Soil Quality Improvement with Increasing Reclamation Years in the Yellow River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Collection
2.3. Data Analysis
2.4. Soil Quality Assessment
- (1)
- Calculate the affiliation value
- (2)
- Calculate the indicator weights
- (3)
- Calculate the soil quality index
3. Results
3.1. Overall Soil Characteristics for Different Reclamation Years
3.2. Vertical Distribution of Soil Properties of Different Reclamation Years
3.3. Principal Component Analysis
3.4. Soil Quality Index
4. Discussions
4.1. Soil Salinity and Reclamation Years
4.2. Soil Nutrients and Reclamation Years
4.3. Soil Quality and Reclamation Years
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Z.; Bai, J.; Xiao, R.; Wang, C.; Cui, Y.; Wu, J.; Xu, J.; Zhang, Z.; Zhang, M. Incorporating soil aggregate-associated indicators into evaluating ecological responses of degraded estuarine wetlands to freshwater replenishment at different intensity: A case study from the Yellow River Delta, China. Ecol. Indic. 2021, 121, 107039. [Google Scholar]
- Fu, Z.; Wang, P.; Sun, J.; Lu, Z.; Yang, H.; Liu, J.; Xia, J.; Li, T. Composition, seasonal variation, and salinization characteristics of soil salinity in the Chenier Island of the Yellow River Delta. Glob. Ecol. Conserv. 2020, 24, e01318. [Google Scholar]
- Liu, L.; Wu, Y.; Yin, M.; Ma, X.; Yu, X.; Guo, X.; Du, N.; Eller, F.; Guo, W. Soil salinity, not plant genotype or geographical distance, shapes soil microbial community of a reed wetland at a fine scale in the Yellow River Delta. Sci. Total Environ. 2023, 856, 159136. [Google Scholar] [PubMed]
- Zhao, H.; Lin, Y.; Delang, C.O.; Ma, Y.; Zhou, J.; He, H. Contribution of soil erosion to the evolution of the plateau-plain-delta system in the Yellow River basin over the past 10,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 601, 111133. [Google Scholar]
- Wang, Q.; Jin, H.; Yuan, Z.; Yang, C. Synergetic variations of active layer soil water and salt in a permafrost-affected meadow in the headwater area of the Yellow River, northeastern Qinghai–Tibet plateau. Int. Soil Water Conserv. Res. 2022, 10, 284–292. [Google Scholar]
- Zhu, W.; Yang, J.; Yao, R.; Wang, X.; Xie, W.; Shi, Z. Buried layers change soil water flow and solute transport from the Yellow River Delta, Chin. J. Soils Sediments 2021, 21, 1598–1608. [Google Scholar] [CrossRef]
- Chi, Z.; Zhu, Y.; Li, H.; Wu, H.; Yan, B. Unraveling bacterial community structure and function and their links with natural salinity gradient in the Yellow River Delta. Sci. Total Environ. 2021, 773, 145673. [Google Scholar] [PubMed]
- Khlifa, R.; Rivest, D.; Grimond, L.; Bélanger, N. Stability of carbon pools and fluxes of a Technosol along a 7-year reclamation chronosequence at an asbestos mine in Canada. Ecol. Eng. 2023, 186, 106839. [Google Scholar]
- Wang, Y.; Fan, Y.; Wang, Q.; Zhang, S.; Shi, Y.; Zheng, X. Response of Soil Fertility and Bacterial Community Composition to Vegetation Species in a Coal Mining Subsidence Area: A Survey After 20-Year Reclamation. Front. Environ. Sci. 2022, 10, 937688. [Google Scholar]
- Singh, P.; Ghosh, A.; Kumar, S.; Kumar, M.; Sinha, P.K. Influence of input litter quality and quantity on carbon storage in post-mining forest soil after 14 years of reclamation. Ecol. Eng. 2022, 178, 106575. [Google Scholar]
