Social-Ecologically More Sustainable Agricultural Production
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Morizet-Davis, J.; Marting Vidaurre, N.A.; Reinmuth, E.; Rezaei-Chiyaneh, E.; Schlecht, V.; Schmidt, S.; Singh, K.; Vargas-Carpintero, R.; Wagner, M.; Von Cossel, M. Ecosystem Services at the Farm Level—Overview, Synergies, Trade-Offs and Stakeholder Analysis. Glob. Chall. 2023, 7, 2200225. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S. IPCC 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2022; Cambridge University Press: Cambridge, UK, 2001; Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FullReport.pdf (accessed on 20 October 2023).
- European Commission. Enhancing Agricultural Biodiversity. Available online: https://agriculture.ec.europa.eu/sustainability/environmental-sustainability/biodiversity_en (accessed on 20 October 2023).
- Rockström, J.; Gupta, J.; Qin, D.; Lade, S.J.; Abrams, J.F.; Andersen, L.S.; Armstrong McKay, D.I.; Bai, X.; Bala, G.; Bunn, S.E.; et al. Safe and Just Earth System Boundaries. Nature 2023, 619, 102–111. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global Estimates of the Value of Ecosystems and Their Services in Monetary Units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Von Cossel, M.; Pereira, L.A.; Lewandowski, I. Deciphering Substrate-Specific Methane Yields of Perennial Herbaceous Wild Plant Species. Agronomy 2021, 11, 451. [Google Scholar] [CrossRef]
- Hahn, J.; Westerman, P.R.; de Mol, F.; Heiermann, M.; Gerowitt, B. Viability of Wildflower Seeds After Mesophilic Anaerobic Digestion in Lab-Scale Biogas Reactors. Front. Plant Sci. 2022, 13, 942346. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Hahn, J. Ensilability of Biomass from Effloresced Flower Strips as Co-Substrate in Bioenergy Production. Front. Bioeng. Biotechnol. 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Celma, S.; Sanz, M.; Ciria, P.; Maliarenko, O.; Prysiazhniuk, O.; Daugaviete, M.; Lazdina, D.; von Cossel, M. Yield Performance of Woody Crops on Marginal Agricultural Land in Latvia, Spain and Ukraine. Agronomy 2022, 12, 908. [Google Scholar] [CrossRef]
- Reinhardt, J.; Hilgert, P.; von Cossel, M. Biomass Yield of Selected Herbaceous and Woody Industrial Crops across Marginal Agricultural Sites with Shallow Soil. Agronomy 2021, 11, 1296. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, C.; Xiang, W.; Yi, Z.; Xiao, L. A Sampling Strategy to Develop a Primary Core Collection of Miscanthus Spp. in China Based on Phenotypic Traits. Agronomy 2022, 12, 678. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Hastings, A.; von Cossel, M.; Murphy-Bokern, D.; McCalmont, J.; Whitaker, J.; Alexopoulou, E.; Amaducci, S.; Andronic, L.; Ashman, C.; et al. Perennial Biomass Cropping and Use: Shaping the Policy Ecosystem in European Countries. GCB Bioenergy 2023, 15, 538–558. [Google Scholar] [CrossRef]
- Liao, X.; Wu, Y.; Fu, T.; Iqbal, Y.; Yang, S.; Li, M.; Yi, Z.; Xue, S. Biomass Quality Variations over Different Harvesting Regimes and Dynamics of Heavy Metal Change in Miscanthus Lutarioriparius around Dongting Lake. Agronomy 2022, 12, 1188. [Google Scholar] [CrossRef]
- Kitczak, T.; Jarnuszewski, G.; Łazar, E.; Malinowski, R. Sida Hermaphrodita Cultivation on Light Soil—A Closer Look at Fertilization and Sowing Density. Agronomy 2022, 12, 2715. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef]
- Wagner, M.; Winkler, B.; Lask, J.; Weik, J.; Kiesel, A.; Koch, M.; Clifton-Brown, J.; von Cossel, M. The True Costs and Benefits of Miscanthus Cultivation. Agronomy 2022, 12, 3071. [Google Scholar] [CrossRef]
- Zuševica, A.; Celma, S.; Neimane, S.; von Cossel, M.; Lazdina, D. Wood-Ash Fertiliser and Distance from Drainage Ditch Affect the Succession and Biodiversity of Vascular Plant Species in Tree Plantings on Marginal Organic Soil. Agronomy 2022, 12, 421. [Google Scholar] [CrossRef]
