, H.; Zhang, Y. Stable Isotope Ratio and Elemental Profile Combined with Support Vector Machine for Provenance Discrimination of Oolong Tea (Wuyi-Rock Tea). J. Anal. Methods Chem. 2017, 2017, e5454231. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kang, L.; Zhao, Y.; Xiong, F.; Yuan, Y.; Nie, J.; Huang, L.; Yang, J. Stable Isotope and Multi-Element Profiling of Cassiae Semen Tea Combined with Chemometrics for Geographical Discrimination. J. Food Compos. Anal. 2022, 107, 104359. [Google Scholar] [CrossRef]
- Sikora, F.J.; Howe, P.S.; Hill, L.E.; Reid, D.C.; Harover, D.E. Comparison of Colorimetric and ICP Determination of Phosphorus in Mehlich3 Soil Extracts. Commun. Soil Sci. Plant Anal. 2005, 36, 875–887. [Google Scholar] [CrossRef]
- Cao, Q.-Q.; Fu, Y.-Q.; Liu, Y.-Y.; Qin, Y.; Chen, J.-X.; Yin, J.-F.; Xu, Y.-Q. A Targeted and Nontargeted Metabolomics Study on the Oral Processing of Epicatechins from Green Tea. Food Chem. 2022, 378, 132129. [Google Scholar] [CrossRef]
- Pons, J.; Bedmar, À.; Núñez, N.; Saurina, J.; Núñez, O. Tea and Chicory Extract Characterization, Classification and Authentication by Non-Targeted HPLC-UV-FLD Fingerprinting and Chemometrics. Foods 2021, 10, 2935. [Google Scholar] [CrossRef]
- Shuai, M.; Peng, C.; Niu, H.; Shao, D.; Hou, R.; Cai, H. Recent Techniques for the Authentication of the Geographical Origin of Tea Leaves from Camellia sinensis: A Review. Food Chem. 2022, 374, 131713. [Google Scholar] [CrossRef]
- Vogel, J.C. Fractionation of the Carbon Isotopes During Photosynthesis. In Proceedings of the Fractionation of the Carbon Isotopes during Photosynthesis; Vogel, J.C., Ed.; Springer: Berlin/Heidelberg, Germany, 1980; pp. 5–29. [Google Scholar]
- Bateman, A.S.; Kelly, S.D.; Jickells, T.D. Nitrogen Isotope Relationships between Crops and Fertilizer: Implications for Using Nitrogen Isotope Analysis as an Indicator of Agricultural Regime. J. Agric. Food Chem. 2005, 53, 5760–5765. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Q.; Liu, G.; Lin, L.; Wang, H.; Lin, S.; Wang, Y.; Wang, Y.; Zhang, Q.; Jia, X.; et al. Relationship of Soil PH Value and Soil Pb Bio-Availability and Pb Enrichment in Tea Leaves. J. Sci. Food Agric. 2022, 102, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, Y.; Zhang, L.; Xu, R.; Liao, H. Soil nutrient status in Wuyi tea region and its effects on tea quality-related constituents. Sci. Agric. Sinca 2019, 52, 1425–1434. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, D.; Zhang, G.; Zheng, L.; Chen, C.; Sun, X.; Yu, F. Effects of Soil Physical and Chemical Properties on the Quality of Nanjing “Yuhua” Tea, a Type of Famous Green Tea. Horticulturae 2023, 9, 189. [Google Scholar] [CrossRef]