- Gao, R.; Ai, N.; Liu, G.; Liu, C.; Qiang, F.; Zhang, Z.; Xiang, T.; Zang, K. The Coupling Relationship between Herb Communities and Soil in a Coal Mine Reclamation Area after Different Years of Restoration. Forests 2022, 13, 1481. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, J.; Yao, R.; Wang, X.; Xie, W.; Li, P. Nitrate leaching and NH3 volatilization during soil reclamation in the Yellow River Delta, China. Environ. Pollut. 2021, 286, 117330. [Google Scholar] [PubMed]
- Gong, Z.; Mou, K.; Wang, Q.; Qiu, H.; Zhang, C.; Zhou, D. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images. Sci. Total Environ. 2021, 769, 117330. [Google Scholar]
- Gao, J.; Fang, S.; Zhang, Y.; An, J.; Yu, N.; Zou, H. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China. Sci. Agric. Sin. 2022, 55, 1579–1588. [Google Scholar]
- Fernández-Caliani, J.; Giráldez, M.; Waken, W.; Del Río, Z.; Córdoba, F. Soil quality changes in an Iberian pyrite mine site 15 years after land reclamation. Catena 2021, 206, 105538. [Google Scholar]
- Yang, H.; Xia, J.; Cui, Q.; Liu, J.; Wei, S.; Feng, L.; Dong, K. Effects of different Tamarix chinensis-grass patterns on the soil quality of coastal saline soil in the Yellow River Delta, China. Sci. Total Environ. 2021, 772, 145501. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Xia, J.; Yang, H.; Liu, J.; Shao, P. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2020, 756, 143801. [Google Scholar] [CrossRef] [PubMed]
- Paul, G.C.; Saha, S.; Ghosh, K.G. Assessing the soil quality of Bansloi river basin, eastern India using soil-quality indices (SQIs) and Random Forest machine learning technique. Ecol. Indic. 2020, 118, 106804. [Google Scholar]
- Liu, S.; Zhang, Q.; Li, Z.; Tian, C.; Qiao, Y.; Du, K.; Cheng, H.; Chen, G.; Li, X.; Li, F. Soil Salinity Weakening and Soil Quality Enhancement after Long-Term Reclamation of Different Croplands in the Yellow River Delta. Sustainability 2023, 15, 1173. [Google Scholar]
- Zhang, C.; Gong, Z.; Qiu, H.; Zhang, Y.; Zhou, D. Mapping typical salt-marsh species in the Yellow River Delta wetland supported by temporal-spatial-spectral multidimensional features. Sci. Total Environ. 2021, 783, 147061. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Liu, Q. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry. Chemosphere 2017, 178, 143–153. [Google Scholar] [PubMed]
- Zhai, J.; Anderson, J.T.; Yan, G.; Cong, L.; Wu, Y.; Dai, L.; Liu, J.; Zhang, Z. Decomposition and nutrient dynamics responses of plant litter to interactive effects of flooding and salinity in Yellow River Delta wetland in northeastern China. Ecol. Indic. 2021, 120, 106943. [Google Scholar]
- Liu, Y.; Zhang, Y.; Xie, L.; Zhao, S.; Dai, L.; Zhang, Z. Effect of soil characteristics on preferential flow of Phragmites australis community in Yellow River delta. Ecol. Indic. 2021, 125, 107486. [Google Scholar]
- Yang, C.; Lv, D.; Jiang, S.; Lin, H.; Sun, J.; Li, K.; Sun, J. Soil salinity regulation of soil microbial carbon metabolic function in the Yellow River Delta, China. Sci. Total Environ. 2021, 790, 148258. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; Zhang, M.; Tan, Z. Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades. Sci. Total Environ. 2021, 787, 147644. [Google Scholar] [PubMed]
- Wang, Y.; Liu, G.; Zhao, Z. Spatial heterogeneity of soil fertility in coastal zones: A case study of the Yellow River Delta, China. J. Soils Sediments 2021, 21, 1826–1839. [Google Scholar]
