Flower Visitors, Levels of Cross-Fertilisation, and Pollen-Parent Effects on Fruit Quality in Mango Orchards
Abstract
:1. Introduction
2. Results
2.1. Mango Flower Visitors
2.2. Effect of Distance from a Cross-Pollen Source on Paternity
2.3. Effect of Paternity on Fruit Size and Quality
3. Discussion
4. Materials and Methods
4.1. Study Sites and Design
4.2. Mineral Nutrients
4.3. TSS and Acidity
4.4. Total Polyphenol Concentration
4.5. Paternity
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Ricketts, T.H.; Regetz, J.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Bogdanski, A.; Gemmill-Herren, B.; Greenleaf, S.S.; Klein, A.M.; Mayfield, M.M. Landscape effects on crop pollination services: Are there general patterns? Ecol. Lett. 2008, 11, 499–515. [Google Scholar] [CrossRef]
- Aizen, M.A.; Harder, L.D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 2009, 19, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Klein, A.M.; Boreux, V.; Fornoff, F.; Mupepele, A.C.; Pufal, G. Relevance of wild and managed bees for human well-being. Curr. Opin. Insect Sci. 2018, 26, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Pauli, N.; Biggs, E.; Barbour, L.; Boruff, B.J. Why bees are critical for achieving sustainable development. Ambio 2020, 50, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Mashilingi, S.K.; Zhang, H.; Garibaldi, L.A.; An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agric. Ecosyst. Environ. 2022, 335, 108003. [Google Scholar] [CrossRef]
- Bennett, J.M.; Steets, J.A.; Burns, J.H.; Burkle, L.A.; Vamosi, J.C.; Wolowski, M.; Arceo-Gómez, G.; Burd, M.; Durka, W.; Ellis, A.G.; et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 2020, 11, 3999. [Google Scholar] [CrossRef]
- Aizen, M.A.; Harder, L.D. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 2007, 88, 271–281. [Google Scholar] [CrossRef]
- Garratt, M.P.D.; de Groot, G.A.; Albrecht, M.; Bosch, J.; Breeze, T.D.; Fountain, M.T.; Klein, A.M.; McKerchar, M.; Park, M.; Paxton, R.J.; et al. Opportunities to reduce pollination deficits and address production shortfalls in an important insect-pollinated crop. Ecol. Appl. 2021, 31, e02445. [Google Scholar] [CrossRef] [PubMed]
- Trueman, S.J.; Kämper, W.; Nichols, J.; Ogbourne, S.M.; Hawkes, D.; Peters, T.; Hosseini Bai, S.; Wallace, H.M. Pollen limitation and xenia effects in a cultivated mass-flowering tree, Macadamia integrifolia (Proteaceae). Ann. Bot. 2022, 129, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Racskó, J.; Leite, G.B.; Petri, J.L.; Zhongfu, S.; Wang, Y.; Szabó, Z.; Soltész, M.; Nyéki, J. Fruit drop: The role of inner agents and environmental factors in the drop of flowers and fruits. Int. J. Hortic. Sci. 2007, 13, 13–23. [Google Scholar] [CrossRef]
