Prediction of Grain Yield and Gluten Content in Winter Bread Wheat Based on Nutrient Content in Plant Parts during the Critical Cereal Window
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
- (1)
- Application of 40 and 80 kg N ha−1 at the end of winter, before beginning winter wheat vegetation in spring.
- (2)
- Supplement to 160 kg N ha−1 at the end of tillering/beginning of shoot elongation (BBCH 29/30).
- (3)
- Supplement to 240 kg N ha−1 when the flag leaf became visible (BBCH 39).
2.3. Plant Sampling
2.4. Statistical Analysis
3. Results
3.1. Winter Wheat Biomass at Critical Stages of Grain Yield Formation
3.2. Nutritional Composition of Winter Wheat Parts at Booting—BBCH 40
3.2.1. Leaves
3.2.2. Stems
3.3. Nutritional Composition of Winter Wheat Parts at Full Flowering—BBCH 65
3.3.1. Flag Leaf
3.3.2. Leaves
3.3.3. Stems
3.3.4. Ears
4. Discussion
4.1. Vegetative Indicators of Grain Yield and Qualitative Characteristics of Grain
- 1.
- EA/LE: GY = −3.39 EA/LE + 16.5 for n = 14, R2 = 0.58 and p ≤ 0.001
- 2.
- EA/ST: GY = −10.0 EA/ST + 14.2 for n = 14, R2 = 0.34 and p ≤ 0.05
4.2. Prognosis of Grain Yield and Quality Characteristics of Grain
4.2.1. Booting Stage
- 1.
- Leaves:
- 2.
- Stems:
4.2.2. Full Flowering Stage
- (1)
- GY: LE65 > FLE65 ≥ EA65 > ST65;
- (2)
- GL: ST65 ≥ LE65 ≥ FLE65 > EA65;
- (3)
- GLY: LE65 > ST65 = FLE65 > EA65.
- 1.
- Flag leaf:
- 2.
- Leaves:
- 3.
- Stems:
- Wet gluten (GL):
- Leaves:
- Stems:
- Wet gluten yield (GLY):
- Leaves:
- Stems:
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Factor | Factor Level | Booting, BBCH 40 | Flowering, BBCH 65 | |||||
---|---|---|---|---|---|---|---|---|
LE40 | ST40 | TB40 | LE65 | ST65 | EA65 | TB65 | ||
Years | 2014 | 1.89 b | 6.55 b | 8.44 b | 1.5 b | 7.4 c | 3.5 b | 12.4 c |
(Y) | 2015 | 2.15 b | 6.89 b | 9.04 b | 2.3 a | 10.2 a | 3.1 b | 15.6 b |
2016 | 2.63 a | 8.64 a | 11.26 a | 2.4 a | 9.1 b | 5.7 a | 17.2 a | |
Fc, p | 18.2 *** | 40.4 *** | 38.4 *** | 32.1 *** | 26.3 *** | 114.7 *** | 31.1 *** | |
Nitrogen | 0 | 1.59 c | 5.71 c | 7.30 c | 1.3 c | 7.2 c | 3.1 c | 11.6 c |
rates, kg ha−1 | 40 | 2.06 b | 7.26 b | 9.32 b | 1.6 bc | 7.8 ba | 3.5 bc | 12.9 bc |
(N) | 80 | 2.30 ab | 7.96 ab | 10.27 ab | 2.0 ab | 9.3 ac | 4.1 ab | 15.4 ab |
120 | 2.44 ab | 7.67 ab | 10.12 ab | 2.3 a | 10.3 a | 4.6 a | 17.2 a | |
160 | 2.73 a | 8.18 a | 10.91 a | 2.4 a | 10.1 a | 4.7 a | 17.3 a | |
200 | - | - | - | 2.4 a | 9.1 ab | 4.4 ab | 15.9 a | |
240 | - | - | - | 2.3 a | 8.6 ab | 4.3 ab | 15.2 ab | |
Fc, p | 14.7 *** | 18.7 *** | 20.4 *** | 12.4 *** | 7.3 *** | 8.8 *** | 10.1 *** | |
Source of variation of the studied interactions | ||||||||
Y × N | ns | ** | * | * | * | ns | ns |
Wheat Traits | Statistical Indices | LE40 | ST40 | FL65 | LE65 | ST65 | EA65 |
---|---|---|---|---|---|---|---|