- Zhang, Z.-X.; Song, Y.-T.; Zhang, H.-Z.; Li, X.-J.; Niu, B.-B. Spatiotemporal dynamics of soil salinity in the Yellow River Delta under the impacts of hydrology and climate. J. Appl. Ecol. 2021, 32, 1393–1405. [Google Scholar]
- Zhang, J.; Zhang, X.; Zhou, Y.; Han, Q.; Wang, X.; Song, C.; Wang, S.; Zhao, S. Occurrence, distribution and risk assessment of antibiotics at various aquaculture stages in typical aquaculture areas surrounding the Yellow Sea. J. Environ. Sci. 2023, 126, 621–632. [Google Scholar]
- Yu, L.; Huang, Z.; Tang, S.; Korpelainen, H.; Li, C. Populus euphratica males exhibit stronger drought and salt stress resistance than females br. Environ. Exp. Bot. 2023, 205, 105114. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, M.; Ding, Z.; Liu, B.; Jiang, M.; Lü, X.; Lou, Y. Light-acquisition traits link aboveground biomass and environment in inner saline-alkaline herbaceous marshes. Sci. Total Environ. 2023, 857, 159660. [Google Scholar]
- Wei, Y.; Xu, X.; Zhao, L.; Cao, X. Numerical modeling investigations of colloid facilitated chromium migration considering variable-density flow during the coastal groundwater table fluctuation. J. Hazard. Mater. 2023, 443, 130282. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qin, L.; Sun, X.; Zhao, S.; Yu, L.; Chen, S.; Wang, M. Salt stress-induced changes in soil metabolites promote cadmium transport into wheat tissues. J. Environ. Sci. 2023, 127, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Topaz, T. Attenuation of organic pollutants and the effects of salinity and seasonality in a Mediterranean micro-estuary. Sci. Total Environ. 2023, 856, 158919. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Lu, C.; Li, M.; Wang, Y.; Wang, N. Using 222Rn temporal and spatial distributions to estimate the groundwater discharge rate and associated nutrient fluxes into high salinity lakes in Badain Jaran Desert, Northwest China. Sci. Total Environ. 2023, 857, 159359. [Google Scholar] [PubMed]
- Han, L.; Zhao, Z.; Li, J.; Ma, X.; Zheng, X.; Yue, H.; Sun, G.; Lin, Z.; Guan, S. Application of humic acid and hydroxyapatite in Cd-contaminated alkaline maize cropland: A field trial. Sci. Total Environ. 2023, 859, 160315. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Huang, Y.; Ji, X.; Wei, Y.; Liu, Q.; Li, S.; Liu, J.; Dong, P. Comparative Transcriptome Analysis of Salt-Stress-Responsive Genes in Rice Roots. Phyton-Int. J. Exp. Bot. 2023, 92, 237–250. [Google Scholar] [CrossRef]
- Guo, Z.; Qin, Y.; Lv, J.; Wang, X.; Dong, H.; Dong, X.; Zhang, T.; Du, N.; Piao, F. Luffa rootstock enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot. Environ. Pollut. 2023, 316, 120521. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, Y.; Dai, L.; Xie, L.; Zhao, S.; Liu, Y.; Zhang, Z. Hydrological connectivity improves soil nutrients and root architecture at the soil profile scale in a wetland ecosystem. Sci. Total Environ. 2020, 762, 143162. [Google Scholar]
- Wang, T.; Ru, X.; Deng, B.; Zhang, C.; Wang, X.; Yang, B.; Zhang, L. Evidence that offshore wind farms might affect marine sediment quality and microbial communities. Sci. Total Environ. 2023, 856, 158782. [Google Scholar] [CrossRef]
- Zheng, S.; Bai, D.-S.; Yang, X.; Lai, J.-L.; Wang, Y.-W.; Zhang, Y.; Luo, X.-G. Changes in soil microecology of gangue reclamation areas after 10 years of in situ restoration with herbaceous plants (Artemisia sacrorum and Imperata cylindrica) and trees (Populus spp.). Ecol. Eng. 2022, 182, 106719. [Google Scholar] [CrossRef]
