Macromolecular Size and Architecture of Humic Substances Used in the Dyes’ Adsorptive Removal from Water and Soil
Abstract
:1. Introduction
2. Structure and Characterization of Humic Substances
2.1. Macromolecular Nature and Chemical Retrosynthesis
2.2. Characterization Techniques, Supramolecules, and Molecular Weights
2.3. Structural and Compositional Architecture of Size Fractions
3. Interaction of Humic Substances with Soils and Pollutants
3.1. Soil Improvers, Chemical Regulators, and Chelating Agents
3.2. Complexation with Nutrient and Contaminant Metals
4. Dyestuff and Color Removal by Humic Substances
4.1. Dye Adsorption
4.2. Humic-Matrix Hybrid Materials in the Removal of Dyes
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaffney, J.S.; Marley, N.A.; Clark, S.B. Humic and fulvic acids and organic colloidal materials in the environment. In Humic and Fulvic Acids: Isolation, Structure, and Environmental Role; Gaffney, J.S., Marley, N.A., Clark, S.B., Eds.; American Chemical Society: Washington, DC, USA, 1996; p. 2. [Google Scholar]
- Rodríguez, F.J.; Schlenger, P.; García-Valverde, M. Monitoring changes in the structure and properties of humic substances following ozonation using UV–Vis, FTIR and 1H NMR techniques. Sci. Total Environ. 2016, 541, 623–637. [Google Scholar] [CrossRef]
- Piccolo, A.; Nardi, S.; Concheri, G. Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere 1996, 33, 595–602. [Google Scholar] [CrossRef]
- Piccolo, A.; Nardi, S.; Concheri, G. Macromolecular changes of humic substances induced by interaction with organic acids. Eur. J. Soil Sci. 1996, 47, 319–328. [Google Scholar] [CrossRef]
- Barriquello, M.F.; Leite, F.L.; Deda, D.K.; Saab, S.D.; Consolin-Filho, N.; Piza, M.A.; Martin-Neto, L. Study of a model humic acid-type polymer by fluorescence spectroscopy and atomic force microscopy. Mater. Sci. Appl. 2012, 3, 478–484. [Google Scholar] [CrossRef]
- Davies, G.; Ghabbour, E.A. (Eds.) Humic Substances: Structures, Properties and Uses; The Royal Society of Chemistry: London, UK, 1998; p. viii. [Google Scholar]
- Pokorná, L.; Gajdošová, D.; Mikeska, S.; Homoláč, P.; Havel, J. The stability of humic acids in alkaline media. In Humic Substances: Structures, Models and Functions; Ghabbour, E.A., Davies, G., Eds.; The Royal Society of Chemistry: London, UK, 2001; p. 133. [Google Scholar]
- Guetzloff, T.F.; Rice, J.A. Does humic acid form a micelle? Sci. Total Environ. 1994, 152, 31–35. [Google Scholar] [CrossRef]
- Leboeuf, E.J.; Weber, W.J., Jr. Macromolecular characteristics of natural organic matter. 1. Insights from glass transition and enthalpic relaxation behavior. Environ. Sci. Technol. 2000, 34, 3623–3631. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- MacCarthy, P. The principles of humic substances: An introduction to the first principle. In Humic Substances: Structures, Models and Functions; Ghabbour, E.A., Davies, G., Eds.; The Royal Society of Chemistry: London, UK, 2001; p. 19. [Google Scholar]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Ghabbour, E.A.; Davies, G. (Eds.) Humic Substances: Structures, Models and Functions; The Royal Society of Chemistry: London, UK, 2001; p. vii. [Google Scholar]
- Yang, F.; Antonietti, M. The sleeping giant: A polymer view on humic matter in synthesis and applications. Prog. Polym. Sci. 2020, 100, 101182. [Google Scholar] [CrossRef]
- Mao, J.; Hu, W.; Schmidt-Rohr, K.; Davies, G.; Ghabbour, E.A.; Xing, B. Structure and elemental composition of humic acids: Comparison of solid-state 13C NMR calculations and chemical analyses. In Humic Substances: Structures, Properties and Uses; Davies, G., Ghabbour, E.A., Eds.; The Royal Society of Chemistry: London, UK, 1998; p. 79. [Google Scholar]
