Characteristic Identification of Heat Exposure Based on Disaster Events for Single-Season Rice along the Middle and Lower Reaches of the Yangtze River, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Region
2.2. Data Description
2.3. The Construction of Rice Heat Stress-Disaster Samples
2.3.1. Target Phenological Stages of Rice Heat Stress
2.3.2. Construction of Heat (H) and Non-Heat (NH) Databases
2.4. Critical Threshold Identification for Rice Heat Stress
2.4.1. The Importance Score of Random Forest (IF)
2.4.2. Overall Accuracy
2.4.3. ROC Curve
2.5. Characteristics of Rice Heat Stress
2.5.1. Accumulated Harmful Temperature (Tcum) and Number of Heat Days (HD)
2.5.2. First Heat Date (FHD) and Last Heat Date (LHD)
3. Result
3.1. Characteristics of the Heat (H) and Non-Heat (NH) Databases
3.2. Critical Threshold Identification for Heat Occurrence to Single-Season Rice
3.2.1. The First Three Key Thresholds Explored Preliminary
3.2.2. Optimal Critical Threshold for Heat Occurrence at Each Phenological Stage
3.2.3. Verification and Application of a Multi-Stage Heat Event
3.3. Characteristics of Heat Exposure for Single-Season Rice in MLRYR
3.3.1. Accumulated Harmful Temperature (Tcum) and Number of Heat Days (HD)
3.3.2. First Heat Date (FHD) and Last Heat Date (LHD)
4. Discussion
4.1. Determined Thresholds for Different Phenological Stages
4.2. Potential Adaption Strategies to Mitigate Rice Heat Stress
4.3. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sassaki, G.; Schmidt, A.B.; Ferreira, M.E.; Rangel, P.H.N.; Pereira-Netto, A.B. Characterization of cold-induced changes in the fatty acids profile of rice seedlings. Acta Physiol. Plant. 2013, 35, 1989–1996. [Google Scholar] [CrossRef]
- Farooq, M.S.; Khaskheli, M.A.; Uzair, M.; Xu, Y.; Wattoo, F.M.; Rehman, O.U.; Amatus, G.; Fatima, H.; Khan, S.A.; Fiaz, S.; et al. Inquiring the inter-relationships amongst grain-filling, grain-yield, and grain-quality of Japonica rice at high latitudes of China. Front. Genet. 2022, 13, 988256. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.S.; Uzair, M.; Raza, A.; Habib, M.; Xu, Y.; Yousuf, M.; Yang, S.H.; Ramzan Khan, M. Uncovering the research gaps to alleviate the negative impacts of climate change on food security: A review. Front. Plant Sci. 2022, 13, 927535. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chu, C.; Yao, S. The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 2021, 9, 963–976. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, B.; Li, S.; Hou, Y.; Huang, D. Potential rice exposure to heat stress along the Yangtze River in China under RCP8.5 scenario. Agric. For. Meteorol. 2018, 248, 185–196. [Google Scholar] [CrossRef]
- Ishimaru, T.; Seefong, X.; Nallathambid, J.; Rajendrand, S. Quantifying rice spikelet sterility in potential heat-vulnerable regions Field surveys in Laos and southern India. Field Crops Res. 2016, 190, 3–9. [Google Scholar] [CrossRef]
- Wassmann, R.; Jagadish, S.V.K.; Sumfleth, K.; Pathak, H.; Howell, G.; Ismail, A.; Serraj, R.; Redona, E.; Singh, R.K.; Heuer, S. Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv. Agron. 2009, 102, 59–122. [Google Scholar]
- Eyshi Rezaei, E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F. Heat stress in cereals: Mechanisms and modelling. Eur. J. Agron. 2015, 64, 98–113. [Google Scholar] [CrossRef]
- Teixeira, E.I.; Fischer, G.; Van Velthuizen, H.; Walter, C.; Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 2013, 170, 206–215. [Google Scholar] [CrossRef]
- Tian, X.H.; Luo, H.W.; Zhou, H.D.; Wu, C.Y. Research on heat stress of rice in China: Progress and prospect. Chin. Agric. Sci. Bull. 2009, 25, 166–168. [Google Scholar]
- Laborte, A.; Nelson, A.; Jagadish, K.; Aunario, J.; Sparks, A.; Ye, C.; Redoña, E. Rice feels the heat. Rice Today 2012, 11, 30–31. [Google Scholar]
- Lee, O.; Seo, J.; Won, J.; Choi, J.; Kim, S. Future extreme heat wave events using Bayesian heat wave intensity-persistence day-frequency model and their uncertainty. Atmos. Res. 2021, 255, 105541. [Google Scholar] [CrossRef]
