Evaluation of Coffee Plants Transplanted to an Area with Surface and Deep Liming Based on Multispectral Indices Acquired Using Unmanned Aerial Vehicles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Crop Treatments and Transplanting
2.3. UAV, Flight Plans, and Multispectral Sensor
2.4. Image Processing and Spectral Data
2.5. Vegetation Indices
2.6. Field Sampling
2.7. Meteorological Variables
2.8. Statistical Analysis
3. Results and Discussion
3.1. Temporal Analysis of Meteorological Conditions and Coffee Growth Response
3.2. Statistical Analysis for Coffee Growth Variables
3.3. Spearman’s Rank Correlation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latini, A.O.; Silva, D.P.; Souza, F.M.L.; Ferreira, M.C.; Moura, M.S.; Suarez, N.F. Reconciling coffee productivity and natural vegetation conservation in an agroecosystem landscape in Brazil. J. Nat. Conserv. 2020, 57, 125902. [Google Scholar] [CrossRef]
- Méndez Rodríguez, C.; Salazar Benítez, J.; Rengifo Rodas, C.F.; Corrales, J.C.; Figueroa Casas, A. A multidisciplinary approach integrating emergy analysis and process modeling for agricultural systems sustainable management—Coffee farm validation. Sustainability 2022, 14, 8931. [Google Scholar] [CrossRef]
- Ferraz, G.A.S.; Silva, F.M.; Costa, P.A.N.; Silva, A.C.; Carvalho, F.D.M. Precision agriculture to study soil chemical properties and the yield of a coffee field. Coffee Sci. 2012, 7, 59–67. [Google Scholar]
- Mesquita, C.M.D.; Rezende, J.D.; Carvalho, J.S.; Fabri Júnior, M.A.; Moraes, N.C.; Dias, P.T.; Araújo, W.D. Manual do Café: Manejo de Cafezais em Produção; Emater-MG: Belo Horizonte, Brazil, 2016; pp. 1–52. [Google Scholar]
- Nora, D.D.; Amado, T.J.C. Improvement in chemical attributes of Oxisol subsoil and crop yields under no-till. Agron. J. 2013, 105, 1393–1403. [Google Scholar] [CrossRef]
- Raij, B. Gesso na Agricultura. Campinas; Instituto Agronômico: Belo Horizonte, Brazil, 2008; 233p. [Google Scholar]
- Rheinheimer, D.D.; Santos, E.J.S.; Kaminski, J.; Bortoluzzi, E.C.; Gatiboni, L.C. Alterações de atributos do solo pela calagem superficial e incorporada a partir de pastagem natural. Rev. Bras. Cienc. Solo 2000, 24, 797–805. [Google Scholar] [CrossRef]
- Amaral, A.S.; Anghinoni, I. Alteração de parâmetros químicos do solo pela reaplicação superficial de calcário no sistema plantio direto. Pesqui. Agropecu. Bras. 2001, 36, 695–702. [Google Scholar] [CrossRef]
- Serafim, M.E.; Lima, J.M.D.; Lima, V.M.P.; Zeviani, W.M.; Pessoni, P.T. Alterações físico-químicas e movimentação de íons em Latossolo gibbsítico sob doses de gesso. Bragantia 2012, 71, 75–81. [Google Scholar] [CrossRef]
- Vitti, G.C.; Luz, P.H.D.C.; Malavolta, E.; Dias, A.S.; Serrano, C.G.D.E. Uso do Gesso em Sistemas de Produção Agrícola; GAPE: Piracicaba, Brazil, 2008; 104p. [Google Scholar]
- Pereira, F.S. Gesso de Minério Associado a Fontes de Fósforo na Cultura do Milho em Sistema Plantio Direto no Estado de Alagoas; Universidade Estadual Paulista “Júlio de Mesquita Filho”: Botucatu, Brazil, 2007; 67p. [Google Scholar]
- Prado, R.M.; Natale, W. Uso da grade aradora superpesada, pesada e arado de discos na incorporação de calcário em profundidade e na produção de milho. Eng. Agríc. 2004, 24, 167–176. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Garcia, C.P. Efeitos do Preparo Profundo do Solo e da Calagem na Compactação do Solo e na Produtividade da Cana-de-Açúcar; Universidade Estadual Paulista “Julio de Mesquita Filho”: Botucatu, Brazil, 2018; 96p. [Google Scholar]
- Bender, D.D.B.B.; Weber, M.A.; Vieira, F.C.B. Necessidade de ajustes no sistema de recomendação de calagem e adubação de oliveiras (Olea europaea L.) no sul do Brasil. Rev. Ecol. Nutr. Florest. 2018, 6, 17–32. [Google Scholar] [CrossRef]