Grain yield—GY | Coefficient of determination —path analysis | 0.938 | 0.943 | 0.930 | 0.954 | 0.903 | 0.921 |
Coefficient of determination —stepwise regression | 0.814 | 0.887 | 0.846 | 0.931 | 0.734 | 0.798 | |
Indicative nutrients —stepwise regression | N, Ca, Mn | K, Mg, Cu | Ca, Mn | K, Ca, Mn | Ca, Zn | N, K | |
Wet gluten content—GL | Coefficient of determination —path analysis | 0.995 | 0.997 | 0.974 | 0.978 | 0.985 | 0.923 |
Coefficient of determination —stepwise regression | 0.978 | 0.929 | 0.942 | 0.943 | 0.897 | 0.778 | |
Indicative nutrients —stepwise regression | P, Mg, Zn | P, Mg, Zn | N, Ca, Fe, Cu | K, Ca, Cu | Mg, Mn, Zn | N, Mg | |
Wet gluten yield—GLY | Coefficient of determination —path analysis | 0.969 | 0.948 | 0.930 | 0.959 | 0.934 | 0.885 |
Coefficient of determination —stepwise regression | 0.947 | 0.849 | 0.896 | 0.924 | 0.787 | 0.770 | |
Indicative nutrients —stepwise regression | N, Ca, Mn | Mg, Zn | Ca, Fe, Cu | K, Mn, Cu | Mn, Zn | N, K, Mg |
Factor | Factor | N | P | K | Mg | Ca | Fe | Mn | Zn | Cu | SPAD |
---|---|---|---|---|---|---|---|---|---|---|---|
Level | % DM | mg kg−1 DM | |||||||||
Years | 2014 | 2.08 c | 0.30 a | 2.30 b | 0.34 a | 0.30 b | 68.3 a | 83.3 a | 3.8 c | 2.8 b | 564.6 |
(Y) | 2015 | 2.52 b | 0.25 b | 2.59 a | 0.26 c | 0.56 a | 49.0 b | 35.8 b | 11.0 a | 4.6 a | 563.9 |
2016 | 3.13 a | 0.29 b | 2.33 b | 0.30 b | 0.25 b | 62.6 a | 33.4 b | 5.9 b | 4.1 a | 568.4 | |
Fc, p | 29.2 *** | 23.5 *** | 12.7 *** | 30.3 *** | 61.8 *** | 32.1 *** | 71.1 *** | 43.7 *** | 31.7 *** | 1.8 ns | |
Nitrogen | 0 | 2.18 c | 0.25 c | 1.99 d | 0.29 | 0.29 b | 45.0 c | 35.7 a | 3.9 c | 2.8 b | 460.2 f |
rates, kg ha−1 | 40 | 2.03 c | 0.26 bc | 2.29 c | 0.30 | 0.31 ab | 53.3 bc | 45.7 ab | 4.9 bc | 3.3 b | 517.8 e |
(N) | 80 | 2.13 c | 0.27 ac | 2.31 bc | 0.30 | 0.35 ab | 52.2 bc | 47.2 ab | 5.2 bc | 3.4 b | 544.8 d |
120 | 2.49 bc | 0.28 ab | 2.51 ac | 0.29 | 0.38 ab | 63.6 ab | 50.8 ab | 6.7 bc | 3.7 ab | 570.5 c | |
160 | 2.90 ab | 0.30 a | 2.59 ac | 0.29 | 0.43 ab | 66.5 a | 53.0 ab | 8.3 ab | 4.5 a | 607.0 b | |
200 | 3.01 ab | 0.29 ab | 2.64 a | 0.31 | 0.44 a | 67.7 a | 57.7 ab | 11.0 a | 4.6 a | 618.8 b | |
240 | 3.29 a | 0.29 ab | 2.52 ab | 0.31 | 0.42 ab | 71.4 a | 65.6 a | 8.2 ab | 4.6 a | 640.2 a | |
Fc, p | 10.9 *** | 5.9 *** | 11.8 *** | 0.4 ns | 3.4 ** | 13.4 *** | 3.4 * | 8.1 *** | 7.6 *** | 535.8 *** | |
Source of variation of the studied interactions | |||||||||||
Y × N | ns | ns | ns | ns | ns | ns | ns | * | ns | ns |
Factors | Factor | N | P | K | Mg | Ca | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|
Level | % DM | mg kg−1 DM | ||||||||
Years | 2014 | 0.77 b | 0.17 a | 2.44 a | 0.15 b | 0.032 b | 24.1 b | 47.0 a | 14.9 | 2.74 a |
(Y) | 2015 | 0.93 a | 0.14 c | 1.85 b | 0.11 c | 0.046 a | 33.9 a | 9.2 b | 8.5 | 2.76 a |