- Peng, S.; Tang, Q.; Zou, Y. Current status and challenges of rice production in China. Plant Prod. Sci. 2009, 12, 3–8. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, S.; Zhang, Z. Changes in rice disasters across China in recent decades and the meteorological and agronomic causes. Reg. Environ. Change 2012, 13, 743–759. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Reply to Meerburg et al. Growing areas in Brazil and the United States with similar exposure to extreme heat have similar yields. Proc. Natl. Acad. Sci. 2009, 106, 121. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Quilligan, E.; Aggarwal, P.K.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.C.; Chapotin, S.M.; Datta, S.K.; Duveiller, E.; Gill, K.S.; et al. An integrated approach to maintaining cereal productivity under climate change. Glob. Food Secur. 2016, 8, 9–18. [Google Scholar] [CrossRef]
- Krishnan, P.; Ramakrishnan, B.; Reddy, K.R.; Reddy, V.R. High-temperature effects on rice growth, yield, and grain quality. Adv. Agron. 2011, 111, 87–206. [Google Scholar]
- Lawas, L.M.F.; Shi, W.; Yoshimoto, M.; Hasegawa, T.; Hincha, D.K.; Zuther, E.; Jagadish, S.V.K. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Res. 2018, 229, 66–77. [Google Scholar] [CrossRef]
- Matsui, T.; Omasa, K.; Rorie, T. The difference in sterility due to high temperatures during the flowering period among Japonica rice varieties. Plant Prod. Sci. 2001, 4, 90–93. [Google Scholar] [CrossRef]
- Xie, X.J.; Li, B.B.; Li, Y.X.; Li, H.Y. Effects of high temperature stress on yield components and grain quality during heading stage. Chin. J. Agrometeorol. 2010, 31, 411–415. [Google Scholar]
- Shi, P.; Zhu, Y.; Tang, L.; Chen, J.; Sun, T.; Cao, W.; Tian, Y. Differential effects of temperature and duration of heat stress during anthesis and grain filling stages in rice. Environ. Exp. Bot. 2016, 132, 28–41. [Google Scholar] [CrossRef]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 024041. [Google Scholar] [CrossRef]
- Jagadish, S.V.; Craufurd, P.Q.; Wheeler, T.R. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 2007, 58, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhao, Y.; Zhang, Y.; Chen, S.; Ying, Q.; Lv, Z.; Che, X.; Wang, D. Heat stress may cause a significant reduction of rice yield in China under future climate scenarios. Sci. Total. Environ. 2022, 818, 151746. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huo, Z.; Li, X.; Wang, P.; Wu, D. Hot weather event-based characteristics of double-early rice heat risk: A study of Jiangxi province, South China. Ecol. Indic. 2020, 113, 106148. [Google Scholar] [CrossRef]
- Sanchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Change Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Wang, L.X.; Xu, X.L.; Li, Q.; Su, H. Impact of high temperature stress on growing stage and yield of rice in Jiang Su. Crops 2015, 2, 95–100. [Google Scholar]
- Sita, K.; Sehgal, A.; Hanumantharao, B.; Nair, R.M.; Prasad, P.V.V.; Kumar, S.; Gaur, P.M.; Farooq, M.; Siddique, K.H.M.; Varshney, R.K.; et al. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front. Plant Sci. 2017, 8, 1658. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Song, R.; Shao, Q.; Jiao, X.; Xing, W. Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China. Agric. Water Manag. 2017, 193, 89–101. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Statistical Yearbook of China; Statistical Press: Beijing, China, 2021. [Google Scholar]
- Ray, D.K.; Gerber, J.S.; Macdonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- Espe, M.B.; Hill, J.E.; Hijmans, R.J.; Mckenzie, K.; Mutters, R.; Espino, L.A.; Leinfelder-Miles, M.; Van Kessel, C.; Linquist, B.A. Point stresses during reproductive stage rather than warming seasonal temperature determine yield in temperate rice. Glob. Change Biol. 2017, 23, 4386–4395. [Google Scholar] [CrossRef] [PubMed]
- China Meteorological Administration. China Meteorological Disaster Yearbook (2004–2019); Meteorological Press: Beijing, China, 2004–2019.