- Kolla, S.; Paciolla, M.D.; Sein, L.T., Jr.; Moyer, J.; Walia, D.; Heaton, H.; Jansen, S.A. Humic acid as a substrate for alkylation. In Humic Substances: Structures, Properties and Uses; Davies, G., Ghabbour, E.A., Eds.; The Royal Society of Chemistry: London, UK, 1998; p. 215. [Google Scholar]
- Ruiz-Haas, P.; Amarasiriwardena, D.; Xing, B. Determination of trace metals bound to soil humic acid species by size exclusion chromatography and inductively coupled plasma mass spectrometry. In Humic Substances: Structures, Properties and Uses; Davies, G., Ghabbour, E.A., Eds.; The Royal Society of Chemistry: London, UK, 1998; p. 147. [Google Scholar]
- Young, K.D.; Leboeuf, E.J. Glass transition behavior in a peat humic acid and an aquatic fulvic acid. Environ. Sci. Technol. 2000, 34, 4549–4553. [Google Scholar] [CrossRef]
- Piccolo, A.; Conte, P.; Cozzolino, A. Chromatographic and spectrophotometric properties of dissolved humic substances compared with macromolecular polymers. Soil Sci. 2001, 166, 174–185. [Google Scholar] [CrossRef]
- Myneni, S.C.B.; Brown, J.T.; Martinez, G.A.; Meyer-Ilse, W. Imaging of humic substance macromolecular structures in water and soils. Science 1999, 286, 1335–1337. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, A.; Piccolo, A. Polymerization of dissolved humic substances catalyzed by peroxidase. Effects of pH and humic composition. Org. Geochem. 2002, 33, 281–294. [Google Scholar] [CrossRef]
- Durán, N.; Esposito, E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Appl. Catal. B 2000, 28, 83–99. [Google Scholar] [CrossRef]
- Dec, J.; Bollag, J.-M. Phenoloxidase-mediated interactions of phenols and anilines with humic materials. J. Environ. Qual. 2000, 29, 665–676. [Google Scholar] [CrossRef]
- Zou, J.; Huang, J.; Zhang, H.; Yue, D. Evolution of humic substances in polymerization of polyphenol and amino acid based on non-destructive characterization. Front. Environ. Sci. Eng. 2021, 15, 5. [Google Scholar] [CrossRef]
- Diallo, M.S.; Faulon, J.-L.; Goddard, W.A.; Johnson, J.H., Jr. Binding of hydrophobic organic compounds to dissolved humic substances: A predictive approach based on computer assisted structure elucidation, atomistic simulations and Flory–Huggins solution theory. In Humic Substances: Structures, Models and Functions; Ghabbour, E.A., Davies, G., Eds.; The Royal Society of Chemistry: London, UK, 2001; p. 221. [Google Scholar]
- Schulten, H.-R. Models of humic structures: Association of humic acids and organic matter in soils and water. In Humic Substances and Chemical Contaminants; Clapp, C.E., Ed.; SSSA: Madison, WI, USA, 2001; p. 73. [Google Scholar]
- Schnitzer, M.; Monreal, C.M. Quo vadis soil organic matter research? A biological link to the chemistry of humification. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Philadelphia, PA, USA, 2011; Volume 113, p. 143. [Google Scholar]
- Abbt-Braun, G.; Lankes, U.; Frimmel, F.H. Structural characterization of aquatic humic substances—The need for a multiple method approach. Aquat. Sci. 2004, 66, 151–170. [Google Scholar] [CrossRef]
- O’Loughlin, E.; Chin, Y.-P. Effect of detector wavelength on the determination of the molecular weight of humic substances by high-pressure size exclusion chromatography. Water Res. 2001, 35, 333–338. [Google Scholar] [CrossRef]
- Conte, P.; Piccolo, A. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol. 1999, 33, 1682–1690. [Google Scholar] [CrossRef]
- Sutton, R.; Sposito, G. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 2005, 39, 9009–9015. [Google Scholar] [CrossRef]
- Schnitzer, M. Recent findings on the characterization of humic substances extracted from soils from widely differing climatic zones. In Soil Organic Matter Studies; IAEA: Vienna, Austria, 1977; Volume II, p. 117. [Google Scholar]