2016 | 0.79 b | 0.16 b | 1.97 b | 0.20 a | 0.033 b | 22.3 b | 15.6 b | 8.0 | 2.33 b | |
Fc, p | 9.8 *** | 17.0 *** | 38.1 *** | 516.1 *** | 31.8 *** | 11.7 *** | 94.0 *** | 68.8 *** | 6.4 ** | |
Nitrogen | 0 | 0.57 d | 0.13 c | 1.56 d | 0.14 c | 0.033 | 20.2 a | 21.9 | 7.7 d | 2.11 c |
rates, kg N ha−1 | 40 | 0.70 bc | 0.14 c | 1.83 cd | 0.14 c | 0.034 | 22.1 ab | 27.8 | 9.5 cd | 2.38 c |
(N) | 80 | 0.70 cd | 0.14 c | 1.77 cd | 0.14 c | 0.036 | 26.5 ab | 23.3 | 8.4 bd | 2.19 bc |
120 | 0.79 bc | 0.15 bc | 2.04 bc | 0.15 bc | 0.038 | 23.2 ab | 23.0 | 9.8 bd | 2.55 ac | |
160 | 0.91 ab | 0.17 ab | 2.33 ab | 0.16 ab | 0.039 | 32.7 ab | 22.6 | 11.3 ac | 2.82 ab | |
200 | 1.01 a | 0.18 a | 2.55 a | 0.16 a | 0.040 | 30.1 a | 21.8 | 12.5 ab | 3.15 a | |
240 | 1.04 a | 0.18 a | 2.51 a | 0.16 a | 0.040 | 32.7 a | 27.2 | 14.0 a | 3.07 a | |
Fc, p | 15.8 *** | 9.8 *** | 25.3 *** | 12.4 *** | 1.9 ns | 3.4 ** | 0.6 ns | 10.2 *** | 8.1 *** | |
Source of variation of the studied interactions | ||||||||||
Y × N | * | ns | ns | ns | * | ns | ns | ns | ns |
Factors | Factor | N | P | K | Mg | Ca | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|
Level | % DM | mg kg−1 DM | ||||||||
Years | 2014 | 1.95 b | 0.33 b | 1.51 a | 0.16 b | 0.015 c | 37.3 ab | 44.8 a | 37.3 a | 3.65 b |
(Y) | 2015 | 2.96 a | 0.32 b | 1.38 b | 0.11 c | 0.030 a | 36.5 a | 19.4 c | 28.0 b | 4.09 ab |
2016 | 2.11 b | 0.38 a | 0.94 c | 0.22 a | 0.019 b | 40.1 a | 30.8 b | 25.8 b | 3.94 a | |
Fc, p | 113.8 *** | 22.3 *** | 326.5 *** | 428.2 *** | 419.6 *** | 5.2 ** | 115.9 *** | 71.0 *** | 5.7 ** | |
Nitrogen | 0 | 2.10 c | 0.33 | 1.16 c | 0.16 ab | 0.020 c | 35.3 c | 28.2 b | 26.3 c | 3.63 |
rates, kg N ha−1 | 40 | 2.15 bc | 0.34 | 1.21 bc | 0.17 ab | 0.021 bc | 36.1 bc | 31.2 ab | 27.8 bc | 4.13 |
(N) | 80 | 2.34 ac | 0.32 | 1.21 bc | 0.15 b | 0.020 ac | 34.6 c | 30.3 ab | 28.7 bc | 3.85 |
120 | 2.35 ac | 0.35 | 1.31 ab | 0.16 ab | 0.021 ac | 37.6 bc | 30.2 ab | 31.3 ab | 3.78 | |
160 | 2.43 ac | 0.34 | 1.32 ab | 0.16 ab | 0.021 ac | 37.6 bc | 31.0 ab | 31.2 ab | 4.08 | |
200 | 2.47 ab | 0.36 | 1.38 a | 0.17 a | 0.022 ab | 43.2 a | 33.0 ab | 32.2 ab | 3.94 | |
240 | 2.53 a | 0.36 | 1.34 a | 0.17 a | 0.023 a | 41.2 ab | 37.8 a | 35.0 a | 3.84 | |
Fc, p | 4.3 ** | 1.7 ns | 10.8 *** | 2.3 * | 4.2 ** | 6.3 *** | 2.9 * | 7.1 *** | 1.4 ns | |
Source of variation of the studied interactions | ||||||||||
Y × N | ns | ns | ns | ns | ns | ns | ns | ns | * |
References
- Neupane, D.; Adhikari, P.; Bhattarai, D.; Rana, B.; Ahmed, Z.; Sharma, U.; Adhikari, D. Does climate change affect the yield of the top three cereals and food security in the World. Earth 2022, 3, 45–71. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://faostat.fao.org/site/567/default.aspx#ancor (accessed on 20 August 2023).