- Fujii, S.; Kubo, K.-I.; Takayama, S. Non-self-and self-recognition models in plant self-incompatibility. Nat. Plants 2016, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Richards, T.E.; Kämper, W.; Trueman, S.J.; Wallace, H.M.; Ogbourne, S.M.; Brooks, P.R.; Nichols, J.; Hosseini Bai, S. Relationships between nut size, kernel quality, nutritional composition and levels of outcrossing in three macadamia cultivars. Plants 2020, 9, 228. [Google Scholar] [CrossRef]
- Kämper, W.; Trueman, S.J.; Ogbourne, S.M.; Wallace, H.M. Pollination services in a macadamia cultivar depend on across-orchard transport of cross pollen. J. Appl. Ecol. 2021, 58, 2529–2539. [Google Scholar] [CrossRef]
- Stephenson, A. Flower and fruit abortion: Proximate causes and ultimate functions. Annu. Rev. Ecol. Evol. Syst. 1981, 12, 253–279. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Huang, X.; Li, J.; Wang, H.; Li, J. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi. Front. Plant Sci. 2015, 6, 439. [Google Scholar] [CrossRef]
- Herbert, S.W.; Walton, D.A.; Wallace, H.M. The influence of pollen-parent and carbohydrate availability on macadamia yield and nut size. Sci. Hortic. 2019, 251, 241–246. [Google Scholar] [CrossRef]
- Trueman, S.J.; Turnbull, C.G.N. Fruit set, abscission and dry matter accumulation on girdled branches of macadamia. Ann. Bot. 1994, 74, 667–674. [Google Scholar] [CrossRef]
- Alcaraz, M.; Hormaza, J. Influence of physical distance between cultivars on yield, outcrossing rate and selective fruit drop in avocado (Persea americana, Lauraceae). Ann. Appl. Biol. 2011, 158, 354–361. [Google Scholar] [CrossRef]
- Gehrke-Velez, M.; Castillo, A.; Ruiz-Bello, C.; Moreno-Martinez, J.L.; Moreno-Basurto, G. Delayed self-incompatibility causes morphological alterations and crop reduction in ‘Ataúlfo’ mango (Mangifera indica L.). N. Z. J. Crop Hortic. Sci. 2012, 40, 215–227. [Google Scholar] [CrossRef]
- Vaughton, G.; Carthew, S.M. Evidence for selective fruit abortion in Banksia spinulosa (Proteaceae). Biol. J. Linn. Soc. 2008, 50, 35–46. [Google Scholar] [CrossRef]
- Dutta, S.; Srivastav, M.; Rymbai, H.; Chaudhary, R.; Singh, A.; Dubey, A.; Lal, K. Pollen–pistil interaction studies in mango (Mangifera indica L.) cultivars. Sci. Hortic. 2013, 160, 213–221. [Google Scholar] [CrossRef]
- Isaacs, R.; Kirk, A.K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 2010, 47, 841–849. [Google Scholar] [CrossRef]
- Brittain, C.; Kremen, C.; Garber, A.; Klein, A.-M. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 2014, 9, e90082. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, P.E. Late-acting self-incompatibility—The pariah breeding system in flowering plants. New Phytol. 2014, 203, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B.; Charlesworth, D. The genetic basis of inbreeding depression. Genet. Res. 1999, 74, 329–340. [Google Scholar] [CrossRef]
- Ramírez, F.; Davenport, T.L. Mango (Mangifera indica L.) pollination: A review. Sci. Hortic. 2016, 203, 158–168. [Google Scholar] [CrossRef]
- Evans, E.A.; Ballen, F.H.; Siddiq, M. Handbook of Mango Fruit: Production, Postharvest Science, Processing Technology and Nutrition; Siddiq, M., Brecht, J.K., Sidhu, J.S., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2017; pp. 1–16. [Google Scholar] [CrossRef]