- Li, G.; Wan, S.; Zhou, J.; Yang, Z.; Qin, P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind. Crops Prod. 2010, 31, 13–19. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Sahoo, R.N.; Pandey, R.N.; Gupta, V.K.; Kumar, D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499–522. [Google Scholar] [CrossRef]
- Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A light-weight multispectral sensor for micro UAV—Opportunities for very high resolution airborne remote sensing. ISPRS Arch. 2008, 37, 1193–1199. [Google Scholar]
- Chemura, A.; Mutanga, O.; Dube, T. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests. Phys. Chem. Earth 2017, 100, 317–324. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Dube, T. Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 1–13. [Google Scholar] [CrossRef]
- Katsuhama, N.; Imai, M.; Naruse, N.; Takahashi, Y. Discrimination of areas infected with coffee leaf rust using a vegetation index. Remote Sens. Lett. 2018, 9, 1186–1194. [Google Scholar] [CrossRef]
- Marin, D.B.; Carvalho Alves, M.; Pozza, E.A.; Belan, L.L.; Oliveira Freitas, M.L. Multispectral radiometric monitoring of bacterial blight of coffee. Precis. Agric. 2019, 20, 959–982. [Google Scholar] [CrossRef]
- Marin, D.B.; Alves, M.D.C.; Pozza, E.A.; Gandia, R.M.; Cortez, M.L.J.; Mattioli, M.C. Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro. Rev. Ceres 2019, 66, 142–153. [Google Scholar] [CrossRef]
- Carrijo, G.L.; Oliveira, D.E.; Assis, G.A.; Carneiro, M.G.; Guizilini, V.C.; Souza, J.R. Automatic detection of fruits in coffee crops from aerial images. In Proceedings of the Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, Brazil, 8–11 November 2017; pp. 1–6. [Google Scholar]
- Oliveira, H.C.; Guizilini, V.C.; Nunes, I.P.; Souza, J.R. Failure Detection in Row Crops from UAV Images Using Morphological Operators. IEEE Geosci. Remote Sens. Lett. 2018, 7, 991–995. [Google Scholar] [CrossRef]
- Santos, L.M.; Souza Barbosa, B.D.; Diotto, A.V.; Andrade, M.T.; Conti, L.; Rossi, G. Determining the leaf area index and percentage of area covered by coffee crops using UAV RGB images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6401–6409. [Google Scholar] [CrossRef]
- Marin, D.B.; Ferraz, G.A.E.S.; Guimaraes, P.H.S.; Schwerz, F.; Santana, L.S.; Barbosa, B.D.S.; Rossi, G. Remotely Piloted Aircraft and Random Forest in the evaluation of the spatial variability of foliar nitrogen in coffee crop. Remote Sens. 2021, 13, 1471. [Google Scholar] [CrossRef]
- Marin, D.B.; Ferraz, G.A.E.S.; Schwerz, F.; Barata, R.A.P.; Oliveira, F.R.; Dias, J.E.L. Unmanned aerial vehicle to evaluate frost damage in coffee plants. Precis. Agric. 2021, 22, 1845–1860. [Google Scholar] [CrossRef]
- Santana, L.S.; Ferraz, G.A.E.S.; Cunha, J.P.B.; Santana, M.S.; Faria, R.D.O.; Marin, D.B.; Sarri, D. Monitoring Errors of Semi-Mechanized Coffee Planting by Remotely Piloted Aircraft. Agronomy 2021, 11, 1224. [Google Scholar] [CrossRef]
- Bento, N.L.; Ferraz, G.A.E.S.; Barata, R.A.P.; Soares, D.V.; Santos, L.M.D.; Santana, L.S.; Palchetti, E. Characterization of Recently Planted Coffee Cultivars from Vegetation Indices Obtained by a Remotely Piloted Aircraft System. Sustainability 2022, 14, 1446. [Google Scholar] [CrossRef]
- Baruqui, A.M.A.; Naime, U.J.; Motta, P.E.F.; Carvalho Filho, A.D. Levantamento de Reconhecimento de Média Intensidade dos Solos da Zona Campos das Vertentes-MG; Boletim de Pesquisa e Desenvolvimento; Embrapa Solos: Rio de Janeiro, Brazil, 2006; 134p. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos; Embrapa-SPI: Rio de Janeiro, Brazil, 2006; 412p. [Google Scholar]
- DJI. DJI MATRICE 100—User Manual. 2016. Available online: https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf (accessed on 10 May 2022).