- He, Y.; Sun, Q.; Zhang, X.; Bao, X.; Wang, Y.; Rasheed, M.; Guo, B. Authentication of the Geographical Origin of Maca (Lepidium Meyenii Walp.) at Different Regional Scales Using the Stable Isotope Ratio and Mineral Elemental Fingerprints. Food Chem. 2020, 311, 126058. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yang, Q. Study on Influence Factors and Sources of Mineral Elements in Peanut Kernels for Authenticity. Food Chem. 2022, 382, 132385. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, Y.; Liao, R.; Zhao, J.; Yang, H.; Wang, F. Authentication of the Geographical Origin of Guizhou Green Tea Using Stable Isotope and Mineral Element Signatures Combined with Chemometric Analysis. Food Control 2021, 125, 107954. [Google Scholar] [CrossRef]
- Xin-Li, C.; Mian-Jia, H.; Xing-Yu, J.; Xin-Guo, L.I.; Kai-Bing, Z.; Man-Xi, Z. Effects of Boron Deficiency on the Uptake of Mineral Elements and pH Value of Leaves in Cherry Radish. Acta Hortic. Sin. 2015, 42, 785–790. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, M.; Bao, W.Z.; Huang, B.S.; Liu, D.H. Content characteristics of mineral elements and its correlation with soil nutrients and effective components in Chrysanthemum morifolium from different producing areas in Macheng. China J. Chin. Mater. Medica 2021, 46, 281–289. [Google Scholar] [CrossRef]
- Kahmen, A.; Sachse, D.; Arndt, S.K.; Tu, K.P.; Farrington, H.; Vitousek, P.M.; Dawson, T.E. Cellulose Δ18O Is an Index of Leaf-to-Air Vapor Pressure Difference (VPD) in Tropical Plants. Proc. Natl. Acad. Sci. USA 2011, 108, 1981–1986. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Rehman, F.; Li, Z.; Liu, J.; Yang, T.; Liu, J.; Li, H.; Hu, Z.; Ma, Q.; Wu, Z.; et al. Discrimination of Geographical Origins of Wolfberry (Lycium Barbarum L.) Fruits Using Stable Isotopes, Earth Elements, Free Amino Acids, and Saccharides. J. Agric. Food Chem. 2022, 70, 2984–2997. [Google Scholar] [CrossRef]
- Park, J.H.; Choi, S.-H.; Bong, Y.-S. Geographical Origin Authentication of Onions Using Stable Isotope Ratio and Compositions of C, H, O, N, and S. Food Control 2019, 101, 121–125. [Google Scholar] [CrossRef]
Variables | Different Counties in Zhejiang Province | Different Province | |||
---|---|---|---|---|---|
ZJAJ | ZJSY | ZJ | GZ | HB | |
GA (mg/g) | 0.52 ± 0.13 A | 0.46 ± 0.20 A | 0.49 ± 0.16 b | 0.69 ± 0.55 a | 0.48 ± 0.21 b |
5-GA (mg/g) | 9.36 ± 1.94 A | 6.05 ± 1.63 B | 7.98 ± 2.44 a | 4.96 ± 1.69 c | 6.67 ± 1.35 b |
GC (mg/g) | 2.69 ± 0.50 B | 4.28 ± 1.01 A | 3.35 ± 1.09 a | 2.70 ± 0.77 b | 2.65 ± 0.55 b |