- Chen, S.X.; Wen, K.G. China Meteorological Disasters Book (Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei and Hunan Provinces); Meteorogogical Press: Beijing, China, 2006. [Google Scholar]
- Kjeldsen, T.R.; Macdonald, N.; Lang, M.; Mediero, L.; Albuquerque, T.; Bogdanowicz, E.; Brázdil, R.; Castellarin, A.; David, V.; Fleig, A.; et al. Documentary evidence of past floods in Europe and their utility in flood frequency estimation. J. Hydrol. 2014, 517, 963–973. [Google Scholar]
- Petrović, A.M.; Dragićević, S.S.; Radić, B.P.; Milanović Pešić, A.Z. Historical torrential flood events in the Kolubara river basin. Nat. Hazards 2015, 79, 537–547. [Google Scholar] [CrossRef]
- Wu, X.; Wang, P.; Huo, Z.; Wu, D.; Yang, J. Crop Drought Identification Index for winter wheat based on evapotranspiration in the Huang-Huai-Hai Plain, China. Agric. Ecosyst. Environ. 2018, 263, 18–30. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- GB/T 21985-2008; Temperature Index of High Temperature Harm for Main Crops. China Standards Press: Beijing, China, 2008.
- Luo, Q. Temperature thresholds and crop production: A review. Clim. Change 2011, 109, 583–598. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Chen, X.; Wang, Y.; Niu, B.; Liu, D.L.; He, J.; Pulatov, B.; Hassan, I.; Meng, Q. Impact of climate change and planting date shifts on growth and yields of double cropping rice in southeastern China in future. Agric. Syst. 2023, 205, 103581. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Cowie, A.; Clark, A.; Li Liu, D.; Simpson, M.; Mcgowen, I.; Sides, T. Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecol. Indic. 2018, 88, 425–438. [Google Scholar]
- Hand, D.J. Measuring classifier performance: A coherent alternative to the area under the ROC curve. Mach. Learn. 2009, 77, 103–123. [Google Scholar] [CrossRef]
- Guo, A.; He, L.; Han, L.; Zhang, L. Construction of heat damage intensity index of early rice and its climate risk assessment. J. Nat. Disasters 2018, 27, 96–106. [Google Scholar]
- Prasanth, V.V.; Babu, M.S.; Basava, R.K.; Venkata, V.G.N.T.; Mangrauthia, S.K.; Voleti, S.R.; Neelamraju, S. Trait and marker associations in Oryza nivara and O. rufipogon derived rice lines under two different heat stress conditions. Front. Plant Sci. 2017, 8, 1819. [Google Scholar] [CrossRef]
- Oh-e, I.; Saitoh, K.; Kuroda, T. Effects of high temperature on growth, yield and dry-matter production of rice grown in the paddy field. Plant Prod. Sci. 2007, 10, 412–422. [Google Scholar] [CrossRef]
- Jagadish, S.V.; Muthurajan, R.; Oane, R.; Wheeler, T.R.; Heuer, S.; Bennett, J.; Craufurd, P.Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 143–156. [Google Scholar] [PubMed]
- Shi, W.; Yin, X.; Struik, P.C.; Solis, C.; Xie, F.; Schmidt, R.C.; Huang, M.; Zou, Y.; Ye, C.; Jagadish, S.V.K. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes. J. Exp. Bot. 2017, 68, 5233–5245. [Google Scholar] [PubMed]
- Soda, N.; Gupta, B.K.; Anwar, K.; Sharan, A.; Govindjee; Singla-Pareek, S.L.; Pareek, A. Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci. Rep. 2018, 8, 4072. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-Y.; Duan, H.; Yang, L.-N.; Wang, Z.-Q.; Liu, L.-J.; Yang, J.-C. Effect of high temperature during heading and early filling on grain yield and physiological characteristics in Indica rice. Acta Agron. Sin. 2009, 35, 512–521. [Google Scholar] [CrossRef]
- Aghamolki, M.T.K.; Yusop, M.K.; Oad, F.C.; Zakikhani, H.; Jaafar, H.Z.; Kharidah, S.; Musa, M.H. Heat stress effects on yield parameters of selected rice cultivars at reproductive growth stages. J. Food Agric. Environ. 2014, 12, 741–746. [Google Scholar]
- Xu, J.; Henry, A.; Sreenivasulu, N. Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security. Plant Cell Env. 2020, 43, 1595–1608. [Google Scholar] [CrossRef]