- Yu, X.; Xin, P.; Hong, L. Effect of evaporation on soil salinization caused by ocean surge inundation. J. Hydrol. 2021, 597, 126200. [Google Scholar]
- Kakeh, J.; Gorji, M.; Mohammadi, M.H.; Asadi, H.; Khormali, F.; Sohrabi, M. Effect of biocrusts on profile distribution of soil water content and salinity at different stages of evaporation. J. Arid Environ. 2021, 191, 104514. [Google Scholar]
- Lian, J.; Cheng, L.; Zhai, X.; Wu, R.; Huang, X.; Chen, D.; Pan, J.; Shohag, M.; Xin, X.; Ren, X.; et al. Zinc glycerolate (Glyzinc): A novel foliar fertilizer for zinc biofortification and cadmium reduction in wheat (Triticum aestivum L.). Food Chem. 2023, 402, 134290. [Google Scholar] [CrossRef] [PubMed]
- Elsiddig, A.M.I.; Zhou, G.; Zhu, G.; Nimir, N.E.A.; Suliman, M.S.E.; Ibrahim, M.E.H.; Ali, A.Y.A. Nitrogen fertilizer promoting salt tolerance of two sorghum varieties under different salt compositions. Chil. J. Agric. Res. 2023, 83, 3–13. [Google Scholar]
- Ramzan, M.; Sarwar, N.; Ali, L.; Saba, R.; Alahmadi, T.A.; Datta, R. Nitrogen enriched chemically produced carbon supplementary impacts on maize growth under saline soil conditions. J. King Saud Univ. Sci. 2023, 35, 102292. [Google Scholar]
- Caldelas, C.; Rezzouk, F.Z.; Gutiérrez, N.A.; Diez–Fraile, M.C.; Ortega, J.L.A. Interaction of genotype, water availability, and nitrogen fertilization on the mineral content of wheat grain. Food Chem. 2023, 404, 134565. [Google Scholar] [PubMed]
- Li, Z.; Zhang, Q.; Li, Z.; Qiao, Y.; Du, K.; Tian, C.; Zhu, N.; Leng, P.; Yue, Z.; Cheng, H.; et al. Effects of straw mulching and nitrogen application rates on crop yields, fertilizer use efficiency, and greenhouse gas emissions of summer maize. Sci. Total Environ. 2022, 847, 157681. [Google Scholar] [PubMed]
- Yang, X.; Wen, E.; Ge, C.; El-Naggar, A.; Yu, H.; Wang, S.; Kwon, E.E.; Song, H.; Shaheen, S.M.; Wang, H.; et al. Rinklebe. Iron-modified phosphorus- and silicon-based biochars exhibited various influences on arsenic, cadmium, and lead accumulation in rice and enzyme activities in a paddy soil. J. Hazard. Mater. 2023, 443, 130203. [Google Scholar]
- Liu, Z.; Gao, Z.; Bai, J.; Zhang, G.; Tang, R.; Chen, G. Effects of Cd addition on soil phosphorus mineralization in reclaimed coastal wetlands along a 100-year reclamation chronosequence in the Pearl River Estuary (China). Front. Mar. Sci. 2022, 9, 965197. [Google Scholar]
- Rady, M.M.; Mossa, A.-T.H.; Youssof, A.M.; Osman, A.S.; Ahmed, S.M.; Mohamed, I.A. Exploring the reinforcing effect of nano-potassium on the antioxidant defense system reflecting the increased yield and quality of salt-stressed squash plants. Sci. Hortic. 2023, 308, 111609. [Google Scholar]
- Uddin, M.; Hooda, P.S.; Mohiuddin, A.; Haque, M.E.; Smith, M.; Waller, M.; Biswas, J.K. Soil organic carbon dynamics in the agricultural soils of Bangladesh following more than 20 years of land use intensification. J. Environ. Manag. 2022, 305, 114427. [Google Scholar]
- Yuan, Y.; Gao, G.; Gao, Y. Characteristics of soil organic carbon and nitrogen fractions after 24 years of reclamation in a large open pit coal mine in the Loess Plateau. Trans. Chin. Soc. Agric. Eng. 2021, 37, 167–174. [Google Scholar]
- Wang, D.; Zhao, C.; Zheng, J.; Zhu, J.; Gui, Z.; Yu, Z. Evolution of soil salinity and the critical ratio of drainage to irrigation (CRDI) in the Weigan Oasis in the Tarim Basin. Catena 2021, 201, 105210. [Google Scholar]