C (mg/g) | 16.67 ± 13.25 A | 28.04 ± 26.10 A | 21.40 ± 20.21 a | 8.69 ± 8.06 b | 10.94 ± 13.44 b |
EC (mg/g) | 7.87 ± 2.05 A | 8.49 ± 3.36 A | 8.13 ± 2.66 a | 5.18 ± 3.56 b | 8.00 ± 1.69 a |
ECG (mg/g) | 4.62 ± 2.00 A | 5.71 ± 1.45 A | 5.07 ± 1.86 a | 3.71 ± 2.67 b | 5.32 ± 1.97 a |
EGCG (mg/g) | 77.20 ± 32.24 A | 76.33 ± 38.73 A | 76.84 ± 34.70 a | 48.35 ± 18.70 b | 50.75 ± 15.62 b |
GCG (mg/g) | 1.00 ± 0.28 B | 1.86 ± 1.19 A | 1.35 ± 0.90 a | 1.14 ± 0.29 a | 1.26 ± 0.40 a |
CAF (mg/g) | 45.32 ± 12.56 A | 44.59 ± 14.36 A | 45.01 ± 13.20 a | 38.08 ± 8.82 b | 35.48 ± 6.42 b |
EGC (mg/g) | 11.41 ± 7.82 A | 16.17 ± 9.22 A | 13.39 ± 8.66 a | 14.65 ± 12.16 a | 14.39 ± 7.56 a |
CQI | 1284.77 ± 975.42 A | 1073.04 ± 1663.30 A | 1196.55 ± 1294.64 a | 1508.58 ± 2077.38 a | 726.66 ± 760.22 a |
CAI | 5.03 ± 2.12 A | 4.29 ± 2.21 A | 4.72 ± 2.16 a | 5.57 ± 1.98 a | 5.33 ± 2.19 a |
ester catechins (mg/g) | 81.82 ± 30.62 A | 82.05 ± 38.30 A | 81.91 ± 33.64 a | 52.06 ± 18.06 b | 56.07 ± 15.27 b |
non-galloylated catechins (mg/g) | 38.63 ± 10.16 B | 56.98 ± 22.77 A | 46.28 ± 18.77 a | 31.23 ± 13.22 b | 35.98 ± 10.87 b |
His (mg/g) | 0.11 ± 0.05 A | 0.06 ± 0.05 B | 0.09 ± 0.06 b | 0.16 ± 0.11 a | 0.19 ± 0.11 a |
Ser (mg/g) | 0.76 ± 0.27 A | 0.43 ± 0.23 B | 0.62 ± 0.30 b | 0.86 ± 0.53 a | 0.86 ± 0.27 a |
Gln (mg/g) | 2.19 ± 1.29 A | 1.41 ± 0.90 B | 1.87 ± 1.20 a | 1.82 ± 1.26 a | 2.37 ± 1.44 a |
Arg (mg/g) | 0.51 ± 0.57 A | 0.57 ± 1.02 A | 0.53 ± 0.78 b | 0.62 ± 0.73 b | 2.42 ± 2.11 a |
Gly (mg/g) | 0.08 ± 0.02 A | 0.06 ± 0.02 B | 0.07 ± 0.02 b | 0.09 ± 0.04 b | 0.11 ± 0.03 a |
Asp (mg/g) | 1.34 ± 0.59 A | 1.13 ± 0.56 A | 1.25 ± 0.58 b | 1.55 ± 0.67 ab | 1.81 ± 0.73 a |
Glu (mg/g) | 2.23 ± 1.03 A | 1.18 ± 0.54 B | 1.79 ± 1.00 b | 1.72 ± 0.77 b | 2.49 ± 1.07 a |
Thr (mg/g) | 0.31 ± 0.09 A | 0.20 ± 0.11 B | 0.26 ± 0.11 b | 0.31 ± 0.16 ab | 0.37 ± 0.09 a |
Ala (mg/g) | 0.43 ± 0.18 A | 0.23 ± 0.12 B | 0.34 ± 0.19 b | 0.40 ± 0.18 ab | 0.44 ± 0.13 a |
GABA (mg/g) | 0.79 ± 0.55 A | 0.51 ± 0.50 A | 0.67 ± 0.54 b | 0.92 ± 0.68 b | 1.24 ± 0.64 a |
Eth (mg/g) | 0.28 ± 0.11 A | 0.18 ± 0.08 B | 0.24 ± 0.11 b | 0.20 ± 0.09 b | 0.32 ± 0.15 a |
Thea (mg/g) | 14.68 ± 4.84 A | 9.43 ± 4.70 B | 12.49 ± 5.41 b | 12.83 ± 5.29 b | 17.70 ± 5.72 a |
Pro (mg/g) | 0.14 ± 0.06 A | 0.11 ± 0.08 A | 0.13 ± 0.07 b | 0.22 ± 0.19 a | 0.18 ± 0.10 ab |
Cys (mg/g) | 0.05 ± 0.03 A | 0.06 ± 0.02 A | 0.06 ± 0.02 b | 0.08 ± 0.04 a | 0.08 ± 0.04 a |
Lys (mg/g) | 0.32 ± 0.11 A | 0.33 ± 0.19 A | 0.33 ± 0.15 b | 0.52 ± 0.39 a | 0.58 ± 0.26 a |
Tyr (mg/g) | 0.34 ± 0.16 A | 0.32 ± 0.16 A | 0.33 ± 0.16 b | 0.45 ± 0.26 a | 0.40 ± 0.16 ab |