- Kim, J.; Shon, J.; Lee, C.-K.; Yang, W.; Yoon, Y.; Yang, W.-H.; Kim, Y.-G.; Lee, B.-W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Res. 2011, 122, 207–213. [Google Scholar] [CrossRef]
- Ishimaru, T.; Parween, S.; Saito, Y.; Shigemitsu, T.; Yamakawa, H.; Nakazono, M.; Masumura, T.; Nishizawa, N.K.; Kondo, M.; Sreenivasulu, N. Laser microdissection-based tissue-specific transcriptome analysis reveals a novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm. Plant Cell Physiol. 2019, 60, 626–642. [Google Scholar] [CrossRef]
- Wada, T.; Miyahara, K.; Sonoda, J.Y.; Tsukaguchi, T.; Miyazaki, M.; Tsubone, M.; Ando, T.; Ebana, K.; Yamamoto, T.; Iwasawa, N.; et al. Detection of QTLs for white-back and basal-white grains caused by high temperature during ripening period in japonica rice. Breed Sci. 2015, 65, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, P.; Chen, Y.; Yang, J.; Wu, D.; Ma, Y.; Huo, Z.; Liu, S. The optimal time-scale of Standardized Precipitation Index for early identifying summer maize drought in the Huang-Huai-Hai region, China. J. Hydrol. Reg. Stud. 2023, 46, 101350. [Google Scholar]
- Yang, J.; Dong, H.; Huo, Z.; Wang, P.; Yao, S.; Wu, D.; Ma, Y. Threshold-based characteristics of apricot frost exposure at young fruit in the warm temperate zone, China. Int. J. Climatol. 2021, 42, 1460–1471. [Google Scholar] [CrossRef]
- Tang, J.; Wang, P.; Li, X.; Yang, J.; Wu, D.; Ma, Y.; Li, S.; Jin, Z.; Huo, Z. Disaster event-based spring frost damage identification indicator for tea plants and its applications over the region north of the Yangtze River, China. Ecol. Indic. 2023, 146, 109912. [Google Scholar]
- Kim, D.-H.; Jang, T.; Hwang, S.; Jeong, H. Paddy rice adaptation strategies to climate change: Transplanting date shift and BMP applications. Agric. Water Manag. 2021, 252, 106926. [Google Scholar] [CrossRef]
- Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; et al. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob. Change Biol. 2015, 21, 1328–1341. [Google Scholar] [CrossRef]
- Shah, F.; Nie, L.; Cui, K.; Shah, T.; Wu, W.; Chen, C.; Zhu, L.; Ali, F.; Fahad, S.; Huang, J. Rice grain yield and component responses to near 2 °C of warming. Field Crops Res. 2014, 157, 98–110. [Google Scholar] [CrossRef]
- Kim, H.Y.; Ko, J.; Kang, S.; Tenhunen, J. Impacts of climate change on paddy rice yield in a temperate climate. Glob. Change Biol. 2013, 19, 548–562. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W.; Eggert, K.; Charnikhova, T.; Bouwmeester, H.; Schweizer, P.; Hajirezaei, M.R.; Seiler, C.; Sreenivasulu, N.; Von Wirén, N.; et al. Abscisic acid influences tillering by modulation of strigolactones in barley. J. Exp. Bot. 2018, 69, 3883–3898. [Google Scholar] [CrossRef]
- Hussien, A.; Tavakol, E.; Horner, D.S.; Muñoz-Amatriaín, M.; Muehlbauer, G.J.; Rossini, L. Genetics of tillering in rice and barley. Plant Genome 2014, 7, 32. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Yan, J.; Sun, K.; Liang, Y.; Jia, M.; Meng, X.; Fang, S.; Wang, Y.; Jing, Y.; et al. ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Mol. Plant 2020, 13, 1784–1801. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; De Vleesschauwer, D.; Sharma, M.K.; Ronald, P.C. Recent advances in dissecting stress-regulatory crosstalk in Rice. Mol. Plant 2013, 6, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Chinnusamy, V.; Gong, Z.; Zhu, J.-K. Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses. J. Integr. Plant Biol. 2008, 50, 1187–1195. [Google Scholar] [CrossRef]
- Huo, Z.; Zhang, L.; Kong, R.; Jiang, M.; Zhang, H. The agro-climatic change characteristics across China during the latest decades. Agriculture 2022, 12, 147. [Google Scholar] [CrossRef]