- Prajapati, G.S.; Rai, P.K.; Mishra, V.N.; Singh, P.; Shahi, A.P. Remote sensing-based assessment of waterlogging and soil salinity: A case study from Kerala, India. Results Geophys. Sci. 2021, 7, 100024. [Google Scholar]
Soil Indicators | 0a | 1a | 5a | 10a | 20a |
---|---|---|---|---|---|
SSC (g/kg) | 6.60 ± 1.85 a | 4.36 ± 1.03 b | 1.75 ± 0.36 c | 1.63 ± 0.44 c | 2.85 ± 0.95 c |
SWC (%) | 28.97 ± 1.86 a | 28.86 ± 1.78 a | 29.70 ± 3.09 a | 25.79 ± 4.58 a | 29.43 ± 4.74 a |
pH | 8.11 ± 0.21 d | 8.73 ± 0.14 a | 8.46 ± 0.03 bc | 8.56 ± 0.27 ab | 8.28 ± 0.08 cd |
SD (g/cm3) | 1.48 ± 0.03 ab | 1.55 ± 0.04 a | 1.47 ± 0.10 abc | 1.44 ± 0.03 bc | 1.40 ± 0.08 c |
Sand (%) | 50.99 ± 3.33 a | 34.79 ± 9.21 b | 39.15 ± 7.81 b | 45.70 ± 10.21 ab | 19.37 ± 11.95 c |
Silt (%) | 42.34 ± 3.76 c | 54.62 ± 8.38 b | 49.24 ± 7.53 bc | 45.89 ± 8.07 bc | 68.37 ± 10.44 a |
Clay (%) | 6.66 ± 1.85 c | 10.59 ± 3.51 ab | 11.62 ± 3.72 ab | 8.41 ± 2.32 bc | 12.26 ± 2.69 a |
NH4+-N (mg/kg) | 17.21 ± 2.11 c | 18.85 ± 1.27 bc | 25.52 ± 6.50 a | 23.17 ± 1.08 ab | 22.96 ± 3.28 ab |
NO3−-N (mg/kg) | 34.38 ± 25.81 a | 6.89 ± 2.64 b | 11.39 ± 4.05 b | 13.92 ± 9.09 b | 15.85 ± 9.24 b |
AN (mg/kg) | 15.17 ± 5.51 b | 22.54 ± 16.57 ab | 35.19 ± 19.31 ab | 14.18 ± 8.98 b | 40.04 ± 32.82 a |
AP (mg/kg) | 3.24 ± 0.39 a | 8.16 ± 5.39 a | 10.42 ± 10.93 a | 13.36 ± 14.06 a | 8.64 ± 3.85 a |
AK (mg/kg) | 115.68 ± 26.92 bc | 398.48 ± 117.65 a | 171.7 ± 45.18 bc | 74.32 ± 16.37 c | 190.58 ± 120.13 b |
SOC (g/kg) | 4.71 ± 0.97 b | 5.53 ± 3.03 b | 8.62 ± 5.15 ab | 3.90 ± 0.74 b | 11.47 ± 8.18 a |
Principal Component | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
SSC | −0.24267 | −0.03805 | 0.52718 | −0.25238 |
SWC | −0.01352 | 0.39207 | 0.0892 | −0.40646 |
SD | −0.17061 | 0.23406 | 0.30233 | 0.39136 |
NH4+-N | 0.04968 | 0.25442 | −0.50835 | −0.22218 |
NO3−-N | −0.13467 | −0.45896 | 0.17426 | −0.27084 |
AN | 0.38423 | −0.30267 | 0.01142 | 0.05124 |
AP | 0.13944 | −0.33013 | −0.23008 | 0.38624 |
AK | 0.25899 | 0.13289 | 0.45615 | 0.21245 |
SOC | 0.40177 | −0.27201 | 0.05741 | −0.03426 |
SAND | −0.43138 | −0.08414 | −0.14498 | 0.1834 |
SLIT | 0.40358 | 0.02064 | 0.19622 | −0.15593 |
CLAY | 0.34736 | 0.26801 | −0.09217 | −0.20163 |
pH | 0.16131 | 0.37829 | 0.03856 | 0.44552 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Li, F.; Zhang, Q.; Li, Z.; Tian, C.; Qiao, Y.; Du, K.; Cheng, H.; Chen, G.; Li, X. Soil Quality Improvement with Increasing Reclamation Years in the Yellow River Delta. Agronomy 2023, 13, 2576. https://doi.org/10.3390/agronomy13102576
Liu S, Li F, Zhang Q, Li Z, Tian C, Qiao Y, Du K, Cheng H, Chen G, Li X. Soil Quality Improvement with Increasing Reclamation Years in the Yellow River Delta. Agronomy. 2023; 13(10):2576. https://doi.org/10.3390/agronomy13102576
Chicago/Turabian StyleLiu, Shanbao, Fadong Li, Qiuying Zhang, Zhao Li, Chao Tian, Yunfeng Qiao, Kun Du, Hefa Cheng, Gang Chen, and Xiaoyan Li. 2023. "Soil Quality Improvement with Increasing Reclamation Years in the Yellow River Delta" Agronomy 13, no. 10: 2576. https://doi.org/10.3390/agronomy13102576
APA StyleLiu, S., Li, F., Zhang, Q., Li, Z., Tian, C., Qiao, Y., Du, K., Cheng, H., Chen, G., & Li, X. (2023). Soil Quality Improvement with Increasing Reclamation Years in the Yellow River Delta. Agronomy, 13(10), 2576. https://doi.org/10.3390/agronomy13102576