Increase in Soil Carbon Pool Stability Rather Than Its Stock in Coastal Saline—Alkali Ditches following Reclamation Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil Sampling Collection
2.3. Soil Sample Processing
2.4. Calculation of Soil Carbon Stocks
2.5. Data Analysis
3. Results
3.1. Changes in Physicochemical Properties of Saline–Alkali Ditch Soil after Reclamation
3.2. Changes in Soil Carbon Stocks in Saline–Alkali Ditches after Reclamation
3.3. Correlation between Different Components of SOC and SIC
3.4. Direct and Indirect Effects of Reclamation Time on Different Soil Carbon Components
3.5. The Primary Factors Affecting the Soil Carbon Content of Different Components
4. Discussion
4.1. Dynamics of the Soil Carbon Pool in Saline−alkali Ditches after Reclamation
4.2. The Primary Factors Affecting Soil Carbon Pools in Saline–alkali Ditches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The role of soil in regulation of climate. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20210084. [Google Scholar] [CrossRef]
- Wang, S.; Lu, W.; Zhang, F. Vertical distribution and controlling factors of soil inorganic carbon in poplar plantations of coastal eastern China. Forests 2022, 13, 83. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Q.; Gao, W.; Luo, Y.; Wu, L.; Rui, Y.; Huang, Y.; Xiao, Q.; Li, X.; Zhang, W. Organic amendments facilitate soil carbon sequestration via organic carbon accumulation and mitigation of inorganic carbon loss. Land Degrad. Dev. 2022, 33, 1423–1433. [Google Scholar] [CrossRef]
- Liu, J.E.; Deng, D.; Zou, C.; Han, R.; Xin, Y.; Shu, Z.; Zhang, L.M. Spartina alterniflora saltmarsh soil organic carbon properties and sources in coastal wetlands. J. Soils Sediments 2021, 21, 3342–3351. [Google Scholar] [CrossRef]
- Zamanian, K.; Pustovoytov, K.; Kuzyakov, Y. Pedogenic carbonates: Forms and formation processes. Earth Sci. Rev. 2016, 157, 1–17. [Google Scholar] [CrossRef]
- Zhang, J.H.; Wang, Y.; Li, F.C. Soil organic carbon and nitrogen losses due to soil erosion and cropping in a sloping terrace landscape. Soil Res. 2015, 53, 87–96. [Google Scholar] [CrossRef]
- Kormanek, M.; Banach, J.; Sowa, P. Effect of soil bulk density on forest tree seedlings. Int. Agrophys. 2015, 29, 67–74. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Yan, Y.; Cai, Y.; Xu, D.; Wang, X.; Chen, J.; Xin, X. Effects of cultivation and agricultural abandonment on soil carbon, nitrogen and phosphorus in a meadow steppe in Eastern Inner Mongolia. Agric. Ecosyst. Environ. 2021, 309, 107284. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, F.; Gale, W.J.; Wang, W.; Sang, W.; Yang, H. Effects of reclamation years on composition and diversity of soil bacterial communities in Northwest China. Can. J. Microbiol. 2018, 64, 28–40. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, A.; Yang, X.; Wu, P.; Fan, M.; Wu, J.; Zhang, M.; Gao, C. Changes in Surface soil organic/inorganic carbon concentrations and their driving forces in reclaimed coastal tidal flats. Geoderma 2019, 352, 150–159. [Google Scholar] [CrossRef]
- Zhang, T.; Song, B.; Han, G.; Zhao, H.; Hu, Q.; Zhao, Y.; Liu, H. Effects of coastal wetland reclamation on soil organic carbon, total nitrogen, and total phosphorus in China: A Meta-analysis. Land Degrad. Dev. 2023, 34, 3340–3349. [Google Scholar] [CrossRef]
- Cui, J.; Liu, C.; Li, Z.; Wang, L.; Chen, X.; Ye, Z.; Fang, C. Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China. Soil Tillage Res. 2012, 123, 50–60. [Google Scholar] [CrossRef]
