The Purple leaf (Pl) Alleles, Plw and Pli, Regulate Leaf Color Development Independently from the Pb Gene of Purple pericarp (Prp) in Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Genetic and Phenotypic Characterization
2.3. High-Performance Liquid Chromatography (HPLC) Analysis of Anthocyanin Contents
3. Results
3.1. Phenotypic Differences between Plw and Pli Mutants
3.2. Differential Color Segregation on Progenies Crossed between Plw and Pli Allele Parents
3.3. Anthocyanin Contents Were Related to Color Development in the Rice Organs
3.4. Genetics of Pigment Segregation and Differential Expression of Pl and Pb Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nagao, S.; Takahashi, M. Genetical studies on rice plant. XIII: Further studies on the gene PI responsible for the development of anthocyanin coloration in leaf rice. Jpn. J. Breed. 1951, 1, 129–136. [Google Scholar] [CrossRef]
- Takahashi, M.-E. Analysis on apiculus color genes essential to anthocyanin coloration rice. J. Fac. Agric. Hokkaido Univ. 1957, 50, 266–362. [Google Scholar]
- Nagao, S.; Takahashi, M.-E.; Kinoshita, T. Heterotic Effect of Alleles at Pl-locus in Rice Plant: Genetical Studies on Rice Plant, XXX. J. Fac. Agric. Hokkaido Univ. 1968, 56, 45–56. [Google Scholar]
- Ghose, R.L.M.; Butany, W.T.; Seetharaman, R. Inheritance of anthocyanin pigmentation in leaf blade of rice (Oryza sativa L.). J. Genet. 1963, 58, 413–428. [Google Scholar] [CrossRef]
- Kinoshita, T.; Maekawa, M. Inheritance of purple leaf color found in indica rice: Genetical studies on rice plant, XCIV. J. Fac. Agric. Hokkaido Univ. 1986, 62, 453–466. [Google Scholar]
- Reddy, V.S.; Dash, S.; Reddy, A.R. Anthocyanin pathway in rice (Oryza sativa L): Identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp. Theor. Appl. Genet. 1995, 91, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.-S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lee, K.E.; Lee, E.S.; Matin, M.N.; Lee, D.S.; Yun, J.S.; Kim, J.B.; Kang, S.G. The genetic constitutions of complementary genes Pp and Pb determine the purple color variation in pericarps with cyanidin-3-O-glucoside depositions in black rice. J. Plant Biol. 2013, 56, 24–31. [Google Scholar] [CrossRef]
- Oikawa, T.; Maeda, H.; Oguchi, T.; Yamaguchi, T.; Tanabe, N.; Ebana, K.; Yano, M.; Ebitani, T.; Izawa, T. The birth of a black rice gene and its local spread by introgression. Plant Cell 2015, 27, 2401–2414. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Z.; Chen, C.; Wu, W.; Ren, N.; Jiang, C.; Yu, J.; Zhao, Y.; Zheng, X.; Yang, Q.; et al. The C–S–A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. J. Exp. Bot. 2018, 69, 1485–1498. [Google Scholar] [CrossRef]
- Sakamoto, W.; Ohmori, T.; Kageyama, K.; Miyazaki, C.; Saito, A.; Murata, M.; Noda, K.; Maekawa, M. The Purple leaf (Pl) locus of rice: The Pl w allele has a complex organization and includes two genes encoding basic helix-loop-helix proteins involved in anthocyanin biosynthesis. Plant Cell Physiol. 2001, 42, 982–991. [Google Scholar] [CrossRef]
- Sakamoto, W.; Murata, M.; Maekawa, M. Complex organization of the rice purple leaf locus involved in tissue-specific accumulation of anthocyanin. In Advances in Rice Genetics: (In 2 Parts); World Scientific: Singapore, 2003; pp. 475–477. [Google Scholar]
- Nagao, S. Takahshi M. The third gene in apiculus coloration. Genetic studies on rice plant, XIX. JPN J. Bot. 1956, 15, 141–151. [Google Scholar]
