Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Humic Substances
2.2. Microorganisms
2.3. Plant Growth Conditions
2.4. Differential Transcription Level of Genes with RT-qPCR
2.5. Statistical Analysis
3. Results
3.1. Vegetative Growth
3.2. Plant Nodulation
3.3. Plant Nutrient Content
3.4. Plant Metabolism was Affected by Co-Inoculation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buono, B. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological activities of humic substances. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Volume 2., Part 1: Fundamentals and Impact of Mineral-Organic Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM); Senesi, N., Xing, B., Huang, P.M., Eds.; Wiley: Hoboken, NJ, USA, 2009; pp. 305–339. [Google Scholar]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef]
- Nardi, S.; Muscolo, A.; Vaccaro, S.; Baiano, S.; Spaccini, R.; Piccolo, A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and Krebs cycle in maize seedlings. Soil Biol. Biochem. 2007, 39, 3138–3146. [Google Scholar] [CrossRef]
- Schiavon, M.; Pizzeghello, D.; Muscolo, A.; Vaccaro, S.; Francioso, O.; Nardi, S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol. 2010, 36, 662–669. [Google Scholar] [CrossRef]
- Conab. Safra 2022/23: Produção de Grãos Pode Chegar a 308 Milhões de t Impulsionada pela boa Rentabilidade de Milho, soja e Algodão. Available online: https://www.conab.gov.br/ultimas-noticias/4731-safra-2022-23-producao-de-graos-pode-chegar-a-308-milhoes-de-toneladas-impulsionada-pela-boa-rentabilidade-de-milho-soja-e-algodao (accessed on 8 August 2023).
- Iowa State University Extension and Outreach. Humic and Fulvic Acids and Their Potential in Crop Production. Available online: https://fieldcropnews.com/wp-content/uploads/2015/04/Humic-Acid-Iowa-State.pdf (accessed on 18 April 2023).
- Silva, G. Soybean Yield Response to Foliar Applied Humic Acid and Fungicide. Available online: https://www.canr.msu.edu/news/soybean_yield_response_to_foliar_applied_humic_acid_and_fungicide (accessed on 8 August 2023).
- Lenssen, A.W.; Olk, D.C.; Dinnes, D.L. Application of a formulated humic product can increase soybean yield. Crop Forage Turfgrass Manag. 2019, 5, 180053. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Ertani, A. Hormone-like activity of the soil organic matter. Appl. Soil Ecol. 2018, 123, 517–520. [Google Scholar] [CrossRef]
- Tan, K.H.; Tantiwiramanond, D. Effect of humic acids on nodulation and dry matter production of soybean peanut, and clover. Soil Sci. Soc. Am. J. 1983, 47, 1121–1124. [Google Scholar] [CrossRef]
- da Silva, M.S.R.A.; de Carvalho, L.A.L.; Braos, L.B.; de Sousa Antunes, L.F.; da Silva, C.S.R.A.; da Silva, C.G.N.; Pinheiro, D.G.; Correia, M.E.F.; Araújo, E.S.; Colnago, L.A.; et al. Effect of the application of vermicompost and millicompost humic acids about the soybean microbiome under water restriction conditions. Front. Microbiol. 2022, 13, 1000222. [Google Scholar] [CrossRef]
- Puglisi, E.; Pascazio, S.; Suciu, N.; Cattani, I.; Fait, G.; Spaccini, R.; Crecchio, C.; Piccolo, A.; Trevisan, M. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J. Geochem. Explor. 2013, 129, 82–94. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Canellas, N.O.A.; Mazzei, P.; Piccolo, A. Humic acids increase the maize seedlings exudation yield. Chem. Biol. Technol. Agric. 2019, 6, 3. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biol. Fertil. Soils 2013, 49, 791–801. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araujo, R.S. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A new biotechnological tool to improve yield and sustainability. Am. J. Plant Sci. 2015, 6, 811–817. [Google Scholar] [CrossRef]