- Nebbioso, A.; Piccolo, A. Basis of a humeomics science: Chemical fractionation and molecular characterization of humic biosuprastructures. Biomacromolecules 2011, 12, 1187–1199. [Google Scholar] [CrossRef]
- Barth, H.G.; Boyes, B.E.; Jackson, C. Size exclusion chromatography. Anal. Chem. 1994, 66, 595R–620R. [Google Scholar] [CrossRef]
- Chin, Y.-P.; Aiken, G.; O’Loughlin, E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 1994, 28, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Cabaniss, S.E.; Maurice, P.A. Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances. Water Res. 2000, 34, 3505–3514. [Google Scholar] [CrossRef]
- Schäfer, A.I.; Mauch, R.; Waite, T.D.; Fane, A.G. Charge effects in the fractionation of natural organics using ultrafiltration. Environ. Sci. Technol. 2002, 36, 2572–2580. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Huang, W.; Peng, P.; Xiao, B.; Ma, Y. Humic acid molecular weight estimation by high-performance size-exclusion chromatography with ultraviolet absorbance detection and refractive index detection. Soil Sci. Soc. Am. J. 2010, 74, 2013–2020. [Google Scholar] [CrossRef]
- Zykova, M.V.; Schepetkin, I.A.; Belousov, M.V.; Krivoshchekov, S.V.; Logvinova, L.A.; Bratishko, K.A.; Yusubov, M.S.; Romanenko, S.V.; Quinn, M.T. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules 2018, 23, 753. [Google Scholar] [CrossRef] [PubMed]
- Milori, D.M.B.P.; Martin-Neto, L.; Bayer, C.; Mielniczuk, J.; Bagnato, V.S. Humification degree of soil humic acids determined by fluorescence spectroscopy. Soil Sci. 2002, 167, 739–749. [Google Scholar] [CrossRef]
- Chen, Y.; Senesi, N.; Schnitzer, M. Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J. 1977, 41, 352–358. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, N.; Li, J.; Wang, Y.; Liu, Y.; Cao, M.; Yan, Q. Characterization of humic acids from original coal and its oxidization production. Sci. Rep. 2021, 11, 15381. [Google Scholar] [CrossRef]
- Rodríguez, F.J.; Núñez, L.A. Characterization of aquatic humic substances. Water Environ. J. 2011, 25, 163–170. [Google Scholar] [CrossRef]
- Karpukhina, E.; Volkov, D.; Proskurnin, M. Quantification of lignosulfonates and humic components in mixtures by ATR FTIR spectroscopy. Agronomy 2023, 13, 1141. [Google Scholar] [CrossRef]
- Niemeyer, J.; Chen, Y.; Bollag, J.-M. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 1992, 56, 135–140. [Google Scholar] [CrossRef]
- Machado, W.; Franchini, J.C.; Guimarães, M.F.; Filho, J.T. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon 2020, 6, e04078. [Google Scholar] [CrossRef]
- Von der Kammer, F.; Baborowski, M.; Tadjiki, S.; von Tümpling, W., Jr. Colloidal particles in sediment pore waters: Particle size distributions and associated element size distribution in anoxic and re-oxidized samples, obtained by FFF-ICP-MS coupling. Acta Hydrochim. Hydrobiol. 2003, 31, 400–410. [Google Scholar] [CrossRef]
- Liao, W.; Christman, R.F.; Johnson, J.D.; Millington, D.S.; Hass, J.R. Structural characterization of aquatic humic material. Environ. Sci. Technol. 1982, 16, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Enev, V.; Pospíšilová, L.; Klučáková, M.; Liptaj, T.; Doskočil, L. Spectral characterization of selected humic substances. Soil Water Res. 2014, 9, 9–17. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M.; Cozzolino, V.; Nuzzo, A.; Nardi, S.; Piccolo, A. Molecular characteristics of humic substances from different origins and their effects on growth and metabolism of Pinus laricio callus. Chem. Biol. Technol. Agric. 2022, 9, 72. [Google Scholar] [CrossRef]