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 493, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Poutanewn, K.S.; Karlund, A.O.; Gomez-Gallego, C.; Johansson, D.P.; Scheers, N.M.; Marklinder, I.M.; Eriksen, A.K.; Silventoinen, P.C.; Nordlund, E.; Sozer, N. Grains—A major source of sustainable protein for health. Nutr. Rev. 2022, 80, 1648–1663. [Google Scholar] [CrossRef] [PubMed]
- Laidig, F.; Hüsken, A.; Rentel, D.; Piepho, H.-P. Protein use efficiency and stability of baking quality in winter wheat based on the relations of loaf volume and grain protein content. Theor. Appl. Genet. 2022, 135, 1331–1343. [Google Scholar] [CrossRef] [PubMed]
- Schuster, C.; Huen, J.; Scherf, K.A. Comprehensive study on gluten composition and baking quality of winter wheat. Cereal Chem. 2022, 100, 142–155. [Google Scholar] [CrossRef]
- Ahrends, H.E.; Siebert, S.; Rezaei, E.E.; Seidel, S.J.; Hüging, H.; Ewert, F.; Döring, T.; Rueda-Ayala, V.; Eugster, W.; Gaiser, T. Nutrient supply affects the yield stability of major European crops—A 50 year study. Environ. Res. Lett. 2020, 16, 014003. [Google Scholar] [CrossRef]
- Billen, G.; Lassaletta, L.; Garnier, J.A. Biochemical view of the global agro-food system: Nitrogen flows associated with protein production, consumption and trade. Glob. Food Secur. 2014, 3, 209–219. [Google Scholar] [CrossRef]
- Klepper, B.; Rickman, R.W.; Waldman, S.; Chevalier, P. The physiological life cycle of wheat: Its use in breeding and crop management. Euphytica 1998, 100, 341–347. [Google Scholar] [CrossRef]
- Rickman, R.W.; Waldman, S.E.; Klepper, B. MODWht3: A development driven wheat growth simulation. Agron. J. 1996, 88, 176–185. [Google Scholar] [CrossRef]
- Xie, Q.; Mayes, S.; Sparkes, D.L. Preanthesis biomass accumulation and plant organs defines yield components in wheat. Eur. J. Agron. 2016, 81, 15–26. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, D.; Schnurbusch, T. Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Front. Plant Sci. 2018, 9, 330. [Google Scholar] [CrossRef]
- Xue, C.; Schule auf’m Erley, G.; Rossman, A.; Shuster, R.; Koehler, P.; Mühling, K.-H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Front. Plant Sci. 2016, 7, 738. [Google Scholar] [CrossRef] [PubMed]
- Giordano, N.; Sadras, V.O.; Lollato, R.P. Late-season nitrogen application increases grain protein concentration and is neutral for yield in wheat. A global meta-analysis. Field Crops Res. 2023, 290, 108740. [Google Scholar] [CrossRef]
- Klikocka, H.; Szczepaniak, W. Energy crises—Alternative use of winter bread wheat grain depending on protein content. Agronomy 2023, 13, 861. [Google Scholar] [CrossRef]
- Szczepaniak, W.; Potarzycki, J. Impact of increasing nitrogen rates on the course of the nitrogen critical concentration curve during the vegetative growth of winter wheat. J. Elem. 2014, 19, 549–566. [Google Scholar]
- Bergmann, W. Nutritional Disorders of Plants; Verlag Gustav Fisher: Jena, Germany, 1992; 741p. [Google Scholar]