- Nagao, S. Genetical studies on rice plant, XXVII. Trial construction of twelve linkage groups in Japanese rice. J. Fac. Agric. Hokkaido Univ. 1963, 58, 72–130. [Google Scholar]
- Zheng, J.; Wu, H.; Zhu, H.; Huang, C.; Liu, C.; Chang, Y.; Kong, Z.; Zhou, Z.; Wang, G.; Lin, Y.; et al. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves. New Phytol. 2019, 223, 705–721. [Google Scholar] [CrossRef]
- Furukawa, T.; Maekawa, M.; Oki, T.; Suda, I.; Iida, S.; Shimada, H.; Takamure, I.; Kadowaki, K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J. 2007, 49, 91–102. [Google Scholar] [CrossRef]
- Kim, D.H.; Yang, J.; Ha, S.H.; Kim, J.K.; Lee, J.Y.; Lim, S.H. An OsKala3, R2R3 MYB TF, is a common key player for black rice pericarp as main partner of an OsKala4, bHLH TF. Front. Plant Sci. 2021, 12, 765049. [Google Scholar] [CrossRef]
- Nagao, S.; Takahashi, M.-E.; Kinoshita, T. Genetical Studies on Rice Plant, XXIV: Mode of Inheritance and Causal Genes for One Type of Anthocyanin Color Character in Foreign Rice Varieties. J. Fac. Agric. Hokkaido Univ. 1962, 52, 20–50. [Google Scholar]
- Jeng, T.L.; Lai, C.C.; Ho, P.T.; Shih, Y.J.; Sung, J.M. Agronomic, molecular and antioxidative characterization of red-and purple-pericarp rice (Oryza sativa L.) mutants in Taiwan. J. Cereal Sci. 2012, 56, 425–431. [Google Scholar] [CrossRef]
- Xia, D.; Zhou, H.; Wang, Y.; Li, P.; Fu, P.; Wu, B.; He, Y. How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. Crop J. 2021, 9, 598–608. [Google Scholar] [CrossRef]
- Causse, M.A.; Fulton, T.M.; Cho, Y.G.; Ahn, S.N.; Chunwongse, J.; Wu, K.; Xiao, J.; Yu, Z.; Ronald, P.C.; Harrington, S.E. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 1994, 138, 1251–1274. [Google Scholar] [CrossRef]
- Yoshimura, A.; Ideta, O.; Iwata, N. Linkage map of phenotype and RFLP markers in rice. In Oryza: From Molecule to Plant; Springer: Berlin/Heidelberg, Germany, 1997; pp. 49–60. [Google Scholar]
- Wang, C.; Shu, Q. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chin. Sci. Bull. 2007, 52, 3097–3104. [Google Scholar] [CrossRef]
- Maeda, H.; Yamaguchi, T.; Omoteno, M.; Takarada, T.; Fujita, K.; Murata, K.; Iyama, Y.; Kojima, Y.; Morikawa, M.; Ozaki, H. Genetic dissection of black grain rice by the development of a near isogenic line. Breed. Sci. 2014, 64, 134–141. [Google Scholar] [CrossRef]
- Hsieh, S.C.; Chang, T.M. Genic analysis in rice. IV. Genes for purple pericarp and other characters. Jpn. J. Breed. 1964, 14, 141–149. [Google Scholar] [CrossRef]
- Lap, B.; Rai, M.; Tyagi, W. Playing with colours: Genetics and regulatory mechanisms for anthocyanin pathway in cereals. Biotechnol. Genet. Eng. Rev. 2021, 37, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Aguirre, F.J.; Rodrigo-García, J.; Martínez-Ruiz, N.D.R.; Cárdenas-Robles, A.I.; Mendoza-Díaz, S.O.; Álvarez-Parrilla, E.; González-Aguilar, G.A.; De la Rosa, L.A.; Ramos-Jiménez, A.; Wall-Medrano, A. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules 2016, 21, 1264. [Google Scholar] [CrossRef]
- Mbanjo, E.G.N.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L.A.; Sreenivasulu, N. The genetic basis and nutritional benefits of pigmented rice grain. Front. Genet. 2020, 11, 229. [Google Scholar] [CrossRef] [PubMed]
- Thanyacharoen, T.; Chuysinuan, P.; Techasakul, S.; Noenplab, A.N.L.; Ummartyotin, S. The chemical composition and antioxidant and release properties of a black rice (Oryza sativa L.)-loaded chitosan and polyvinyl alcohol composite. J. Mol. Liq. 2017, 248, 1065–1070. [Google Scholar] [CrossRef]