- Rego, C.H.Q.; Cardoso, F.B.; Cândido, A.C.S.; Teodoro, P.E.; Alves, C.Z. Co-inoculation with Bradyrhizobium and Azospirillum increases yield and quality of soybean seeds. Agron. J. 2018, 110, 2302–2309. [Google Scholar] [CrossRef]
- Deak, E.A.; Martin, T.N.; Fipke, G.M.; Stecca, J.D.L.; Cunha, V.S. Soil humidity as a productive conditioner of soybean culture through inoculation, co-inoculation and rooting. Aust. J. Crop Sci. 2020, 14, 932–939. [Google Scholar] [CrossRef]
- Moretti, L.G.; Crusciol, C.A.C.; Bossolani, J.W.; Momesso, L.; Garcia, A.; Kuramae, E.E.; Hungria, M. Bacterial consortium and microbial metabolites increase grain quality and soybean yield. J. Soil Sci. Plant Nutr. 2020, 20, 1923–1934. [Google Scholar] [CrossRef]
- Rondina, A.B.L.; Sanzovo, A.W.S.; Guimarães, G.S.; Wendling, J.R.; Nogueira, M.A.; Hungria, M. Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biol. Fertil. Soils 2020, 56, 537–549. [Google Scholar] [CrossRef]
- Baldani, J.I.; Baldani, V.L.D.; Seldin, L.; Döbereiner, J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Evol. Microbiol. 1986, 36, 86–93. [Google Scholar] [CrossRef]
- Olivares, F.L.; Baldani, V.L.D.; Reis, V.M.; Baldani, J.I.; Döbereiner, J. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol. Fertil. Soils 1996, 21, 197–200. [Google Scholar] [CrossRef]
- da Piedade Melo, A.; Olivares, F.L.; Médici, L.O.; Torres-Neto, A.; Dobbss, L.B.; Canellas, L.P. Mixed rhizobia and Herbaspirillum seropedicae inoculations with humic acid-like substances improve water-stress recovery in common beans. Chem. Biol. Technol. Agric. 2017, 4, 6. [Google Scholar] [CrossRef]
- Döbereiner, J.; Baldani, V.L.D.; Baldani, J.I. Como Isolar E Identificar Bactérias Diazotróficas de Plantas não Leguminosas; Embrapa Agrobiologia: Seropédica, Brasil, 1995. [Google Scholar]
- Islam, M.S.; Muhyidiyn, I.; Islam, M.R.; Hasan, M.K.; Hafeez, A.S.G.; Hosen, M.M.; Saneoka, H.; Ueda, A.; Liu, L.; Naz, M.; et al. Soybean and Sustainable Agriculture for Food Security [Internet]. In Soybean—Recent Advances in Research and Applications; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Dinler, B.S.; Gunduzer, E.; Tekinay, T. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress. Acta Biol. Cracoviensia Ser. Bot. 2016, 58, 29–41. [Google Scholar]
- Bahjat, N.M.; Tuncturk, M.; Tuncturk, R. Effect of humic acid applications on physiological and biochemical properties of soybean (Glycine max L.) grown under salt stress conditions. Yuz. Yil Univ. J. Agric. Sci. 2022, 33, 1–9. [Google Scholar]
- Matuszak-Slamani, R.; Bejger, R.; Włodarczyk, M.; Kulpa, D.; Sienkiewicz, M.; Gołębiowska, D.; Skórska, E.; Ukalska-Jaruga, A. Effect of humic acids on soybean seedling growth under polyethylene-glycol-6000-induced drought stress. Agronomy 2022, 12, 1109. [Google Scholar] [CrossRef]
- Chen, Y.; Clapp, C.E.; Magen, H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutr. 2004, 50, 1089–1095. [Google Scholar] [CrossRef]
- Tunçtürk, R.; Kulaz, H.; Tunçturk, M. Effect of humic acid applications on some nutrient contents of soybean (Glycine max L.) Cultivars. Oxid. Commun. 2016, 39, 503–510. [Google Scholar]
- Savita, S.P.; Girijesh, G.K. Effect of humic substances on nutrient uptake and yield of soybean. J. Pharmacogn. Phytochem. 2019, 8, 2167–2171. [Google Scholar]