- Su, Y.; Wang, X.; Yang, R.; Lee, J. Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. J. Environ. Manag. 2010, 91, 2109–2116. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, J.; Niu, Z.; Li, Y.; Li, C.; Feng, W. Responses of soil organic and inorganic carbon vary at different soil depths after long-term agricultural cultivation in Northwest China. Land Degrad. Dev. 2019, 30, 1229–1242. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.L.; Wall, D.H.; Parton, W.J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 2015, 8, 776–779. [Google Scholar] [CrossRef]
- Lange, M.; Eisenhauer, N.; Sierra, C.A.; Bessler, H.; Engels, C.; Griffiths, R.I.; Malik, A.A.; Roy, J.; Scheu, S.; Steinbeiss, S.; et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 2015, 6, 6707. [Google Scholar] [CrossRef] [PubMed]
- Prommer, J.; Walker, T.W.N.; Wanek, W.; Braun, J.; Zezula, D.; Hu, Y.; Hofhansl, F.; Richter, A. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Change Biol. 2020, 26, 669–681. [Google Scholar] [CrossRef]
- Fan, X.; Pedroli, B.; Liu, G.; Liu, Q.; Liu, H.; Shu, L. Soil salinity development in the Yellow River Delta in relation to groundwater dynamics. Land Degrad. Dev. 2012, 23, 175–189. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.; Wu, L.; Lu, T.; Guo, Y.; Ding, X. Impacts of salinity on the stability of soil organic carbon in the croplands of the Yellow River Delta. Land Degrad. Dev. 2021, 32, 1873–1882. [Google Scholar] [CrossRef]
- Cerli, C.; Celi, L.; Kalbitz, K.; Guggenberger, G.; Kaiser, K. Separation of light and heavy organic matter fractions in soil—Testing for proper density cut-off and dispersion level. Geoderma 2012, 170, 403–416. [Google Scholar] [CrossRef]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; Van Oost, K.; Casanova Pinto, M.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Zagal Venegas, E.; et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Yu, W.; Huang, W.; Weintraub-Leff, S.R.; Hall, S.J. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biol. Biochem. 2022, 172, 108756. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Bradford, M.A.; Fierer, N.; Reynolds, J.F. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Funct. Ecol. 2008, 22, 964–974. [Google Scholar] [CrossRef]
- King, A.E.; Congreves, K.A.; Deen, B.; Dunfield, K.E.; Voroney, R.P.; Wagner-Riddle, C. Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biol. Biochem. 2019, 135, 95–107. [Google Scholar] [CrossRef]
- Rui, Y.; Jackson, R.D.; Cotrufo, M.F.; Sanford, G.R.; Spiesman, B.J.; Deiss, L.; Culman, S.W.; Liang, C.; Ruark, M.D. Persistent soil carbon enhanced in mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proc. Natl. Acad. Sci. USA 2022, 119, e2118931119. [Google Scholar] [CrossRef]
- Baldock, J.A.; Skjemstad, J.O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 2000, 31, 697–710. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem 2007, 39, 2183–2207. [Google Scholar] [CrossRef]
- Kleber, M.; Nico, P.S.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Change Biol. 2011, 17, 1097–1107. [Google Scholar] [CrossRef]
- Kallenbach, C.; Frey, S.; Grandy, A. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef] [PubMed]