- Ito, V.C.; Lacerda, L.G. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem. 2019, 301, 125304. [Google Scholar] [CrossRef]
- Frank, T.; Reichardt, B.; Shu, Q.; Engel, K.-H. Metabolite profiling of colored rice (Oryza sativa L.) grains. J. Cereal Sci. 2012, 55, 112–119. [Google Scholar] [CrossRef]
- Tanaka, J.; Nakamura, S.; Tsuruma, K.; Shimazawa, M.; Shimoda, H.; Hara, H. Purple rice (Oryza sativa L.) extract and its constituents inhibit VEGF-induced angiogenesis. Phytother. Res. 2012, 26, 214–222. [Google Scholar] [CrossRef]
- Yao, S.-L.; Xu, Y.; Zhang, Y.-Y.; Lu, Y.-H. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct. 2013, 4, 1602–1608. [Google Scholar] [CrossRef]
- Kim, C.Y.; Ahn, Y.O.; Kim, S.H.; Kim, Y.H.; Lee, H.S.; Catanach, A.S.; Jacobs, J.M.E.; Conner, A.J.; Kwak, S.S. The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system. Physiol. Plant. 2010, 139, 229–240. [Google Scholar]
- Kortstee, A.J.; Khan, S.A.; Helderman, C.; Trindade, L.M.; Wu, Y.; Visser, R.G.F.; Brendolise, C.; Allan, A.; Schouten, H.J.; Jacobsen, E. Anthocyanin production as a potential visual selection marker during plant transformation. Transgenic Res. 2011, 20, 1253–1264. [Google Scholar] [CrossRef]
- Jin, F.; Li, S.; Dang, L.; Chai, W.; Li, P.; Wang, N.N. PL1 fusion gene: A novel visual selectable marker gene that confers tolerance to multiple abiotic stresses in transgenic tomato. Transgenic Res. 2012, 21, 1057–1070. [Google Scholar] [CrossRef]
- Lin-Wang, K.; Bolitho, K.; Grafton, K.; Kortstee, A.; Karunairetnam, S.; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol. 2010, 10, 50. [Google Scholar] [CrossRef]
- Choudhury, B.I.; Khan, M.L.; Dayanandan, S. Patterns of nucleotide diversity and phenotypes of two domestication related genes (OsC1 and Wx) in indigenous rice varieties in Northeast India. BMC Genet. 2014, 15, 71. [Google Scholar] [CrossRef]
- Gao, J.; Dai, G.; Zhou, W.; Liang, H.; Huang, J.; Qing, D.; Chen, W.; Wu, H.; Yang, X.; Li, D. Mapping and identifying a candidate gene Plr4, a recessive gene regulating purple leaf in rice, by using bulked segregant and transcriptome analysis with next-generation sequencing. Int. J. Mol. Sci. 2019, 20, 4335. [Google Scholar] [CrossRef] [PubMed]
- Matin, M.N.; Kang, S.G. Genetic and phenotypic analysis of lax1-6, a mutant allele of LAX PANICLE1 in rice. J. Plant Biol. 2012, 55, 50–63. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Zaima, N.; Moriyama, T.; Kawamura, Y. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS ONE 2012, 7, e31285. [Google Scholar] [CrossRef]
- Zhu, F.; Cai, Y.-Z.; Bao, J.; Corke, H. Effect of γ-irradiation on phenolic compounds in rice grain. Food Chem. 2010, 120, 74–77. [Google Scholar] [CrossRef]
- Barnes, K.W.; Eisele, T.; Giusti, M.M.; Haché, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; Martin, S.K.; Martinsen, B.K.; et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar]
- Mol, J.; Grotewold, E.; Koes, R. How genes paint flowers and seeds. Trends Plant Sci. 1998, 3, 212–217. [Google Scholar] [CrossRef]
- Kinoshita, T.; Takamure, I. Gene mapping of the first and second linkage groups in rice. J. Fac. Agric. Hokkaido Univ. 1990, 64, 208–217. [Google Scholar]
- Nagao, S. Genie analysis and linkage relationship of characters in rice. Adv. Genet. 1951, 4, 181–212. [Google Scholar]