- Precisionhawk. Precision Flight Free—Turn Your Drone into an Advanced Remote Sensing Tool—Features. 2017. Available online: https://www.precisionhawk.com/precisionflight (accessed on 11 March 2022).
- PIX4D SA. Pix4D Mapper 4.4.10. 2019. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 25 March 2022).
- Qgis Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation Project: Beaverton, OR, USA, 2019. [Google Scholar]
- Trimble. Ecognition Developer 9.0 User Guide; Trimble Germany GmbH: Munich, Germany, 2014. [Google Scholar]
- DaMatta, F.M.; Godoy, A.G.; Menezes-Silva, P.E.; Martins, S.C.; Sanglard, L.M.; Morais, L.E.; Ghini, R. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: Disentangling the contributions of stomatal, mesophyll, and biochemical limitations. J. Exp. Bot. 2016, 67, 341–352. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Moran, M.S. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Padilla, F.M.; Souza, R.; Peña-Fleitas, M.T.; Gallardo, M.; Giménez, C.; Thompson, R.B. Different responses of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Front. Plant Sci. 2018, 9, 1752. [Google Scholar] [CrossRef] [PubMed]
- Favarin, J.L.; Dourado Neto, D.; García, A.G.; Nova, N.A.V.; Favarin, D.G. Equations for estimating the coffee leaf area index. Pesqui. Agropecu. Bras. 2002, 37, 769–773. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration—NASA. Power Data Access Viewer. 2020. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 20 August 2020).
- Microsoft. Microsoft Excel—Computer Software; Microsoft Corporation: Washington, DC, USA, 2013. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2009. [Google Scholar]
- Braga, C.C.; Brito, J.D.; Sansigolo, C.A.; Rao, T.V.R. Tempo de resposta da vegetação às variabilidades sazonais da precipitação no Nordeste do Brasil. Rev. Bras. Meteorol. 2003, 11, 149–157. [Google Scholar]
- Flumignan, D.L.; De Faria, R.T. Evapotranspiração e coeficientes de cultivo de cafeeiros em fase de formação. Bragantia 2009, 68, 269–278. [Google Scholar] [CrossRef]
- Coltri, P.P.; Romani, L.A.S.; Dubreuil, V.; Corgne, S.; Zullo, J.J.; Pinto, H.S. Variação temporal da biomassa do café arábica arborizado e a pleno sol, através de índices de vegetação. In Proceedings of the 15th Simpósio Brasileiro de Sensoriamento Remoto, Curitiba, Brazil, 30 April–5 May 2011; INPE: São José dos Campos, Brazil, 2011. [Google Scholar]
- Volpato, M.; Alves, H.; Vieira, T.; Souza, W.D.O. Imagens MODIS para determinação de estiagem agrícola em área cafeeira no município de Patrocínio, MG. In Proceedings of the 14th Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brazil, 25–30 April 2009; INPE: São José dos Campos, Brazil, 2009. [Google Scholar]
- Bernardes, T.; Moreira, M.A.; Adami, M.; Giarolla, A.; Rudorff, B.F.T. Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery. Remote Sens. 2012, 4, 2492–2509. [Google Scholar] [CrossRef]
- Fang, S.; Tang, W.; Peng, Y.; Gong, Y.; Dai, C.; Chai, R.; Liu, K. Remote estimation of vegetation fraction and flower fraction in oilseed rape with unmanned aerial vehicle data. Remote Sens. 2016, 8, 416. [Google Scholar] [CrossRef]
- Rosa, V.G.C. Modelo Agrometeorológico-Espectral para Monitoramento e Estimativa da Produtividade do Café na Região Sul/Sudoeste do Estado de Minas Gerais; INPE: São José dos Campos, Brazil, 2007; 142p. [Google Scholar]