- Polyakov, V.; Abakumov, E.V. Humic acids isolated from selected soils from the Russian Arctic and Antarctic: Characterization by two-dimensional 1H–13C HETCOR and 13C CP/Mas NMR spectroscopy. Geosciences 2020, 10, 15. [Google Scholar] [CrossRef]
- Nebiosso, A.; Piccolo, A. Molecular rigidity and diffusivity of Al3+ and Ca2+ humates as revealed by NMR spectroscopy. Environ. Sci. Technol. 2009, 43, 2417–2424. [Google Scholar] [CrossRef]
- Mao, J.-D.; Hu, W.-G.; Schmidt-Rohr, K.; Davies, G.; Ghabbour, E.A.; Xing, B. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 2000, 64, 873–884. [Google Scholar] [CrossRef]
- Mao, J.; Chen, N.; Cao, X. Characterization of humic substances by advanced solid state NMR spectroscopy: Demonstration of a systematic approach. Org. Geochem. 2011, 42, 891–902. [Google Scholar] [CrossRef]
- Mobed, J.J.; Hemmingsen, S.L.; Autry, J.L.; McGown, L.B. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ. Sci. Technol. 1996, 30, 3061–3065. [Google Scholar] [CrossRef]
- Rice, J.A.; MacCarthy, P. Statistical evaluation of the elemental composition of humic substances. Org. Geochem. 1991, 17, 635–648. [Google Scholar] [CrossRef]
- da Silva, R.R.; Lucena, G.N.; Machado, Â.F.; de Freitas, G.A.; Matos, A.T.; Abrahão, W.A.P. Spectroscopic and elementary characterization of humic substances in organic substrates. Com. Sci. 2018, 9, 264–274. [Google Scholar] [CrossRef]
- Shirshova, L.T.; Ghabbour, E.A.; Davies, G. Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures. Geoderma 2006, 133, 204–216. [Google Scholar] [CrossRef]
- Fukushima, M.; Tanaka, S.; Nakamura, H.; Ito, S. Acid–base characterization of molecular weight fractionated humic acid. Talanta 1996, 43, 383–390. [Google Scholar] [CrossRef]
- Shin, H.-S.; Monsallier, J.M.; Choppin, G.R. Spectroscopic and chemical characterizations of molecular size fractionated humic acid. Talanta 1999, 50, 641–647. [Google Scholar] [CrossRef]
- Kretzschmar, R.; Christl, I. Proton and metal cation binding to humic substances in relation to chemical composition and molecular size. In Humic Substances: Structures, Models and Functions; Ghabbour, E.A., Davies, G., Eds.; The Royal Society of Chemistry: London, UK, 2001; p. 153. [Google Scholar]
- Christl, I.; Knicker, H.; Kögel-Knabner, I.; Kretzschmar, R. Chemical heterogeneity of humic substances: Characterization of size fractions obtained by hollow-fibre ultrafiltration. Eur. J. Soil Sci. 2000, 51, 617–625. [Google Scholar] [CrossRef]
- Croué, J.-P. Isolation of humic and non-humic NOM fractions: Structural characterization. Environ. Monitor. Assess. 2004, 92, 193–207. [Google Scholar] [CrossRef]
- Alberts, J.J.; Takács, M. Comparison of the natural fluorescence distribution among size fractions of terrestrial fulvic and humic acids and aquatic natural organic matter. Org. Geochem. 2004, 35, 1141–1149. [Google Scholar] [CrossRef]
- Hur, J.; Jung, K.-Y.; Jung, Y.M. Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy. Water Res. 2011, 45, 2965–2974. [Google Scholar] [CrossRef] [PubMed]
- García, A.C.; de Souza, L.G.A.; Pereira, M.G.; Castro, R.N.; García-Mina, J.M.; Zonta, E.; Lisboa, F.J.G.; Berbara, R.L.L. Structure–property–function relationship in humic substances to explain the biological activity in plants. Sci. Rep. 2016, 6, 20798. [Google Scholar] [CrossRef] [PubMed]
- Schellekens, J.; Buurman, P.; Kalbitz, K.; van Zomeren, A.; Vidal-Torrado, P.; Cerli, C.; Comans, R.N.J. Molecular features of humic acids and fulvic acids from contrasting environments. Environ. Sci. Technol. 2017, 51, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Filella, M.; Buffle, J.; Parthasarathy, N. Humic and fulvic compounds. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Philadelphia, PA, USA, 2005; Volume 4, p. 288. [Google Scholar]