- Yang, X.; Alidoust, D.; Wang, C. Effects of iron oxide nanoparticles on the mineral composition and growth of soybean (Glycine max L.) plants. Acta Physiol. Plant. 2020, 42, 128. [Google Scholar] [CrossRef]
- Huziem, G.A.M.; Ibrahim, M.M.; Khalitay, A.M.; Mahdy, A.Y. Response of two soybeans (Glycine max L.) cultivars to different levels of humic acids and mineral fertilization. Arch. Agric. Sci. J. 2022, 5, 1–12. [Google Scholar]
- Latifnia, E.; Reza Eisvand, H.R. Soybean physiological properties and grain quality responses to nutrients, and predicting nutrient defciency using chlorophyll fluorescence. J. Soil Sci. Plant Nutr. 2022, 22, 1942–1954. [Google Scholar] [CrossRef]
- Meerza, C.H.M.N.; Ali, S.S. Morphological growth of soybean (Glycine max L.) treated with soil application of humic acid under different cultivation periods. J. Agric. Sci. Agric. Eng. 2023, 6, 136–145. [Google Scholar]
- Pidurkar, P.K.; Hanwate, G.R.; Asati, N.P.; Jaybhaye, B.B. Effect of humic acid on growth and available soil nutrient of soybean (Glycine max L.) Pharma Innov. J. 2022, 11, 1592–1598. Pharma Innov. J. 2022, 11, 1592–1598. [Google Scholar]
- Hungria, M.; Campo, R.J.; Mendes, I.C. Fixação Biológica do Nitrogênio na Cultura da soja. Embrapa Soja, Circular Técnica, n. 35; Embrapa Cerrados, Circular Técnica, n. 13, 2001. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPSO/18515/1/circTec35.pdf (accessed on 17 April 2023).
- Döbereiner, J. Evaluation of nitrogen fixation in legumes by the regression of total plant nitrogen with nodule weight. Nature 1966, 210, 850–852. [Google Scholar] [CrossRef]
- Muñoz, N.; Qi, X.; Li, M.W.; Xie, M.; Gao, Y.; Cheung, M.Y.; Wong, F.L.; Lam, H. M Improvement in nitrogen fixation capacity could be part of the domestication process in soybean. Heredity 2016, 117, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Reis de Andrade da Silva, M.S.; de Melo Silveira dos Santos, B.; Hidalgo Chavez, D.W.; de Oliveira, R.; Barbosa Santos, C.H.; Oliveira, E.C.; Rigobelo, E.C. K-humate as an agricultural alternative to increase nodulation of soybeans inoculated with Bradyrhizobium. Biocatal. Agric. Biotechnol. 2021, 36, 102129. [Google Scholar] [CrossRef]
- Canellas, N.A.; Olivares, F.L.; Canellas, L.P. Metabolite fingerprints of maize and sugarcane seedlings: Searching for markers after inoculation with plant growth-promoting bacteria in humic acids. Chem. Biol. Technol. Agric. 2019, 6, 14. [Google Scholar] [CrossRef]
- Olivares, F.L.; Busato, J.G.; Paula, A.M.; Lima, L.S.; Aguiar, N.O.; Canellas, L.P. Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chem. Biol. Technol. Agric. 2017, 4, 30. [Google Scholar] [CrossRef]
- Schwember, A.R.; Schulze, J.A.; Del Pozo, A.; Cabeza, R.A. Regulation of symbiotic nitrogen fixation in legume root nodules. Plants 2019, 8, 333. [Google Scholar] [CrossRef]
- Egli, M.A.; Griffith, S.M.; Miller, S.S.; Anderson, M.P.; Vance, C.P. Nitrogen assimilating enzyme activities and enzyme protein during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol. 1989, 91, 898–904. [Google Scholar] [CrossRef]
- Sulieman, S.; Fischinger, S.A.; Gresshoff, P.M.; Schulze, J. Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol. Plant. 2010, 140, 21–31. [Google Scholar] [CrossRef]
- Vaccaro, S.; Ertani, A.; Nebbioso, A.; Muscolo, A.; Quaggiotti, S.; Piccolo, A.; Nardi, S. Humic substances stimulate maize nitrogen assimilation and aminoacid metabolism at physiological and molecular level. Chem. Biol. Technol. Agric. 2015, 2, 5. [Google Scholar] [CrossRef]