Met (mg/g) | 0.16 ± 0.09 A | 0.11 ± 0.08 A | 0.14 ± 0.09 b | 0.06 ± 0.07 c | 0.18 ± 0.09 a |
Val (mg/g) | 0.67 ± 0.22 A | 0.47 ± 0.29 B | 0.59 ± 0.26 b | 0.82 ± 0.33 a | 0.80 ± 0.31 a |
Ile (mg/g) | 0.17 ± 0.04 A | 0.16 ± 0.08 A | 0.17 ± 0.06 b | 0.25 ± 0.15 a | 0.24 ± 0.09 a |
Leu (mg/g) | 0.19 ± 0.06 A | 0.17 ± 0.11 A | 0.18 ± 0.09 b | 0.28 ± 0.20 a | 0.31 ± 0.14 a |
Phe (mg/g) | 0.40 ± 0.23 A | 0.49 ± 0.31 A | 0.44 ± 0.27 b | 0.76 ± 0.71 a | 0.66 ± 0.38 ab |
Umami amino acids (mg/g) | 3.57 ± 1.59 A | 2.31 ± 0.98 B | 3.04 ± 1.49 b | 3.27 ± 1.37 b | 4.31 ± 1.69 a |
sweet amino acids (mg/g) | 1.93 ± 0.53 A | 1.21 ± 0.57 B | 1.63 ± 0.65 b | 2.01 ± 0.98 a | 2.23 ± 0.56 a |
bitter amino acids (mg/g) | 2.71 ± 1.08 A | 2.57 ± 1.89 A | 2.65 ± 1.46 c | 3.85 ± 2.29 b | 5.62 ± 3.03 a |
AA (%) | 4.99 ± 0.87 A | 4.86 ± 2.43 A | 4.94 ± 1.68 a | 5.20 ± 1.85 a | 5.60 ± 1.55 a |
Variables | Different Counties in Zhejiang Province | Different Province | |||
---|---|---|---|---|---|
ZJAJ | ZJSY | ZJ | GZ | HB | |
Al (10 mg/kg) | 25.27 ± 5.53 B | 30.03 ± 8.06 A | 27.25 ± 7.03 b | 34.53 ± 12.65 a | 32.86 ± 7.33 a |
B (mg/kg) | 12.84 ± 5.40 A | 11.15 ± 3.03 A | 12.14 ± 4.60 a | 11.73 ± 6.00 ab | 9.19 ± 4.36 b |
Ba (mg/kg) | 8.56 ± 2.28 A | 10.44 ± 4.57 A | 9.34 ± 3.51 c | 12.96 ± 6.62 b | 18.75 ± 6.94 a |
Ca (102 mg/kg) | 22.31 ± 3.78 A | 22.04 ± 4.47 A | 22.20 ± 4.04 a | 24.23 ± 5.01 a | 22.26 ± 5.54 a |
Cd (mg/kg) | 0.13 ± 0.03 A | 0.12 ± 0.04 A | 0.13 ± 0.03 b | 0.16 ± 0.04 a | 0.15 ± 0.03 a |
Co (mg/kg) | 0.46 ± 0.28 A | 0.16 ± 0.16 B | 0.33 ± 0.28 b | 0.52 ± 0.53 a | 0.34 ± 0.18 b |
Cr (mg/kg) | 1.52 ± 0.29 B | 2.13 ± 0.60 A | 1.78 ± 0.54 a | 1.65 ± 0.63 a | 1.80 ± 1.06 a |
Cu (mg/kg) | 11.23 ± 2.24 A | 10.61 ± 2.74 A | 10.97 ± 2.45 c | 13.92 ± 2.89 b | 17.10 ± 2.22 a |
Fe (10 mg/kg) | 6.37 ± 4.97 A | 5.62 ± 4.71 A | 6.05 ± 4.83 a | 7.81 ± 6.75 a | 5.84 ± 8.11 a |
K (103 mg/kg) | 18.50 ± 1.03 B | 19.75 ± 1.10 A | 19.02 ± 1.21 a | 18.78 ± 2.63 a | 18.53 ± 1.02 a |
Mg (102 mg/kg) | 15.88 ± 1.76 A | 16.54 ± 1.55 A | 16.15 ± 1.69 a | 15.88 ± 2.82 a | 16.25 ± 1.82 a |
Mn (10 mg/kg) | 79.40 ± 32.01 A | 52.39 ± 29.85 A | 68.15 ± 33.61 b | 138.34 ± 56.57 a | 63.42 ± 34.41 b |
Na (mg/kg) | 23.71 ± 11.88 A | 16.10 ± 6.54 B | 20.54 ± 10.61 a | 18.86 ± 5.37 a | 19.88 ± 8.29 a |
Ni (mg/kg) | 8.95 ± 1.99 A | 6.34 ± 1.98 B | 7.86 ± 2.36 c | 9.89 ± 3.17 b | 14.74 ± 4.17 a |
P (102 mg/kg) | 54.23 ± 4.64 A | 49.00 ± 7.24 B | 52.05 ± 6.35 a | 45.40 ± 8.64 b | 53.07 ± 3.94 a |
S (10 mg/kg) | 53.24 ± 2.09 A | 52.70 ± 3.56 A | 53.02 ± 2.78 b | 54.57 ± 7.98 b | 57.76 ± 4.50 a |
Ti (mg/kg) | 2.71 ± 0.53 A | 2.47 ± 0.58 A | 2.61 ± 0.56 b | 3.69 ± 1.16 a | 3.70 ± 1.52 a |