- De Melo, B.A.G.; Motta, F.L.; Santana, M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C 2016, 62, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.; Ramanathan, A.; Bauddh, K.; Korstad, J. Humic substances: Structure, function and benefits for agroecosystems—A review. Pedosphere 2023, 33, 237–249. [Google Scholar] [CrossRef]
- Hassett, D.J.; Bisesi, M.S.; Hartenstein, R. Bactericidal action of humic acids. Soil Biol. Biochem. 1987, 19, 111–113. [Google Scholar] [CrossRef]
- Siddiqui, Y.; Meon, S.; Ismail, R.; Rahmani, M.; Ali, A. In vitro fungicidal activity of humic acid fraction from oil palm compost. Int. J. Agric. Biol. 2009, 11, 448–452. [Google Scholar]
- Prado, A.G.S.; Miranda, B.S.; Jacintho, G.V.M. Interaction of indigo carmine dye with silica modified with humic acids at solid/liquid interface. Surf. Sci. 2003, 542, 276–282. [Google Scholar] [CrossRef]
- Hayes, M.H.B.; Malcolm, R.L. Considerations of compositions and of aspects of the structures of humic substances. In Humic Substances and Chemical Contaminants; Clapp, C.E., Ed.; SSSA: Madison, WI, USA, 2001; p. 3. [Google Scholar]
- Roulia, M. Humic substances: A novel eco-friendly fertilizer. Agronomy 2022, 12, 754. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Goulet, P.J.G.; Garrido, J.J. Characterization of the porous structure of different humic fractions. Colloids Surf. A 2005, 256, 129–135. [Google Scholar] [CrossRef]
- Gueu, S.; Finqueneisel, G.; Zimny, T.; Bartier, D.; Yao, B.K. Physicochemical characterization of three natural clays used as adsorbent for the humic acid removal from aqueous solution. Adsorpt. Sci. Technol. 2019, 37, 77–94. [Google Scholar] [CrossRef]
- Kim, H.-C.; Yu, M.-J. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water. J. Hazard. Mater. 2007, 143, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Padhan, D.; Rout, P.P.; Kundu, R.; Adhikary, S.; Padhi, P.P. Bioremediation of heavy metals and other toxic substances by microorganisms. In Soil Bioremediation: An Approach towards Sustainable Technology; Parray, J.A., Abd Elkhalek Mahmoud, A.H., Sayyed, R., Eds.; Wiley: Hoboken, NJ, USA, 2021; p. 285. [Google Scholar]
- Senesi, N.; Chen, Y.; Schnitzer, M. Aggregation–dispersion phenomena in humic substances. In Soil Organic Matter Studies; IAEA: Vienna, Austria, 1977; Volume II, p. 143. [Google Scholar]
- Burlakovs, J.; Kļaviņš, M.; Osinska, L.; Purmalis, O. The impact of humic substances as remediation agents to the speciation forms of metals in soil. APCBEE Procedia 2013, 5, 192–196. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, Y.; Liu, H.; Fang, X.; Zhang, Y.; Cui, Z.; Lv, J. New insights into the sustainable use of soluble straw humic substances for the remediation of multiple heavy metals in contaminated soil. Sci. Total Environ. 2023, 903, 166274. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, T.; Zhang, D.; Pan, X. Electrochemical properties of humic acid and its novel applications: A tip of the iceberg. Sci. Total Environ. 2023, 863, 160755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, G.; Gao, S.; Zhang, Z.; Huang, L. Effect of humic acid on phytoremediation of heavy metal contaminated sediment. J. Hazard. Mater. Adv. 2023, 9, 100235. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, S.; Yuan, Y.; Lu, Q. Influence of humic acid complexation with metal ions on extracellular electron transfer activity. Sci. Rep. 2015, 5, 17067. [Google Scholar] [CrossRef]
- Town, R.M.; van Leeuwen, H.P. Metal ion–humic acid nanoparticle interactions: Role of both complexation and condensation mechanisms. Phys. Chem. Chem. Phys. 2016, 18, 18024–18032. [Google Scholar] [CrossRef]