- Estrella, N.; Sparks, T.H.; Menzel, A. Trends and temperature response in the phenology of crops in Germany. Glob. Change Biol. 2007, 13, 1737–1747. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Bahuguna, R.N.; Shah, D.; Pal, M.; Jagadish, S.V.K. High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice. Sci. Rep. 2017, 7, 8227. [Google Scholar] [CrossRef]
- Ziska, L.H.; Manalo, P.A.; Ordonez, R.A. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: Growth and yield response of 17 cultivars. J. Exp. Bot. 1996, 47, 1353–1359. [Google Scholar] [CrossRef]
- Vu, J.C.V.; Jr, L.H.A.; Boote, K.J.; Bowes, G. Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant Cell Environ. 1997, 20, 68–76. [Google Scholar] [CrossRef]
Classification | Data Index | Source | Period | Area Scope |
---|---|---|---|---|
Meteorological | Daily maximum temperature | National Meteorological Information Center | 1971–2020 | 501 stations |
Phenology | Seeding, tillering, jointing, booting, flowering and filling date of single-season rice | Agro-meteorological experimental station | 1981–2010 | 501 meteorological stations interpolated from phenology data in 34 stations |
Yield | Yield reduction rate (YRR) of single-season rice | National Bureau of Statistics | 1971–2020 | Six provinces (JS, ZJ, AH, JX, HB and HN) |
Disaster | Records of heat stress process of single-season rice | 《China Meteorological Disasters Book》, 《Yearbook of Meteorological Disasters in China》 | 1971–2000, 2004–2019 | Six provinces (JS, ZJ, AH, JX, HB and HN) |
Phenology | Database Type | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|---|
Tillering–jointing | H | 23 | 40.8 | 33.69 | 3.65 |
NH | 22.2 | 37.4 | 30.30 | 3.08 | |
Booting, | H | 28.1 | 41.7 | 36.31 | 1.98 |
NH | 21.9 | 38.3 | 31.62 | 3.32 | |
Flowering | H | 24.8 | 42.4 | 36.43 | 2.25 |
NH | 21.4 | 36.8 | 30.68 | 3.41 | |
Filling | H | 23.3 | 43.2 | 36.82 | 2.68 |
NH | 19.7 | 39.9 | 33.15 | 3.60 |
Phenology | Test Threshold (°C) | TP | TN | FN | FP | Overall Accuracy | TPR | FPR |
---|---|---|---|---|---|---|---|---|
Tillering–jointing | 30 | 122 | 3 | 0 | 241 | 0.342 | 1 | 0.988 |
32 | 122 | 57 | 0 | 187 | 0.489 | 1 | 0.766 | |
36 | 122 | 235 | 0 | 9 | 0.975 | 1 | 0.037 | |
Booting, | 30 | 108 | 6 | 0 | 210 | 0.352 | 1 | 0.972 |
31 | 108 | 9 | 0 | 207 | 0.361 | 1 | 0.958 | |
35 | 108 | 171 | 0 | 45 | 0.861 | 1 | 0.208 | |
Flowering | 30 | 148 | 46 | 0 | 250 | 0.437 | 1 | 0.845 |
31 | 148 | 65 | 0 | 231 | 0.480 | 1 | 0.780 | |
35 | 148 | 253 | 0 | 43 | 0.903 | 1 | 0.145 | |
Filling | 31 | 237 | 7 | 0 | 467 | 0.343 | 1 | 0.992 |
37 | 237 | 356 | 0 | 118 | 0.834 | 1 | 0.249 | |
38 | 234 | 373 | 3 | 101 | 0.854 | 1 | 0.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Huo, Z.; Zhang, L.; Kong, R.; Li, M.; Mi, Q. Characteristic Identification of Heat Exposure Based on Disaster Events for Single-Season Rice along the Middle and Lower Reaches of the Yangtze River, China. Agronomy 2023, 13, 2574. https://doi.org/10.3390/agronomy13102574
Jiang M, Huo Z, Zhang L, Kong R, Li M, Mi Q. Characteristic Identification of Heat Exposure Based on Disaster Events for Single-Season Rice along the Middle and Lower Reaches of the Yangtze River, China. Agronomy. 2023; 13(10):2574. https://doi.org/10.3390/agronomy13102574
Chicago/Turabian StyleJiang, Mengyuan, Zhiguo Huo, Lei Zhang, Rui Kong, Meixuan Li, and Qianchuan Mi. 2023. "Characteristic Identification of Heat Exposure Based on Disaster Events for Single-Season Rice along the Middle and Lower Reaches of the Yangtze River, China" Agronomy 13, no. 10: 2574. https://doi.org/10.3390/agronomy13102574
APA StyleJiang, M., Huo, Z., Zhang, L., Kong, R., Li, M., & Mi, Q. (2023). Characteristic Identification of Heat Exposure Based on Disaster Events for Single-Season Rice along the Middle and Lower Reaches of the Yangtze River, China. Agronomy, 13(10), 2574. https://doi.org/10.3390/agronomy13102574