V (mg/kg) | 2.36 ± 2.29 A | 2.22 ± 1.89 A | 2.30 ± 2.11 b | 2.98 ± 2.24 ab | 4.04 ± 2.19 a |
Zn (mg/kg) | 45.05 ± 5.25 A | 41.09 ± 7.10 B | 43.40 ± 6.33 b | 41.50 ± 7.43 b | 48.67 ± 4.63 a |
Sn (10−1 mg/kg) | 0.41 ± 0.18 A | 0.48 ± 0.19 A | 0.44 ± 0.18 a | 0.23 ± 0.11 b | 0.22 ± 0.12 b |
Sb (10−2 mg/kg) | 1.36 ± 1.55 A | 0.95 ± 0.59 A | 1.19 ± 1.25 a | 1.11 ± 0.59 a | 1.10 ± 0.49 a |
Bi (10−1 mg/kg) | 1.18 ± 0.59 A | 0.67 ± 0.74 B | 0.97 ± 0.70 a | 0.92 ± 0.68 a | 0.75 ± 0.47 a |
TN (%) | 5.65 ± 0.28 A | 5.08 ± 0.42 B | 5.41 ± 0.45 a | 5.09 ± 0.52 b | 5.55 ± 0.43 a |
TC (%) | 46.09 ± 1.01 A | 45.13 ± 1.32 B | 45.69 ± 1.23 a | 45.25 ± 0.77 ab | 44.64 ± 1.59 b |
15N (‰) | 1.87 ± 1.08 A | 2.08 ± 1.23 A | 1.96 ± 1.14 b | 1.92 ± 1.75 b | 3.45 ± 1.91 a |
13C (‰) | −29.81 ± 3.57 A | -30.14 ± 3.64 A | −29.95 ± 3.56 a | −29.07 ± 3.21 a | -28.66 ± 2.87 a |
18O (‰) | 22.12 ± 3.73 A | 22.62 ± 3.42 A | 22.33 ± 3.58 a | 19.83 ± 5.13 b | 21.72 ± 2.53 ab |
ZJ | GZ | HB | Accuracy | |||
---|---|---|---|---|---|---|
PLS-DA | Training set | ZJ | 38 | 0 | 0 | 100% |
GZ | 1 | 15 | 0 | 93.75% | ||
HB | 0 | 0 | 20 | 100% | ||
Total accuracy | 93.33% | |||||
Testing set | ZJ | 10 | 0 | 0 | 100% | |
GZ | 4 | 0 | 100% | |||
HB | 0 | 0 | 5 | 100% | ||
Total accuracy | 100% | |||||
OPLS-DA | Training set | ZJ | 38 | 0 | 0 | 100% |
GZ | 0 | 15 | 1 | 93.75% | ||
HB | 0 | 0 | 20 | 100% | ||
Total accuracy | 98.65% | |||||
Testing set | ZJ | 10 | 0 | 0 | 100% | |
GZ | 0 | 4 | 0 | 100% | ||
HB | 0 | 0 | 5 | 100% | ||
Total accuracy | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, M.; Chen, X.; Bai, Y.; Zhou, P.; Feng, Z.; Lai, J.; Ni, K.; Shi, Y. Quality Characteristics of White Leaf Tea of ‘Baiye 1’ (Camellia sinensis) in Different Producing Areas. Agronomy 2023, 13, 2526. https://doi.org/10.3390/agronomy13102526
Tong M, Chen X, Bai Y, Zhou P, Feng Z, Lai J, Ni K, Shi Y. Quality Characteristics of White Leaf Tea of ‘Baiye 1’ (Camellia sinensis) in Different Producing Areas. Agronomy. 2023; 13(10):2526. https://doi.org/10.3390/agronomy13102526
Chicago/Turabian StyleTong, Manni, Xun Chen, Yan Bai, Peng Zhou, Zesheng Feng, Jianhong Lai, Kang Ni, and Yuanzhi Shi. 2023. "Quality Characteristics of White Leaf Tea of ‘Baiye 1’ (Camellia sinensis) in Different Producing Areas" Agronomy 13, no. 10: 2526. https://doi.org/10.3390/agronomy13102526
APA StyleTong, M., Chen, X., Bai, Y., Zhou, P., Feng, Z., Lai, J., Ni, K., & Shi, Y. (2023). Quality Characteristics of White Leaf Tea of ‘Baiye 1’ (Camellia sinensis) in Different Producing Areas. Agronomy, 13(10), 2526. https://doi.org/10.3390/agronomy13102526