- Sokol, N.W.; Sanderman, J.; Bradford, M.A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 2019, 25, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Haddix, M.L.; Gregorich, E.G.; Helgason, B.L.; Janzen, H.; Ellert, B.H.; Cotrufo, M.F.; Resource, N.; St, W.L.; Collins, F. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma 2020, 363, 114160. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Haddix, M.L.; Kroeger, M.E.; Stewart, C.E. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biol. Biochem. 2022, 168, 108648. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, G.; Gao, M.; Chang, C. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China. Environ. Monit. Assess. 2017, 189, 80. [Google Scholar] [CrossRef]
- Jia, Z.; Luo, W.; Xie, J.; Pan, Y.; Chen, Y.; Tang, S.; Liu, W. Salinity dynamics of wetland ditches receiving drainage from irrigated agricultural land in arid and semi-arid regions. Agric. Water Manag. 2011, 100, 9–17. [Google Scholar] [CrossRef]
- Amendola, D.; Mutema, M.; Rosolen, V.; Chaplot, V. Geoderma Soil Hydromorphy and Soil Carbon: A Global Data Analysis. Geoderma 2018, 324, 9–17. [Google Scholar] [CrossRef]
- Freeman, C.; Fenner, N.; Ostler, N.J.; Kang, H.; Dowrick, D.J.; Reynolds, B.; Lock, M.A.; Sleep, D.; Hughes, S.; Hudson, J. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 2004, 30, 195–198. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of Salinity and Water Content on Soil Microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Li, P.; Xiao, L. Changes in the biological “regulators” of organic carbon mineralization in silted soils of check dams as a result of wet−dry cycles. Land Degrad. Dev. 2023; 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, P.; Yin, A.; Yang, X.; Zhang, M.; Gao, C. Prediction of Soil Organic Carbon in an Intensively Managed Reclamation Zone of Eastern China: A Comparison of Multiple Linear Regressions and the Random Forest Model. Sci. Total Environ. 2017, 592, 704–713. [Google Scholar] [CrossRef]
- Li, X.; Xia, J.; Zhao, X.; Chen, Y. Effects of planting Tamarix chinensis on shallow soil water and salt content under different groundwater depths in the Yellow River Delta. Geoderma 2019, 335, 104–111. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil Carbon Storage Informed by Particulate and Mineral-Associated Organic Matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Zhan, X.; Zhou, L. Colorimetric determination of dissolved organic carbon in soil solution and water environment (in Chinese). China Environ. Sci. 2002, 22, 433–437. [Google Scholar]
- Liu, J.; Wu, P.; Zhao, Z.; Gao, Y. Afforestation on cropland promotes pedogenic inorganic carbon accumulation in deep soil layers on the Chinese Loess Plateau. Plant Soil 2022, 478, 597–617. [Google Scholar] [CrossRef]
- Kölbl, A.; Schad, P.; Jahn, R.; Amelung, W.; Bannert, A.; Cao, Z.; Fiedler, S.; Kalbitz, K.; Lehndorff, E.; Müller-Niggemann, C. Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma 2014, 228, 67–89. [Google Scholar] [CrossRef]
- Wissing, L.; Kölbl, A.; Schad, P.; Bräuer, T.; Cao, Z.-H.; Kögel-Knabner, I. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 2014, 228–229, 90–103. [Google Scholar] [CrossRef]
- Amini, S.; Ghadiri, H.; Chen, C.; Marschner, P. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J. Soils Sediments 2016, 16, 939–953. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral-organic associations: Formation, properties, and relevance in soil environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar] [CrossRef]
- Feng, W.; Shi, Z.; Jiang, J.; Xia, J.; Liang, J.; Zhou, J. Methodological uncertainty in estimating carbon turnover times of soil fractions. Soil Biol. Biochem. 2016, 100, 118–124. [Google Scholar] [CrossRef]