- Lemaire, G.; Jeuffroy, M.-H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 181–190. [Google Scholar] [CrossRef]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-specific nitrogen management in winter wheatsupported by low-altitude remote sensing and soil data. Precis. Agric. 2020, 22, 364–386. [Google Scholar] [CrossRef]
- Chen, Z.; Miao, Y.; Lu, J.; Zhou, L.; Li, Y.; Zhang, H.; Lou, W.; Zhang, Z.; Kusnierek, K.; Liu, C. In-season diagnosis of winter wheat nitrogen status in smallholder farmer fields across a village using unmanned aerial vehicle-based remote sensing. Agronomy 2019, 9, 619. [Google Scholar] [CrossRef]
- Veres, S.; Ondrasek, G.; Zsombik, L. Wheat sensitivity to nitrogen supply under different climatic conditions. In Global Wheat Production; Fhad, S., Basir, A., Adnan, M., Eds.; InTech: London, UK, 2018; pp. 31–49. [Google Scholar]
- Cacak-Pietrak, G. Wykorzystanie pszenicy w różnych gałęziach przemysłu spożywczego—Wymagania technologiczne. Przegląd Zbożowo-Młynarski 2008, 52, 11–13. [Google Scholar]
- Beaufils, E.R. Diagnosis and Recommendation Integrated System (DRIS): A General Scheme of Experimentation and Calibration Based on Principles Developed from Research in Plant Nutrition; Soil Science Bulletin 1; Department of Soil Science and Agrometeorology, University of Natal: Pietermaritzburg, South Africa, 1973; p. 132. [Google Scholar]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Kęsik, K. Application of the Mehlich 3 method in the fertilizer advisory system. Stud. I Rap. IUNG-PIB 2016, 48, 95–104. (In Polish) [Google Scholar]
- Trávník, K.; Zbíral, J.; Němec, P. Agrochemical Soil Testing—Mehlich III; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 1999. (In Czech) [Google Scholar]
- Zbíral, J. Determination of plant-available micronutrients by the Mehlich 3 soil extractant—A proposal of critical values. Plant Soil Environ. 2016, 62, 527–531. [Google Scholar] [CrossRef]
- PN-EN ISO 20483:2014-02; Cereal Grains and Pulses—Determinantion of Nitrogen Content and Conversion to Crude Protein—Kjeldahl Method. PKN 2015: Warsaw, Poland, 2014; 24p.
- Konys, L.; Wiśniewski, P. Path analysis in cause and effect relationships. Roczniki AR Poznaniu 1984, CLIII, 37–54. (In Polish) [Google Scholar]
- Lenka, D.; Misra, B. Path-coefficient analysis of yield in rice varieties. Indian J. Agric. Sci. 1973, 43, 376–379. [Google Scholar]
- Jaskulska, I.; Jaskulski, D.; Kotwica, K.; Wasilewski, P.; Gałężewski, L. Effect of tillage simplifications on yield and grain quality of winter wheat after different previous crops. Acta Sci. Polonorum. Agric. 2013, 12, 37–44. [Google Scholar]
- Wanic, M.; Denert, M.; Treder, K. Effect of forecrops on the yield and quality of commom wheat and spelt wheat grain. J. Elem. 2019, 24, 369–383. [Google Scholar]
- Wójcik-Gront, E.; Iwańska, M.; Wnuk, A.; Oleksiak, T. The analysis of wheat yield variability based on experimental data from 2008−2018 to understand the yield gap. Agriculture 2022, 12, 32. [Google Scholar] [CrossRef]
- Borkowska, H.; Grundas, S.; Styk, B. Influence of nitrogen fertilization of winter wheat on its gluten quality. Int. Agrophysics 1999, 13, 333–335. [Google Scholar]