- Hu, W.; Zhou, T.; Han, Z.; Tan, C.; Xing, Y. Dominant complementary interaction between OsC1 and two tightly linked genes, Rb1 and Rb2, controls the purple leaf sheath in rice. Theor. Appl. Genet. 2020, 133, 2555–2566. [Google Scholar] [CrossRef]
- Xu, R.; Pan, R.; Zhang, Y.; Feng, Y.; Nath, U.K.; Gan, Y.; Shi, C.; Akhter, D. RNA-Seq-Based Profiling of pl Mutant Reveals Transcriptional Regulation of Anthocyanin Biosynthesis in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2021, 22, 9787. [Google Scholar] [CrossRef]
- Matin, M.N.; Kang, S.-G. Morphological characteristics of the rice (Oryza sativa L.) with red pigmentation. J. Life Sci. 2010, 20, 22–26. [Google Scholar] [CrossRef]
Genotype. ID | Type | Leaf | Stem | Spikelet | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Blade | Sheath | Auricle | Collar | Ligule | Node | Internode | Pericarp | Hull | ||
YUM051 | Plw | ++ | ++ | ++ | - | + | - | ++ | ++ | + |
YUM144 | Pli | + | + | + | - | + | - | + | - | - |
F7-03 | Pli | + | + | + | - | + | - | + | - | - |
F7-07 | Rec | + | + | + | - | + | - | + | + | + |
F7-08 | Rec | - | - | - | - | - | - | - | ++ | + |
F7-13 | Plw | ++ | ++ | ++ | - | + | - | + | ++ | + |
YUC044 | pl+ | - | - | - | - | - | - | - | - | - |
Cross ID | Cross (Pollen Donor X Pollen Recipient) | F1 Phenotype | Segregation in F2 | χ2 | p-Value | |||
---|---|---|---|---|---|---|---|---|
Purple | Greenish/ plm | Total | ||||||
SGK07086 | YUM144 × YUM051 | Purple leaf | Obs. | 114 | 99 | 213 | χ2 (3:1) = 52.40 | NS |
Exp. | 159.75 | 53.25 | ||||||
Obs. | 114 | 99 | 213 | χ2 (9:7) = 0.64 | 0.90–0.10 | |||
Exp. | 119.8 | 93.18 |
Cross ID | Cross Combination | F1 Pericarp Phenotype | Segregation in F2 | χ2 | p-Value | |||
---|---|---|---|---|---|---|---|---|
Purple | White | Total | (3:1) | |||||
SGK07085 | YUM051 × YUM144 | Purple | Obs. | 104 | 43 | 147 | 1.41 | 0.90–0.10 |
Exp. | 110.25 | 36.75 | ||||||
SGK07086 | YUM144 × YUM051 | Purple | Obs. | 149 | 64 | 213 | 2.89 | 0.90–0.10 |
Exp. | 159.75 | 53.25 |
ID | Cross Combination | F1 Phenotype | F2 Segregation | χ2 | p- Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pl, Prp | Pl, prp | pl, Prp | pl, prp | Total | (9:3:3:1) | |||||
SGK07086 | YUM144 × YUM051 | Dark purple leaf, purple pericarp | obs. exp. | 99 | 15 | 50 | 49 | 213 | 117.41 | NS |
(+, +) × (Pl, Prp) | 119.83 | 39.93 | 39.93 | 13.31 | 213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.G.; Lee, K.E.; Cho, J.; Lee, J.W.; Do, G.S.; Matin, M.N. The Purple leaf (Pl) Alleles, Plw and Pli, Regulate Leaf Color Development Independently from the Pb Gene of Purple pericarp (Prp) in Rice. Agronomy 2023, 13, 2845. https://doi.org/10.3390/agronomy13112845
Kang SG, Lee KE, Cho J, Lee JW, Do GS, Matin MN. The Purple leaf (Pl) Alleles, Plw and Pli, Regulate Leaf Color Development Independently from the Pb Gene of Purple pericarp (Prp) in Rice. Agronomy. 2023; 13(11):2845. https://doi.org/10.3390/agronomy13112845
Chicago/Turabian StyleKang, Sang Gu, Kyung Eun Lee, Jegeun Cho, Jeong Wook Lee, Geum Sook Do, and Mohammad Nurul Matin. 2023. "The Purple leaf (Pl) Alleles, Plw and Pli, Regulate Leaf Color Development Independently from the Pb Gene of Purple pericarp (Prp) in Rice" Agronomy 13, no. 11: 2845. https://doi.org/10.3390/agronomy13112845
APA StyleKang, S. G., Lee, K. E., Cho, J., Lee, J. W., Do, G. S., & Matin, M. N. (2023). The Purple leaf (Pl) Alleles, Plw and Pli, Regulate Leaf Color Development Independently from the Pb Gene of Purple pericarp (Prp) in Rice. Agronomy, 13(11), 2845. https://doi.org/10.3390/agronomy13112845