- Cook, D.F.; Voss, S.C.; Finch, J.T.D.; Rader, R.C.; Cook, J.M.; Spurr, C.J. The role of flies as pollinators of horticultural crops: An Australian case study with worldwide relevance. Insects 2020, 11, 341. [Google Scholar] [CrossRef]
- Degani, C.; El-Batsri, R.; Gazit, S. Outcrossing rate, yield, and selective fruit abscission in ‘Ettinger’ and ‘Ardith’ avocado plots. J. Am. Soc. Hortic. Sci. Jashs 1997, 122, 813–817. [Google Scholar] [CrossRef]
- Sapir, G.; Baras, Z.; Azmon, G.; Goldway, M.; Shafir, S.; Allouche, A.; Stern, E.; Stern, R.A. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 2017, 219, 107–117. [Google Scholar] [CrossRef]
- Willcox, B.K.; Howlett, B.G.; Robson, A.J.; Cutting, B.; Evans, L.; Jesson, L.; Kirkland, L.; Jean-Meyzonnier, M.; Potdevin, V.; Saunders, M.E.; et al. Evaluating the taxa that provide shared pollination services across multiple crops and regions. Sci. Rep. 2019, 9, 13538. [Google Scholar] [CrossRef]
- Raguso, R.A. Don’t forget the flies: Dipteran diversity and its consequences for floral ecology and evolution. Appl. Entomol. Zool. 2020, 55, 1–7. [Google Scholar] [CrossRef]
- Brittain, C.; Williams, N.; Kremen, C.; Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122767. [Google Scholar] [CrossRef]
- MacInnis, G.; Forrest, J.R.K. Field design can affect cross-pollination and crop yield in strawberry (Fragaria x ananassa D.). Agric. Ecosyst. Environ. 2020, 289, 106738. [Google Scholar] [CrossRef]
- Sharma, S.; Abbas, S.; Shukia, R.; Sharma, S. An easy and quick method of breeding flies for pollination of mango blossoms. Insect Environ. 1998, 4, 76–77. [Google Scholar]
- Pérez, V.; Herrero, M.; Hormaza, J. Self-fertility and preferential cross-fertilization in mango (Mangifera indica). Sci. Hortic. 2016, 213, 373–378. [Google Scholar] [CrossRef]
- Kämper, W.; Ogbourne, S.M.; Hawkes, D.; Trueman, S.J. SNP markers reveal relationships between fruit paternity, fruit quality and distance from a cross-pollen source in avocado orchards. Sci. Rep. 2021, 11, 20043. [Google Scholar] [CrossRef] [PubMed]
- Sáez, A.; Aizen, M.A.; Medici, S.; Viel, M.; Villalobos, E.; Negri, P. Bees increase crop yield in an alleged pollinator-independent almond variety. Sci. Rep. 2020, 10, 3177. [Google Scholar] [CrossRef] [PubMed]
- Wayo, K.; Phankaew, C.; Stewart, A.B.; Bumrungsri, S. Bees are supplementary pollinators of self-compatible chiropterophilous durian. J. Trop. Ecol. 2018, 34, 41–52. [Google Scholar] [CrossRef]
- Eeraerts, M. Increasing wild bee richness and abundance on sequentially flowering cultivars of a pollinator-dependent crop. Agric. Ecosyst. Environ. 2022, 325, 107745. [Google Scholar] [CrossRef]
- Sedgley, M.; Bell, F.D.H.; Bell, D.; Winks, C.W.; Pattison, S.J.; Hancock, T.W. Self- and cross-compatibility of macadamia cultivars. J. Hortic. Sci. 1990, 65, 205–213. [Google Scholar] [CrossRef]