- Litke, L.; Gaile, Z.; Ruža, A. Effect of nitrogen rate and forecrop on nitrogen use effciency in winter wheat (Triticum aestivum). Agron. Res. 2019, 17, 582–592. [Google Scholar]
- Duan, J.; Wu, Y.; Zhou, Y.; Ren, X.; Shao, Y.; Feng, W.; Zhu, Y.; Wang, Y.; Guo, T. Grain number response to pre–anthesis dry matter and nitrogen in improving wheat yield in the Huang–Huai Plain. Sci. Rep. 2018, 8, 7126. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Barłóg, P.; Kryszak, J.; Łukowiak, R. Pre-anthesis nutritional status of Spelt Wheat as a tool for predicting the attinable grain yield. Agronomy 2019, 9, 558. [Google Scholar] [CrossRef]
- Potarzycki, J.; Grzebisz, J.; Szczepaniak, W. Magnesium fertilization increases nitrogen use efficiency in winter wheat (Triticum aestivum L.). Plants 2022, 11, 2600. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; McLaughlin, M.J.; White, P. Zinc for better crop production and human health. Plant Soil 2017, 411, 1–4. [Google Scholar] [CrossRef]
- Zhang, P.-P.; Chen, Y.-L.; Wang, C.-Y.; Ma, G.; Lü, J.-J.; Liu, J.-B.; Guo, T.-C. Distribution and accumulation of zinc and nitrogen in wheat grain pearling fractions in response to foliar zinc and soil nitrogen applications. J. Integr. Agric. 2021, 20, 3277–3288. [Google Scholar] [CrossRef]
- Rossmann, A.; Buchner, P.H.; Savill, G.P.; Hawkesford, M.J.; Scherf, K.A.; Mühling, K.H. Foliar N application at anthesis alters grain protein composition and enhances baking quality in winter wheat only under a low N fertiliser regime. Europ. J. Agron. 2019, 109, 125909. [Google Scholar] [CrossRef]
- Sobolewska, M.; Wenda-Piesik, A.; Jaroszewska, A.; Stankowski, S. Effect of habit and foliar fertilization with K, Zn and Mn on winter wheat grain and baking quality. Agronomy 2020, 10, 276. [Google Scholar] [CrossRef]
- Horvat, D.; Dvojković, K.; Novoselović, D.; Tucak, M.; Andric, L.; Magdić, D.; Drezner, G. resposne of wheat yield and protein-related quality on late-season urea application. Agronomy 2022, 12, 886. [Google Scholar] [CrossRef]
- Du Preez, C.C.; Bennie, A.T.P. Concentration, accumulation and uptake rate of Cu, Fe, Mn and Zn by wheat under irrigation. S. Afr. J. Plant Soil 1992, 9, 4–9. [Google Scholar] [CrossRef]
- EL-Metwally, A.E.; Abdalla, F.E.; Saady, A.M.; Safina, S.A.; EI-Sawy, S.S. Response of wheat to magnesium and copper foliar feeding under sandy soil conditions. J. Am. Sci. 2010, 6, 818–823. [Google Scholar]
Soil, cm | pH | Corg % | P | K | Mg | Ca | Cu | Mn | Zn | Fe | Nmin |
---|---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | kg ha−1 | ||||||||||
2013/2014 | |||||||||||
0–30 | 6.9 | 1.3 | 234 VH 5 | 231 H | 105 M | 988 L | 0.4 L | 27.2 L | 3.6 M | 536 H | 86.4 |
30–60 | 6.7 | 1.1 | 234 VH | 237 H | 103 VM | 876 L | 0.4 L | 25.7 L | 3.5 M | 541 H | |
2014/2015 | |||||||||||
0–30 | 7.1 | 2.2 | 185 VH | 185 M | 165 MVH | 2045 M | 3.5 M | 85.5 M | 6.3 H | 268 M | 129.0 |
30–60 | 7.2 | 2.1 | 161 VH | 157 M | 155 VH | 2063 M | 3.5 M | 93.8 M | 5.6 H | 269 M | |
2015/2016 | |||||||||||
0–30 | 6.6 | 1.6 | 202 VH | 281 VH | 165 VH | 1480 L | 2.8 M | 61.9 M | 6.1 H | 347 M | 110.0 |