- Quaggiotti, S.; Rupert, B.; Pizzeghello, D.; Francioso, O.; Tugnoli, V.; Nardi, S. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J. Exp. Bot. 2004, 55, 803–813. [Google Scholar] [CrossRef]
- Azevedo, I.G.; Olivares, F.L.O.; Ramos, A.C.R.; Bertolazi, A.A.; Canellas, L.P. Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings. Chem. Biol. Technol. Agric. 2019, 6, 8. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Yang, J.; Yu, N.; Wang, E. Hormone modulation of legume-rhizobial symbiosis. J. Integr. Plant Biol. 2018, 60, 632–648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Hou, H.; Zhang, D.; Zhu, B.; Yuan, H.; Gao, T. Transcriptomic and metabolomic analysis of soybean nodule number improvements with the use of water-soluble humic materials. J. Agric. Food Chem. 2023, 71, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.C.; Olivares, F.L.; Peres, L.E.P.; Piccolo, A.; Canellas, L.P. Plant hormone crosstalk mediated by humic acids. Chem. Biol. Technol. Agric. 2022, 9, 29. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Hungria, M.; da Silva Sena, J.V.; Poggere, G.; dos Reis, A.R.; Corrêa, R.S. Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Appl. Soil Ecol. 2021, 163, 103913. [Google Scholar] [CrossRef]
roots | |||||||||||
Treatment | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn |
g kg−1 | mg kg−1 | ||||||||||
Control | 12.0 (±1.5) | 0.9 (±0.1) | 4.1 (1.0) | 1.2 (0.2) | 1.2 (0.1) | 2.4 (0.2) | 3 (1) | 12 (1) | 6545 (60) | 184 (4) | 27 (5) |
HS | 11.0 (±3.6) | 0.9 (0.2) | 2.7 (1.3) | 0.9 (0.1) | 1.3 (0.1) | 2.3 (0.3) | 2 (2) | 9 (1) | 5934 (435) | 173 (16) | 32 (6) |
HS + H. seropedicae | 9.9 (1.1) | 0.9 (0.1) | 5.3 (1.3) | 1.1 (0.1) | 1.6 (0.2) | 2.8 (0.3) | 3 (1) | 10 (1) | 7006 * (492) | 192 (100) | 26 (3) |
shoots | |||||||||||
g kg−1 | mg kg−1 | ||||||||||
N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn | |
Control | 29.6 (3.8) | 2.2 (0.1) | 14.0 (2.1) | 8.6 (0.7) | 3.9 (0.4) | 2.2 (0.2) | 29 (3) | 6 (0.4) | 251 (42) | 181 (20) | 85 (4) |
HS | 35.6 * (1.3) | 2.4 (0.3) | 16.0 (5.4) | 8.4 (0.5) | 3.7 (0.1 | 2.2 (0.0) | 27 (3) | 7 (2) | 206 (6) | 197 (82) | 93 (18) |
HS + H. seropedicae | 27.3 (3.5) | 2.3 (0.1) | 14.6 (0.8) | 7.8 (0.3) | 3.4 (0.2) | 2.3 (0.1) | 29 (1) | 6 (1) | 162 (18) | 266 * (68) | 92 (5.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canellas, L.P.; Silva, R.M.; Barbosa, L.J.d.S.; Sales, F.S.; Ribeiro, R.C.; Mota, G.P.; Olivares, F.L. Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation. Agronomy 2023, 13, 2660. https://doi.org/10.3390/agronomy13102660
Canellas LP, Silva RM, Barbosa LJdS, Sales FS, Ribeiro RC, Mota GP, Olivares FL. Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation. Agronomy. 2023; 13(10):2660. https://doi.org/10.3390/agronomy13102660
Chicago/Turabian StyleCanellas, Luciano Pasqualoto, Rakiely Martins Silva, Lucas José da Silva Barbosa, Fernando Soares Sales, Rafael Chaves Ribeiro, Gabriela Petroceli Mota, and Fábio Lopes Olivares. 2023. "Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation" Agronomy 13, no. 10: 2660. https://doi.org/10.3390/agronomy13102660
APA StyleCanellas, L. P., Silva, R. M., Barbosa, L. J. d. S., Sales, F. S., Ribeiro, R. C., Mota, G. P., & Olivares, F. L. (2023). Co-Inoculation with Bradyrhizobium and Humic Substances Combined with Herbaspirillum seropedicae Promotes Soybean Vegetative Growth and Nodulation. Agronomy, 13(10), 2660. https://doi.org/10.3390/agronomy13102660