- Kämper, W.; Thorp, G.; Wirthensohn, M.; Brooks, P.; Trueman, S.J. Pollen paternity can affect kernel size and nutritional composition of self-incompatible and new self-compatible almond cultivars. Agronomy 2021, 11, 326. [Google Scholar] [CrossRef]
- Kremen, C.; Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Prasifka, J.R.; Mallinger, R.E.; Portlas, Z.M.; Hulke, B.S.; Fugate, K.K.; Paradis, T.; Hampton, M.E.; Carter, C.J. Using nectar-related traits to enhance crop-pollinator interactions. Front. Plant Sci. 2018, 9, 812. [Google Scholar] [CrossRef] [PubMed]
- Erickson, E.; Junker, R.R.; Ali, J.G.; McCartney, N.; Patch, H.M.; Grozinger, C.M. Complex floral traits shape pollinator attraction to ornamental plants. Ann. Bot. 2022, mcac082, 1–17. [Google Scholar] [CrossRef]
- Järvinen, A.; Himanen, S.J.; Raiskio, S.; Hyvönen, T. Intercropping of insect-pollinated crops supports a characteristic pollinator assemblage. Agric. Ecosyst. Environ. 2022, 332, 107930. [Google Scholar] [CrossRef]
- Alomar, D.; González-Estévez, M.A.; Traveset, A.; Lázaro, A. The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees. Agric. Ecosyst. Environ. 2018, 264, 34–43. [Google Scholar] [CrossRef]
- Ferreira, J.V.A.; Storck-Tonon, D.; Ramos, A.W.P.; Costa, H.C.M.; Nogueira, D.S.; Mahlmann, T.; Oliveira, M.L.; Pereira, M.J.B.; da Silva, D.J.; Peres, C.A. Critical role of native forest and savannah habitats in retaining neotropical pollinator diversity in highly mechanized agricultural landscapes. Agric. Ecosyst. Environ. 2022, 338, 108084. [Google Scholar] [CrossRef]
- Campbell, A.J.; Wilby, A.; Sutton, P.; Wäckers, F.L. Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 2017, 239, 20–29. [Google Scholar] [CrossRef]
- McKerchar, M.; Potts, S.G.; Fountain, M.T.; Garratt, M.P.D.; Westbury, D.B. The potential for wildflower interventions to enhance natural enemies and pollinators in commercial apple orchards is limited by other management practices. Agric. Ecosyst. Environ. 2020, 301, 107034. [Google Scholar] [CrossRef]
- Carvell, C.; Mitschunas, N.; McDonald, R.; Hulmes, S.; Hulmes, L.; O’Connor, R.S.; Garratt, M.P.D.; Potts, S.G.; Fountain, M.T.; Sadykova, D.; et al. Establishment and management of wildflower areas for insect pollinators in commercial orchards. Basic. Appl. Ecol. 2022, 58, 2–14. [Google Scholar] [CrossRef]
- Lee, F.Y.; Vo, G.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Mango rejects and mango waste: Characterization and quantification of phenolic compounds and their antioxidant potential. J. Food Process. Preserv. 2021, 45, e15618. [Google Scholar] [CrossRef]
- Manthey, J.A.; Perkins-Veazie, P. Influences of harvest date and location on the levels of beta-carotene, ascorbic acid, total phenols, the in vitro antioxidant capacity, and phenolic profiles of five commercial varieties of mango (Mangifera indica L.). J. Agric. Food Chem. 2009, 57, 10825–10830. [Google Scholar] [CrossRef] [PubMed]