30–60 | 6.6 | 1.4 | 139 VH | 222 VH | 163 VH | 1504 L | 2.5 M | 62.0 M | 3.7 M | 231 M |
Factor | Factor | GY | CP | GL | STA | CPY | GLY | STAY |
---|---|---|---|---|---|---|---|---|
Level | t ha−1 | % | t ha−1 DW | |||||
Years | 2014 | 9.84 b | 11.2 c | 21.6 c | 63.6 a | 1.18 b | 2.16 b | 6.25 b |
(Y) | 2015 | 11.27 a | 11.9 b | 23.8 b | 63.3 b | 1.37 a | 2.76 a | 7.11 a |
2016 | 7.22 c | 14.0 a | 29.0 a | 61.8 c | 1.02 c | 2.13 b | 4.45 c | |
Fc, p | 285.7 *** | 142.0 *** | 145.3 *** | 97.0 *** | 83.1 *** | 61.8 *** | 325.8 *** | |
Nitrogen | 0 | 6.42 e | 10.5 e | 20.1 d | 64.4 a | 0.67 d | 1.28 d | 4.14 d |
concentration, kg ha−1 | 40 | 8.24 d | 11.2 de | 21.d | 63.8 ab | 0.90 c | 1.74 c | 5.28 c |
(N) | 80 | 9.03 d | 11.4 d | 22.1 d | 63.6 b | 1.01 c | 1.96 c | 5.76 c |
120 | 10.00 c | 12.3 c | 24.5 c | 62.9 c | 1.21 b | 2.41 b | 6.30 b | |
160 | 10.27 bc | 13.1 b | 26.7 b | 62.4 cd | 1.33 b | 2.70 b | 6.41 ab | |
200 | 10.96 ab | 13.90 a | 28.63 ab | 61.78 de | 1.51 a | 3.09 a | 6.78 ab | |
240 | 11.18 a | 14.17 a | 29.56 a | 61.51 e | 1.57 a | 3.28 a | 6.88 a | |
Fc, p | 82.7 *** | 58.6 ** | 56.7 *** | 52.0 *** | 117.0.0 ** | 113.1 *** | 72.3 *** | |
Source of variation in the studied interactions | ||||||||
Y × N | ** | ns | ns | ns | *** | *** | ** |
Factor | Factor | N | P | K | Mg | Ca | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|
Level | % DM | mg kg−1 DM | ||||||||
Years | 2014 | 2.53 b | 0.42 | 3.58 a | 0.20 b | 0.17 b | 75.5 a | 58.3 a | 10.7 b | 3.7 b |
(Y) | 2015 | 3.08 a | 0.31 | 2.90 c | 0.12 c | 0.14 c | 68.6 b | 32.9 b | 11.7 ab | 6.0 a |
2016 | 3.24 a | 0.36 | 3.37 b | 0.23 a | 0.23 a | 50.9 c | 36.7 b | 13.2 a | 5.5 a | |
Fc, p | 21.7 *** | 26.7 *** | 25.0 *** | 189.4 *** | 70.0 *** | 42.0 *** | 18.0 *** | 3.6 * | 27.3 *** | |
Nitrogen | 0 | 2.40 d | 0.31 a | 2.93 c | 0.16 b | 0.15 c | 47.0 c | 30.0 b | 7.8 c | 3.7 a |
rates, kg ha−1 | 40 | 2.67 cd | 0.35 ab | 2.97 c | 0.17 bc | 0.16 bc | 55.0 c | 36.5 ab | 10.5 c | 4.4 bc |
(N) | 80 | 2.90 bc | 0.38 a | 3.26 bc | 0.19 ab | 0.19 ab | 69.2 b | 42.6 ab | 11.1 bc | 5.0 ab |
120 | 3.19 ab | 0.40 a | 3.57 ab | 0.20 a | 0.20 a | 74.5 ab | 52.1 a | 14.5 ab | 6.1 a | |
160 | 3.58 a | 0.39 a | 3.69 a | 0.20 a | 0.21 a | 79.2 a | 51.9 a | 15.5 a | 6.0 a | |
Fc, p | 19.6 *** | 7.1 *** | 14.4 *** | 11.1 *** | 12.8 *** | 29.1 *** | 5.4 ** | 12.7 *** | 11.1 *** | |
Source of variation of the studied interactions | ||||||||||
Y × N | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Factor | Factor | N | P | K | Mg | Ca | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|
Level | % DM | mg kg−1 DM | ||||||||
Years | 2014 | 1.21 b | 0.23 b | 2.71 a | 0.12 b | 0.04 a | 33.9 a | 30.8 a | 11.9 b | 2.0 c |
(Y) | 2015 | 1.37 a | 0.21 c | 2.16 b | 0.09 c | 0.03 b | 31.5 b | 18.2 b | 13.0 b | 3.1 a |
2016 | 1.36 a | 0.29 a | 2.51 a | 0.21 a | 0.03 b | 24.9 b | 21.5 b | 15.2 a | 2.8 b | |
Fc, p | 5.7 ** | 83.7 *** | 24.1 *** | 761.4 *** | 153.5 *** | 19.7 *** | 30.8 *** | 11.5 *** | 33.0 *** | |
Nitrogen | 0 | 1.08 c | 0.21 c | 1.96 c | 0.11 d | 0.03 c | 24.9 b | 20.5 | 9.5 c | 2.0 b |