- Júnior, A.F.C.; Carvalho Júnior, O.A.; Souza Martins, E.; Guerra, A.F. Phenological characterization of coffee crop (Coffea arabica L.) from Modis time series. Braz. J. Geol. 2013, 31, 569–578. [Google Scholar] [CrossRef]
- Camargo, A.P.; Camargo, M.B.P. Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia 2001, 60, 65–68. [Google Scholar] [CrossRef]
- Wu, J.; Wang, D.; Bauer, M.E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crops Res. 2007, 102, 33–42. [Google Scholar] [CrossRef]
- Nolla, A.; Silva, V.L.B.; Muniz, A.S.; Silva, T.R.B. Correção da acidez do solo em profundidade através do uso de carbonatos, silicatos e casca de arroz em lisímetros. Rev. Cult. Sab. 2010, 3, 33–40. [Google Scholar]
- Caires, E.F.; Corrêa, J.C.L.; Churka, S.; Barth, G.; Garbuio, F.J. Surface application of lime ameliorates subsoil acidity and improves root growth and yield of wheat in an acid soil under no-till system. Sci. Agric. 2006, 63, 502–509. [Google Scholar] [CrossRef]
- Rodrigues, A.L.; Martinez, H.E.; Neves, J.C.L.; Novais, R.F.; Mendonça, S.M. Growth response of coffee tree shoots and roots to subsurface liming. Plant Soil 2001, 234, 207–214. [Google Scholar] [CrossRef]
- Barbosa, S.M.; Silva, B.M.; Oliveira, G.C.; Benevenute, P.A.N.; Silva, R.F.; Curi, N.; Pereira, V.M. Deep furrow and additional liming for coffee cultivation under first year in a naturally dense inceptisol. Geoderma 2020, 357, 113934. [Google Scholar] [CrossRef]
- Gutiérrez-Rodríguez, M.; Reynolds, M.P.; Escalante-Estrada, J.A.; Rodríguez-González, M.T. Association between canopy reflectance indices and yield and physiological traits in bread wheat under drought and well-irrigated conditions. Aust. J. Agric. Res. 2004, 55, 1139–1147. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Major, D.J. Use of remote-sensing imagery to estimate corn grain yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef]
Parameter | Configuration |
---|---|
Initial processing (alignment) | |
Keypoint image scale | Full |
Matching image pairs | Aerial grid or corridor |
Number of keypoints | Automatic |
Calibration method | Alternative |
Point cloud and mesh texture | |
Image scale | Original image size |
Point density | High |
Minimum number of matches | 3 |
3D textured mesh | High resolution |
DSM and orthomosaic | |
Resolution | Automatic |
Orthomosaic | GeoTIFF |
Reflectance maps and index calculation | |
Radiometric calibration | Irradiance sensor and calibration grid |
Bands | Green, red, red edge, near infrared |
Resolution | Automatic |
Reflectance map | GeoTIFF |
Sampled Months | ||||||
---|---|---|---|---|---|---|
Variables | May | July | September | November | January | March |
Treatment with deep liming | ||||||
Height (cm) | 31.01 | 35.72 | 39.87 | 50.35 | 55.07 | 70.45 |
Crown diameter (cm) | 29.49 | 30.45 | 31.65 | 49.24 | 58.69 | 81.01 |
Chlorophyll content (IRC) | 69.95 | 73.36 | 59.80 | 64.55 | 59.81 | 65.41 |
LAI | 0.0356 | 0.0408 | 0.0460 | 0.1122 | 0.1639 | 0.3715 |
Chlorophyll a (μg/cm2) | 46.7594 | 50.1935 | 36.4486 | 40.8418 | 36.1390 | 41.7047 |
chlorophyll b (μg/cm2) | 31.7791 | 34.0795 | 24.9167 | 27.8441 | 24.7043 | 28.4203 |