- Denney, J.O. Xenia includes metaxenia. HortScience 1992, 27, 722–728. [Google Scholar] [CrossRef]
- Liu, Y. Darwin’s pangenesis and certain anomalous phenomena. Adv. Genet. 2018, 102, 93–120. [Google Scholar] [CrossRef]
- Flitsanov, U.; Mizrach, A.; Liberzon, A.; Akerman, M.; Zauberman, G. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 2000, 20, 279–286. [Google Scholar] [CrossRef]
- Hofman, P.; Bower, J.; Woolf, A. Harvesting, packing, postharvest technology, transport and processing. In The Avocado: Botany, Production and Uses; Schaffer, B., Wolstenholme, B.N., Whiley, A.W., Eds.; CABI: Boston, MA, USA, 2013; pp. 489–540. [Google Scholar]
- McGeehan, S.L.; Naylor, D.V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil. Sci. Plant Anal. 1988, 19, 493–505. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata: Melbourne, Australia, 1992. [Google Scholar]
- Munter, R.; Grande, R. Developments in Atomic Plasma Spectrochemical Analysis; Byrnes, R., Ed.; Heyden: London, UK, 1981; pp. 653–672. [Google Scholar]
- Martinie, G.D.; Schilt, A.A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 1976, 48, 70–74. [Google Scholar] [CrossRef]
- Ivanova, N.V.; Fazekas, A.J.; Hebert, P.D.N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Report. 2008, 26, 186. [Google Scholar] [CrossRef]
- Viruel, M.; Escribano, P.; Barbieri, M.; Ferri, M.; Hormaza, J. Fingerprinting, embryo type and geographic differentiation in mango (Mangifera indica L., Anacardiaceae) with microsatellites. Mol. Breed. 2005, 15, 383–393. [Google Scholar] [CrossRef]
- Schnell, R.J.; Olano, C.T.; Qunitanilla, W.E.; Meerow, A.W. Isolation and characterization of 15 microsatellite loci from mango (Mangifera indica L.) and cross-species amplification in closely related taxa. Mol. Ecol. Notes 2005, 5, 625–627. [Google Scholar] [CrossRef]
- Honsho, C.; Nishiyama, K.; Eiadthong, W.; Yonemori, K. Isolation and characterization of new microsatellite markers in mango (Mangifera indica). Mol. Ecol. Notes 2005, 5, 152–154. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
Kensington Pride | Calypso | |||
---|---|---|---|---|
Self-Pollinated | Self-Pollinated | Self-Pollinated | Cross-Pollinated | |
Mass (g) | 387 ± 36 | 386 ± 46 | 397 ± 23 a | 379 ± 17 b |
Length (mm) | 108.4 ± 4 | 110.2 ± 6 | 98.1 ± 2 | 96.9 ± 2 |
Width (mm) | 85.3 ± 3.1 | 84.7 ± 3.2 | 90.2 ± 1.7 a | 88.2 ± 1.4 b |
Brightness (L*) | 64.5 ± 1.3 a | 65.7 ± 1.7 b | 56.6 ± 2.1 | 56.0 ± 2.5 |
Redness (a*) | 6.92 ± 3.4 | 5.44 ± 3.3 | 34.5 ± 3.8 | 36.2 ± 4.7 |
Yellowness (b*) | 43.6 ± 2.2 | 45.1 ± 2.2 | 30.3 ± 2.7 | 29.3 ± 3.87 |
C (%) | 6.73 ± 0.31 | 6.84 ± 0.25 | 7.08 ± 0.28 | 6.84 ± 0.24 |
N (%) | 0.14 ± 0.03 | 0.13 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.03 |
Al (mg/kg) | 0.51 ± 0.19 | 0.51 ± 0.28 | 0.45 ± 0.14 | 0.48 ± 0.11 |
B (mg/kg) | 2.12 ± 0.16 | 2.16 ± 0.27 | 1.96 ± 0.22 | 1.94 ± 0.16 |
Ca (mg/kg) | 150 ± 19 | 139 ± 17 | 163 ± 17 | 158 ± 19 |