- Wu, S.; Jie, H.; Jie, Y. Role of Rhizosphere Soil Microbes in Adapting Ramie (Boehmeria nivea L.) Plants to Poor Soil Conditions through N-Fixing and P-Solubilization. Agronomy 2021, 11, 2096. [Google Scholar] [CrossRef]
- Testa, G.; Corinzia, S.A.; Cosentino, S.L.; Ciaramella, B.R. Phytoremediation of Cadmium-, Lead-, and Nickel-Polluted Soils by Industrial Hemp. Agronomy 2023, 13, 995. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E. An Overview of Land Degradation, Desertification and Sustainable Land Management Using GIS and Remote Sensing Applications. Rend. Fis. Acc. Lincei 2023, 34, 767–808. [Google Scholar] [CrossRef]
- Haberzettl, J.; Hilgert, P.; von Cossel, M. A Critical Review on Lignocellulosic Biomass Yield Modeling and the Bioenergy Potential from Marginal Land. Agronomy 2021, 11, 2397. [Google Scholar] [CrossRef]
- Reinhardt, J.; Hilgert, P.; Von Cossel, M. A Review of Industrial Crop Yield Performances on Unfavorable Soil Types. Agronomy 2021, 11, 2382. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Xu, E. Spatiotemporal Changes in the Geographic Imbalances between Crop Production and Farmland-Water Resources in China. Agronomy 2022, 12, 1111. [Google Scholar] [CrossRef]
- Zimmermann, B.; Claß-Mahler, I.; von Cossel, M.; Lewandowski, I.; Weik, J.; Spiller, A.; Nitzko, S.; Lippert, C.; Krimly, T.; Pergner, I.; et al. Mineral-Ecological Cropping Systems—A New Approach to Improve Ecosystem Services by Farming without Chemical Synthetic Plant Protection. Agronomy 2021, 11, 1710. [Google Scholar] [CrossRef]
- Shah, T.M.; Tasawwar, S.; Bhat, M.A.; Otterpohl, R. Intercropping in Rice Farming under the System of Rice Intensification—An Agroecological Strategy for Weed Control, Better Yield, Increased Returns, and Social–Ecological Sustainability. Agronomy 2021, 11, 1010. [Google Scholar] [CrossRef]
- Cichocki, J.; von Cossel, M.; Winkler, B. Techno-Economic Assessment of an Office-Based Indoor Farming Unit. Agronomy 2022, 12, 3182. [Google Scholar] [CrossRef]
- Marques, A.; Teixeira, C.A. Vine and Wine Sustainability in a Cooperative Ecosystem—A Review. Agronomy 2023, 13, 2644. [Google Scholar] [CrossRef]
- Wagner, M.; Stanbury, P.; Dietrich, T.; Döring, J.; Ewert, J.; Foerster, C.; Freund, M.; Friedel, M.; Kammann, C.; Koch, M.; et al. Developing a Sustainability Vision for the Global Wine Industry. Sustainability 2023, 15, 10487. [Google Scholar] [CrossRef]
- Sereenonchai, S.; Arunrat, N. Farmers’ Perceptions, Insight Behavior and Communication Strategies for Rice Straw and Stubble Management in Thailand. Agronomy 2022, 12, 200. [Google Scholar] [CrossRef]
- Huang, S.Y.B.; Lee, S.-C.; Lee, Y.-S. Why Can Green Social Responsibility Drive Agricultural Technology Manufacturing Company to Do Good Things? A Novel Adoption Model of Environmental Strategy. Agronomy 2021, 11, 1673. [Google Scholar] [CrossRef]
- Wu, C.; Li, X.; Tian, Y.; Deng, Z.; Yu, X.; Wu, S.; Shu, D.; Peng, Y.; Sheng, F.; Gan, D. Chinese Residents’ Perceived Ecosystem Services and Disservices Impacts Behavioral Intention for Urban Community Garden: An Extension of the Theory of Planned Behavior. Agronomy 2022, 12, 193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Cossel, M.; Castro-Montoya, J.; Iqbal, Y. Social-Ecologically More Sustainable Agricultural Production. Agronomy 2023, 13, 2818. https://doi.org/10.3390/agronomy13112818
von Cossel M, Castro-Montoya J, Iqbal Y. Social-Ecologically More Sustainable Agricultural Production. Agronomy. 2023; 13(11):2818. https://doi.org/10.3390/agronomy13112818
Chicago/Turabian Stylevon Cossel, Moritz, Joaquín Castro-Montoya, and Yasir Iqbal. 2023. "Social-Ecologically More Sustainable Agricultural Production" Agronomy 13, no. 11: 2818. https://doi.org/10.3390/agronomy13112818
APA Stylevon Cossel, M., Castro-Montoya, J., & Iqbal, Y. (2023). Social-Ecologically More Sustainable Agricultural Production. Agronomy, 13(11), 2818. https://doi.org/10.3390/agronomy13112818