Total chlorophyll (μg/cm2) | 80.0600 | 86.0390 | 62.2095 | 69.7472 | 61.6010 | 71.2432 |
Canopy area (cm2) | 631.56 | 777.16 | 721.66 | 1583.75 | 1729.22 | 3725.61 |
GCI | 3.9045 | 2.9215 | 2.9382 | 4.3389 | 4.3003 | 6.7518 |
MSAVI2 | 0.5526 | 0.3604 | 0.2927 | 0.6516 | 0.4991 | 0.6086 |
MCARI1 | 0.5648 | 0.3193 | 0.2425 | 0.6830 | 0.4511 | 0.5375 |
GNDVI | 0.6541 | 0.5824 | 0.5873 | 0.6787 | 0.6739 | 0.7660 |
NDRE | 0.3158 | 0.1451 | 0.1143 | 0.1902 | 0.2230 | 0.3244 |
NDVI | 0.7032 | 0.5132 | 0.5647 | 0.7865 | 0.7799 | 0.8462 |
Treatment with surface liming | ||||||
Height (cm) | 33.16 | 35.53 | 40.25 | 50.11 | 54.33 | 69.11 |
Crown diameter (cm) | 31.87 | 30.57 | 32.98 | 50.17 | 58.44 | 78.22 |
Chlorophyll content (IRC) | 60.20 | 72.20 | 59.20 | 62.97 | 56.98 | 67.28 |
LAI | 0.0414 | 0.0414 | 0.0518 | 0.1215 | 0.1659 | 0.3500 |
Chlorophyll a (μg/cm2) | 36.6896 | 48.9462 | 35.8778 | 39.2296 | 33.3926 | 43.6815 |
chlorophyll b (μg/cm2) | 25.0791 | 33.2493 | 24.5370 | 26.7668 | 22.8703 | 29.7396 |
Total chlorophyll (μg/cm2) | 62.6016 | 83.8670 | 61.2292 | 66.9435 | 56.8532 | 74.6893 |
Canopy area (cm2) | 614.84 | 824.29 | 818.97 | 1647.60 | 1925.71 | 3825.22 |
GCI | 3.9389 | 2.7637 | 2.5180 | 4.3164 | 4.3529 | 6.6507 |
MSAVI2 | 0.5491 | 0.3496 | 0.2579 | 0.6811 | 0.5188 | 0.5990 |
MCARI1 | 0.5561 | 0.3095 | 0.2097 | 0.7371 | 0.4721 | 0.5320 |
GNDVI | 0.6551 | 0.5697 | 0.5510 | 0.6752 | 0.6749 | 0.7607 |
NDRE | 0.3095 | 0.1398 | 0.1140 | 0.1957 | 0.2178 | 0.3244 |
NDVI | 0.7047 | 0.5021 | 0.5106 | 0.8014 | 0.7916 | 0.8311 |
Study Variable | Null Hypothesis (H0) | Mean Rank | U Value (Sum of Ranks) | Significance Value p | Decision |
---|---|---|---|---|---|
Height (cm) | The distribution of the variable is the same for the different managements | SL = 91.33 DL = 89.67 | 8219.50 8070.50 | 0.831 | Accepts the null hypothesis (H0) |
Diameter (cm) | The distribution of the variable is the same for the different managements | SL = 92.88 DL = 88.12 | 8359.00 7931.00 | 0.540 | Accepts the null hypothesis (H0) |
LAI | The distribution of the variable is the same for the different managements | SL = 93.98 DL = 87.02 | 8458.00 7832.00 | 0.371 | Accepts the null hypothesis (H0) |
Chlorophyll a + b (μg/cm2) | The distribution of the variable is the same for the different managements | SL = 82.18b DL = 98.82a | 7396.50b 8893.50a | 0.032 * | Rejects the null hypothesis (H0); the managements differ |
Estimated crown area (cm2) | The distribution of the variable is the same for the different managements | SL = 93.43 DL = 87.57 | 8409.00 7881.00 | 0.450 | Accepts the null hypothesis (H0) |
GCI | The distribution of the variable is the same for the different managements | SL = 88.91 DL = 92.09 | 8002.00 8288.00 | 0.682 | Accepts the null hypothesis (H0) |
MSAVI2 | The distribution of the variable is the same for the different managements | SL = 90.03 DL = 90.97 | 8103.00 8187.00 | 0.904 | Accepts the null hypothesis (H0) |
MCARI1 | The distribution of the variable is the same for the different managements | SL = 90.11 DL = 90.89 | 8110.00 8180.00 | 0.920 | Accepts the null hypothesis (H0) |
GNDVI | The distribution of the height variable is the same for the different managements | SL = 88.32 DL = 92.68 | 7949.00 8341.00 | 0.575 | Accepts the null hypothesis (H0) |