- Fertier, A.; Montarnal, A.; Truptil, S.; Bénaben, F. Carbon stabilization pathways in soil aggregates during long-term forest succession: Implications from δ13C signatures. Soil Biol. Biochem. 2022, 180, 108988. [Google Scholar] [CrossRef]
- Plaza, C.; Courtier-murias, D.; Fernández, J.M.; Polo, A.; Simpson, A.J. Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: A central role for microbes and microbial by-products in C sequestration. Soil Biol. Biochem. 2013, 57, 124–134. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing Soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J. Soil organic matter formation, persistence and functioning: A synthesis of current understanding to inform its conservation and regeneration. Adv. Agron. 2021, 172, 1–50. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.; Boot, M.C.; Denef, K.; Paul, E.A. The microbial efficiency-matrix stabilization (mems) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Grandy, A.S.; Neff, J.C. Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 2008, 404, 297–307. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2022, 4, 4–18. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, J.; Zhang, P.; Meng, Y.; Xiong, Y. Controlled Irrigation and Drainage Reduce Rainfall Runoff and Nitrogen Loss in Paddy Fields. Int. J. Environ. Res. Public Health 2021, 18, 3348. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Anderegg, W.R.L.; Michalak, A.M.; Fisher, J.B.; Biondi, F.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Wolf, A.; et al. Global patterns of drought recovery. Nature 2017, 548, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, V.; Zscheischler, J.; Ciais, P.; Gudmundsson, L.; Sitch, S.; Seneviratne, S.I. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 2018, 560, 628–631. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, E.; Rengasamy, P.; Smith, E.; McDonald, G.K. The effect of cation-anion interactions on soil pH and solubility of organic carbon. Eur. J. Soil Sci. 2015, 66, 1054–1062. [Google Scholar] [CrossRef]
- Wendt, J.W.; Hauser, S. An equivalent soil mass procedure for monitoring soil organic carbon in multiple soil layers. Eur. J. Soil Sci. 2013, 64, 58–65. [Google Scholar] [CrossRef]
- Chaplot, V.; Smith, P. Cover Crops Do Not Increase Soil Organic Carbon Stocks as Much as Has Been Claimed: What Is the Way Forward? Glob. Chang. Biol. 2023, 29, 6163–6169. [Google Scholar] [CrossRef] [PubMed]
Reclamation Years | |||
---|---|---|---|
1st Year | 7th Year | 15th Year | |
TC (g kg−1) | 13.90 ± 0.33 a | 15.03 ± 0.43 ab | 13.76 ± 0.22 b |
SOC (g kg−1) | 2.89 ± 0.12 a | 3.52 ± 0.24 a | 2.94 ± 0.11 a |
SIC (g kg−1) | 11.01 ± 0.25 a | 11.51 ± 0.30 a | 10.83 ± 0.15 a |
DOC (mg kg−1) | 48.18 ± 3.48 a | 47.01 ± 2.68 ab | 36.25 ± 2.68 b |
SOCPOM (g kg−1) | 2.24 ± 0.13 b | 2.99 ± 0.25 a | 1.23 ± 0.13 c |
SOCMAOM (g kg−1) | 0.65 ± 0.10 b | 0.53 ± 0.07 b | 1.70 ± 0.24 a |
SICPOM (g kg−1) | 9.86 ± 0.17 ab | 10.54 ± 0.30 a | 9.55 ± 0.13 b |
SICMAOM (g kg−1) | 1.15 ± 0.17 a | 0.98 ± 0.10 a | 1.28 ± 0.13 a |
TN (mg kg−1) | 143.07 ± 13.12 b | 343.35 ± 24.98 a | 112.60 ± 11.35 b |
(mg kg−1) | 3.71 ± 0.32 a | 4.00 ± 0.36 a | 3.34 ± 0.41 a |
(mg kg−1) | 19.46 ± 0.13 b | 20.00 ± 0.12 a | 20.13 ± 0.09 a |
TP (g kg−1) | 0.48 ± 0.01 b | 0.55 ± 0.01 a | 0.50 ± 0.01 b |
AP (mg kg−1) | 26.39 ± 1.39 a | 20.30 ± 1.39 b | 27.86 ± 1.81 ab |
SWC (%) | 26.05 ± 0.52 b | 21.83 ± 1.04 c | 29.88 ± 0.63 a |
pH | 8.51 ± 0.03 b | 8.62 ± 0.03 b | 9.21 ± 0.03 a |
EC (μs cm−1) | 3573.88 ± 366.98 a | 1150.90 ± 72.82 a | 1030.53 ± 98.89 a |
Soil Depths | |||
0–20 cm | 20–40 cm | 40–60 cm | |