Cu (mg/kg) | 1.34 ± 0.09 | 1.45 ± 0.14 | 1.04 ± 0.10 | 1.02 ± 0.13 |
Fe (mg/kg) | 6.47 ± 1.72 | 5.71 ± 1.61 | 5.33 ± 1.16 | 5.52 ± 1.33 |
K (mg/kg) | 1911 ± 121 | 1928 ± 220 | 1620 ± 114 | 1607 ± 140 |
Mg (mg/kg) | 122 ± 10 | 118 ± 9 | 103 ± 8 | 100 ± 6 |
Mn (mg/kg) | 4.08 ± 0.60 | 3.94 ± 0.48 | 5.34 ± 0.84 | 5.18 ± 1.01 |
Na (mg/kg) | 5.74 ± 1.8 | 4.23 ± 1.1 | 13.3 ± 3.6 | 14.7 ± 2.4 |
P (mg/kg) | 166 ± 13 | 168 ± 20 | 136 ± 19 | 132 ± 12 |
S (mg/kg) | 77.6 ± 15.4 | 76.9 ± 16.7 | 70.1 ± 14.7 | 70.1 ± 8.8 |
Zn (mg/kg) | 1.12 ± 0.26 | 1.00 ± 0.26 | 0.72 ± 0.14 | 0.83 ± 0.19 |
TSS (Brix) | 14.0 ± 0.5 | 14.0 ± 0.4 | 14.1 ± 0.5 | 14.0 ± 0.4 |
Acidity (mg/g) | 0.63 ± 0.07 | 0.63 ± 0.10 | 0.44 ± 0.04 a | 0.40 ± 0.06 b |
Brix:acid ratio | 24.3 ± 2.6 | 23.9 ± 3.4 | 34.4 ± 3.1 | 37.7 ± 4.7 |
Polyphenols * | 13.1 ± 0.9 | 12.8 ± 1.2 | 10.7 ± 0.7 a | 9.7 ± 0.7 b |
Locus | Accession Number | Primer Sequences (5’ to 3’) | Repeat Motif | Fluorescent Label | Allele Sizes |
---|---|---|---|---|---|
LMMA1 | AY628373 | F: ATGGAGACTAGAATGTACAGAG | (GA)13 | PET | 195–207 |
R: ATTAAATCTCGTCCACAAGT | |||||
LMMA8 | AY628380 | F: CATGGAGTTGTGATACCTAC | (GA)12 | FAM | 252–271 |
R: CAGAGTTAGCCATATAGAGTG | |||||
LMMA10 | AY628382 | F: TTCTTTAGACTAAGAGCACATT | (GA)10 | NED | 147–191 |
R: AGTTACAGATCTTCTCCAATT | |||||
LMMA11 | AY628383 | F: ATTATTTACCCTACAGAGTGC | (GA)12 | VIC | 234–244 |
R: GTATTATCGGTAATGTCTTCAT | |||||
LMMA12 | AY628384 | F: AAAGATAGCATTTAATTAAGGA | (GA)13 | FAM | 198–206 |
R: GTAAGTATCGCTGTTTGTTATT | |||||
MiSHRS-18 | AY942819 | F: AAACGAGGAAACAGAGCAC | (AAC/GTT)8 | FAM | 90–111 |
R: CAAGTACCTGCTGCAACTAG | |||||
MiSHRS-39 | AY942829 | F: GAACGAGAAATCGGGAAC | (GTT/AAC)8 | FAM | 348–369 |
R: GCAGCCATTGAATACAGAG | |||||
MIAC-5 | AB190348 | F: AATTATCCTATCCCTCGTATC | (ACACACAT)3 | VIC | 119–139 |
R: AGAAACATGATGTGAACC | (ACACACACAT)3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kämper, W.; Nichols, J.; Tran, T.D.; Burwell, C.J.; Byrnes, S.; Trueman, S.J. Flower Visitors, Levels of Cross-Fertilisation, and Pollen-Parent Effects on Fruit Quality in Mango Orchards. Agronomy 2023, 13, 2568. https://doi.org/10.3390/agronomy13102568
Kämper W, Nichols J, Tran TD, Burwell CJ, Byrnes S, Trueman SJ. Flower Visitors, Levels of Cross-Fertilisation, and Pollen-Parent Effects on Fruit Quality in Mango Orchards. Agronomy. 2023; 13(10):2568. https://doi.org/10.3390/agronomy13102568
Chicago/Turabian StyleKämper, Wiebke, Joel Nichols, Trong D. Tran, Christopher J. Burwell, Scott Byrnes, and Stephen J. Trueman. 2023. "Flower Visitors, Levels of Cross-Fertilisation, and Pollen-Parent Effects on Fruit Quality in Mango Orchards" Agronomy 13, no. 10: 2568. https://doi.org/10.3390/agronomy13102568
APA StyleKämper, W., Nichols, J., Tran, T. D., Burwell, C. J., Byrnes, S., & Trueman, S. J. (2023). Flower Visitors, Levels of Cross-Fertilisation, and Pollen-Parent Effects on Fruit Quality in Mango Orchards. Agronomy, 13(10), 2568. https://doi.org/10.3390/agronomy13102568