NDRE | The distribution of the variable is the same for the different managements | SL = 89.78 DL = 91.22 | 8080.00 8210.00 | 0.852 | Accepts the null hypothesis (H0) |
NDVI | The distribution of the variable is the same for the different managements | SL = 88.58 DL = 92.42 | 7972.00 8318.00 | 0.621 | Accepts the null hypothesis (H0) |
Field Parameters | |||||||
---|---|---|---|---|---|---|---|
VIs (UAV) | Height (cm) | Crown Diameter (cm) | Chlorophyll Content (IRC) | LAI | Chlorophyll a (μg/cm2) | Chlorophyll b (μg/cm2) | Chlorophyll a + b (μg/cm2) |
Treatment with deep liming | |||||||
GCI | 0.8735 | 0.9281 | −0.1337 | 0.9525 | −0.1625 | −0.1624 | −0.1654 |
MSAVI | 0.5117 | 0.5911 | 0.0440 | 0.5290 | 0.0139 | 0.0137 | 0.0106 |
MCARI1 | 0.3320 | 0.4088 | 0.0975 | 0.3351 | 0.0707 | 0.0705 | 0.0678 |
GNDVI | 0.8393 | 0.9033 | −0.1780 | 0.8943 | −0.2076 | −0.2077 | −0.2107 |
NDRE | 0.3858 | 0.5263 | 0.1873 | 0.5756 | 0.1705 | 0.1702 | 0.1685 |
NDVI | 0.7627 | 0.8199 | −0.3415 | 0.7462 | −0.3701 | −0.3703 | −0.3732 |
Crown area | 0.9583 | 0.9753 | −0.2097 | 0.9953 | −0.2385 | −0.2384 | −0.2413 |
Treatment without deep liming | |||||||
GCI | 0.8688 | 0.9224 | 0.0850 | 0.9324 | 0.0619 | 0.0618 | 0.0594 |
MSAVI | 0.5167 | 0.5953 | −0.0640 | 0.5128 | −0.0932 | −0.0936 | −0.0966 |
MCARI1 | 0.3630 | 0.4362 | −0.0903 | 0.3419 | −0.1187 | −0.1190 | −0.1220 |
GNDVI | 0.8076 | 0.8787 | −0.0238 | 0.8541 | −0.0492 | −0.0494 | −0.0521 |
NDRE | 0.4474 | 0.5621 | −0.0499 | 0.5927 | −0.0673 | −0.0671 | −0.0689 |
NDVI | 0.7314 | 0.7993 | −0.2605 | 0.7102 | −0.2877 | −0.2881 | −0.2909 |
Crown area | 0.9740 | 0.9776 | 0.1797 | 0.9974 | 0.1610 | 0.1607 | 0.1588 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barata, R.A.P.; Ferraz, G.A.e.S.; Bento, N.L.; Soares, D.V.; Santana, L.S.; Marin, D.B.; Mattos, D.G.; Schwerz, F.; Rossi, G.; Conti, L.; et al. Evaluation of Coffee Plants Transplanted to an Area with Surface and Deep Liming Based on Multispectral Indices Acquired Using Unmanned Aerial Vehicles. Agronomy 2023, 13, 2623. https://doi.org/10.3390/agronomy13102623
Barata RAP, Ferraz GAeS, Bento NL, Soares DV, Santana LS, Marin DB, Mattos DG, Schwerz F, Rossi G, Conti L, et al. Evaluation of Coffee Plants Transplanted to an Area with Surface and Deep Liming Based on Multispectral Indices Acquired Using Unmanned Aerial Vehicles. Agronomy. 2023; 13(10):2623. https://doi.org/10.3390/agronomy13102623
Chicago/Turabian StyleBarata, Rafael Alexandre Pena, Gabriel Araújo e Silva Ferraz, Nicole Lopes Bento, Daniel Veiga Soares, Lucas Santos Santana, Diego Bedin Marin, Drucylla Guerra Mattos, Felipe Schwerz, Giuseppe Rossi, Leonardo Conti, and et al. 2023. "Evaluation of Coffee Plants Transplanted to an Area with Surface and Deep Liming Based on Multispectral Indices Acquired Using Unmanned Aerial Vehicles" Agronomy 13, no. 10: 2623. https://doi.org/10.3390/agronomy13102623
APA StyleBarata, R. A. P., Ferraz, G. A. e. S., Bento, N. L., Soares, D. V., Santana, L. S., Marin, D. B., Mattos, D. G., Schwerz, F., Rossi, G., Conti, L., & Bambi, G. (2023). Evaluation of Coffee Plants Transplanted to an Area with Surface and Deep Liming Based on Multispectral Indices Acquired Using Unmanned Aerial Vehicles. Agronomy, 13(10), 2623. https://doi.org/10.3390/agronomy13102623