rates, kg ha−1 | 40 | 1.13 bc | 0.23 b | 2.25 bc | 0.12 cd | 0.03 b | 25.3 b | 22.2 | 11.1 c | 2.3 b |
(N) | 80 | 1.26 b | 0.24 ab | 2.40 b | 0.13 bc | 0.03 b | 30.8 a | 25.0 | 13.4 b | 2.7 a |
120 | 1.53 a | 0.26 a | 2.83 a | 0.14 ab | 0.04 a | 34.4 a | 25.7 | 15.6 ab | 3.1 a | |
160 | 1.56 a | 0.27 a | 2.87 a | 0.14 ab | 0.04 a | 35.1 a | 24.2 | 17.3 a | 3.0 a | |
Fc, p | 20.6 *** | 18.4 *** | 23.4 *** | 15.8 *** | 38.4 *** | 15.2 *** | 1.8 ns | 28.0 *** | 13.8 *** | |
Source of variation of the studied interactions | ||||||||||
Y × N | ns | *** | ns | ** | *** | *** | ns | * | ns |
Factor | Factor | N | P | K | Mg | Ca | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|
Level | % DM | mg kg−1 DM | ||||||||
Years | 2014 | 1.47 b | 0.28 b | 2.92 b | 0.28 a | 0.37 b | 55.1 b | 89.5 a | 5.6 c | 2.50 c |
(Y) | 2015 | 1.35 b | 0.22 c | 3.21 a | 0.27 a | 0.63 a | 51.9 b | 46.4 b | 11.0 a | 5.43 a |
2016 | 2.31 a | 0.31 b | 3.41 a | 0.16 b | 0.24 c | 66.1 a | 41.2 b | 8.3 b | 3.88 b | |
Fc, p | 65.4 *** | 52.8 *** | 17.2 *** | 90.1 *** | 381.0 *** | 30.8 *** | 26.5 *** | 45.6 *** | 113.8 *** | |
Nitrogen | 0 | 1.08 d | 0.24 c | 2.55 d | 0.21 b | 0.33 c | 47.0 e | 37.9 b | 5.3 d | 3.13 c |
rates, kg ha−1 | 40 | 1.45 cd | 0.25 bc | 2.93 cd | 0.22 ab | 0.37 bc | 53.0 de | 50.5 ab | 6.5 cd | 3.52 bc |
(N) | 80 | 1.39 cd | 0.27 ac | 2.97 c | 0.23 ab | 0.40 ac | 54.2 ce | 53.8 ab | 6.0 cd | 3.29 c |
120 | 1.77 bc | 0.27 ac | 3.27 bc | 0.23 ab | 0.45 a | 57.4 bd | 65.2 ab | 8.0 bc | 3.80 ab | |
160 | 2.00 ab | 0.28 ab | 3.41 ab | 0.24 ab | 0.45 a | 63.2 ab | 65.3 ab | 9.5 ab | 4.37 bc | |
200 | 2.06 ab | 0.28 ac | 3.67 a | 0.26 a | 0.45 a | 62.1 ac | 62.6 ab | 10.8 a | 4.72 a | |
240 | 2.21 a | 0.30 ab | 3.46 ab | 0.26 a | 0.43 ab | 67.1 a | 77.8 a | 12.1 a | 4.76 a | |
Fc, p | 17.7 *** | 5.0 *** | 18.4 *** | 3.2 ** | 9.4 *** | 11.3 *** | 2.7 * | 17.4 *** | 10.4 *** | |
Source of variation of the studied interactions | ||||||||||
Y × N | * | ns | ns | ns | ns | * | ns | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzebisz, W.; Szczepaniak, W.; Potarzycki, J.; Biber, M. Prediction of Grain Yield and Gluten Content in Winter Bread Wheat Based on Nutrient Content in Plant Parts during the Critical Cereal Window. Agronomy 2023, 13, 2649. https://doi.org/10.3390/agronomy13102649
Grzebisz W, Szczepaniak W, Potarzycki J, Biber M. Prediction of Grain Yield and Gluten Content in Winter Bread Wheat Based on Nutrient Content in Plant Parts during the Critical Cereal Window. Agronomy. 2023; 13(10):2649. https://doi.org/10.3390/agronomy13102649
Chicago/Turabian StyleGrzebisz, Witold, Witold Szczepaniak, Jarosław Potarzycki, and Maria Biber. 2023. "Prediction of Grain Yield and Gluten Content in Winter Bread Wheat Based on Nutrient Content in Plant Parts during the Critical Cereal Window" Agronomy 13, no. 10: 2649. https://doi.org/10.3390/agronomy13102649
APA StyleGrzebisz, W., Szczepaniak, W., Potarzycki, J., & Biber, M. (2023). Prediction of Grain Yield and Gluten Content in Winter Bread Wheat Based on Nutrient Content in Plant Parts during the Critical Cereal Window. Agronomy, 13(10), 2649. https://doi.org/10.3390/agronomy13102649