TC (g kg−1) | 14.60 ± 0.34 a | 13.96 ± 0.30 a | 14.11 ± 0.40 a |
SOC (g kg−1) | 3.40 ± 0.155 a | 3.06 ± 0.19 ab | 2.82 ± 0.15 b |
SIC (g kg−1) | 11.20 ± 0.24 a | 10.90 ± 0.20 a | 11.29 ± 0.29 a |
DOC (mg kg−1) | 51.43 ± 2.75 a | 38.14 ± 2.35 a | 41.38 ± 3.89 a |
SOCPOM (g kg−1) | 2.20 ± 0.19 a | 2.06 ± 0.22 a | 2.08 ± 0.16 a |
SOCMAOM (g kg−1) | 1.20 ± 0.19 a | 1.00 ± 0.20 a | 0.75 ± 0.12 a |
SICPOM (g kg−1) | 10.04 ± 0.18 a | 9.74 ± 0.21 a | 10.18 ± 0.27 a |
SICMAOM (g kg−1) | 1.16 ± 0.16 a | 1.16 ± 0.13 a | 1.11 ± 0.11 a |
TN (mg kg−1) | 216.86 ± 21.11 a | 193.34 ± 23.97 a | 187.05 ± 20.87 a |
(mg kg−1) | 4.07 ± 0.35 a | 3.48 ± 0.38 a | 3.45 ± 0.36 a |
(mg kg−1) | 19.76 ± 0.11 a | 19.90 ± 0.12 a | 19.94 ± 0.13 a |
TP (g kg−1) | 0.51 ± 0.01 a | 0.52 ± 0.01 a | 0.51 ± 0.01 a |
AP (mg kg−1) | 25.74 ± 1.33 a | 24.11 ± 1.53 a | 24.66 ± 2.02 a |
SWC (%) | 25.07 ± 1.02 c | 26.35 ± 0.81 b | 26.45 ± 0.71 a |
pH | 8.76 ± 0.05 a | 8.79 ± 0.05 a | 8.80 ± 0.05 a |
EC (μs cm−1) | 1993.83 ± 321.72 a | 1993.89 ± 229.98 a | 1848.88 ± 246.65 a |
R | D | S | R × D | R × S | D × S | R × D × S | |
---|---|---|---|---|---|---|---|
TC | 3.64 * | 0.86 | 0.44 | 0.24 | 0.89 | 0.43 | 0.25 |
SOC | 3.38 * | 2.85 | 0.39 | 0.54 | 0.66 | 0.24 | 0.36 |
SIC | 2.33 | 1.20 | 1.16 | 1.37 | 0.93 | 0.71 | 0.52 |
DOC | 4.38 * | 6.42 ** | 0.89 | 1.09 | 1.63 | 0.48 | 0.91 |
SOCPOM | 16.68 *** | 0.50 | 1.13 | 0.52 | 0.96 | 0.28 | 0.45 |
SOCMAOM | 30.86 *** | 1.08 | 3.15* | 0.21 | 3.15 ** | 0.53 | 1.18 |
SICPOM | 5.82 * | 1.39 | 0.70 | 1.16 | 0.97 | 0.50 | 0.48 |
SICMAOM | 1.52 | 0.02 | 0.81 | 0.43 | 1.28 | 0.96 | 0.64 |
TN | 43.09 *** | 0.72 | 0.79 | 0.70 | 0.90 | 0.44 | 0.48 |
0.66 *** | 0.67 | 0.92 | 0.40 | 0.40 | 0.38 | 0.48 | |
8.10 | 0.67 | 1.50 | 1.08 | 1.00 | 0.81 | 0.59 | |
TP | 15.78 *** | 0.37 | 1.44 | 0.59 | 1.48 | 1.35 | 0.92 |
AP | 6.78 ** | 0.29 | 0.85 | 0.29 | 1.81 | 0.42 | 0.44 |
SWC | 53.29 *** | 90.19 *** | 14.99 *** | 1.58 | 2.02* | 19.54 *** | 1.56 |
pH | 199.31 *** | 0.95 | 1.37 | 1.49 | 0.85 | 0.59 | 0.74 |
EC | 34.82 *** | 0.53 | 1.60 | 0.76 | 1.93 | 0.16 | 0.21 |
Rankings | Environment Factors | Contribution/% | Pseudo-F | p |
---|---|---|---|---|
1 | TN | 48.50 | 31.80 | 0.002 |
2 | AP | 21.50 | 15.30 | 0.002 |
3 | EC | 14.70 | 11.10 | 0.002 |
4 | SWC | 5.20 | 4.00 | 0.002 |
5 | pH | 4.30 | 3.30 | 0.004 |
6 | 4.10 | 3.20 | 0.008 | |
7 | 1.10 | 0.90 | 0.47 | |
8 | TP | 0.70 | 0.60 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, Z.; Li, J.; Gong, H.; Zhang, Y.; Sun, Z.; Ouyang, Z. Increase in Soil Carbon Pool Stability Rather Than Its Stock in Coastal Saline—Alkali Ditches following Reclamation Time. Agronomy 2023, 13, 2843. https://doi.org/10.3390/agronomy13112843
Li X, Liu Z, Li J, Gong H, Zhang Y, Sun Z, Ouyang Z. Increase in Soil Carbon Pool Stability Rather Than Its Stock in Coastal Saline—Alkali Ditches following Reclamation Time. Agronomy. 2023; 13(11):2843. https://doi.org/10.3390/agronomy13112843
Chicago/Turabian StyleLi, Xiangrong, Zhen Liu, Jing Li, Huarui Gong, Yitao Zhang, Zhigang Sun, and Zhu Ouyang. 2023. "Increase in Soil Carbon Pool Stability Rather Than Its Stock in Coastal Saline—Alkali Ditches following Reclamation Time" Agronomy 13, no. 11: 2843. https://doi.org/10.3390/agronomy13112843
APA StyleLi, X., Liu, Z., Li, J., Gong, H., Zhang, Y., Sun, Z., & Ouyang, Z. (2023). Increase in Soil Carbon Pool Stability Rather Than Its Stock in Coastal Saline—Alkali Ditches following Reclamation Time. Agronomy, 13(11), 2843. https://doi.org/10.3390/agronomy13112843