- Siripinyanond, A.; Worapanyanond, S.; Shiowatana, J. Field-flow fractionation−inductively coupled plasma mass spectrometry: An alternative approach to investigate metal−humic substances interaction. Environ. Sci. Technol. 2005, 39, 3295–3301. [Google Scholar] [CrossRef]
- Cumberland, S.A.; Lead, J.R. Particle size distributions of silver nanoparticles at environmentally relevant conditions. J. Chromatogr. A 2009, 1216, 9099–9105. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Jiang, H.; Hu, W. Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids Surf. A 2007, 302, 121–125. [Google Scholar] [CrossRef]
- Perminova, I.V.; Hatfield, K. Remediation chemistry of humic substances: Theory and implications for technology. In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice; Perminova, I.V., Hatfield, K., Hertkorn, N., Eds.; Springer: Dordrecht, The Netherlands, 2005; p. 3. [Google Scholar]
- Strawn, D.G.; Bohn, H.L.; O’Connor, G.A. Soil Chemistry, 5th ed.; Wiley: Hoboken, NJ, USA, 2020; p. 51. [Google Scholar]
- Sharma, J.; Sharma, S.; Soni, V. Classification and impact of synthetic textile dyes on aquatic flora: A review. Reg. Stud. Mar. Sci. 2021, 45, 101802. [Google Scholar] [CrossRef]
- Maheshwari, K.; Agrawal, M.; Gupta, A.B. Dye pollution in water and wastewater. In Novel Materials for Dye-Containing Wastewater Treatment; Muthu, S.S., Khadir, A., Eds.; Springer: Singapore, 2021; p. 1. [Google Scholar]
- Roulia, M.; Vassiliadis, A.A. Water purification by potassium humate–C.I. Basic Blue 3 adsorption-based interactions. Agronomy 2021, 11, 1625. [Google Scholar] [CrossRef]
- Peña-Méndez, E.M.; Havel, J.; Patočka, J. Humic substances—Compounds of still unknown structure: Applications in agriculture, industry, environment, and biomedicine. J. Appl. Biomed. 2005, 3, 13–24. [Google Scholar] [CrossRef]
- Sheng, G.-P.; Zhang, M.-L.; Yu, H.-Q. Quantification of the interactions between a cationic dye and humic substances in aqueous solutions. J. Colloid Interface Sci. 2009, 331, 15–20. [Google Scholar] [CrossRef]
- Sheng, G.-P.; Zhang, M.-L.; Yu, H.-Q. A rapid quantitative method for humic substances determination in natural waters. Anal. Chim. Acta 2007, 592, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Zanini, G.P.; Avena, M.J.; Fiol, S.; Arce, F. Effects of pH and electrolyte concentration on the binding between a humic acid and an oxazine dye. Chemosphere 2006, 63, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Shinozuka, N.; Lee, C. Interaction between humic acids and anthraquinone dyes. J. Jpn. Oil Chem. Soc. 1991, 40, 643–647. [Google Scholar] [CrossRef]
- Hughes, D.J. Colorant for Foliage of Humic and/or Fulvic Acid, and Dye. U.S. Patent 7,431,743 B2, 7 October 2008. [Google Scholar]
- Hafuka, A.; Ding, Q.; Yamamura, H.; Yamada, K.; Satoh, H. Interactions of dissolved humic substances with oppositely charged fluorescent dyes for tracer techniques. Water Res. 2015, 85, 193–198. [Google Scholar] [CrossRef]
- Janoš, P. Sorption of basic dyes onto iron humate. Environ. Sci. Technol. 2003, 37, 5792–5798. [Google Scholar] [CrossRef] [PubMed]
- Rybárik, J.; Sedláček, P.; Klučáková, M. Transport of organic dyes in systems containing humic acids. J. Pol. Miner. Eng. Soc. 2019, 30, 159–162. [Google Scholar] [CrossRef]
- Smilek, J.; Sedláček, P.; Kalina, M.; Klučáková, M. On the role of humic acids’ carboxyl groups in the binding of charged organic compounds. Chemosphere 2015, 138, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Jesus, A.M.D.; Romão, L.P.C.; Araújo, B.R.; Costa, A.S.; Marques, J.J. Use of humin as an alternative material for adsorption/desorption of reactive dyes. Desalination 2011, 274, 13–21. [Google Scholar] [CrossRef]
- Kumar, P.; Agnihotri, R.; Wasewar, K.L.; Uslu, H.; Yoo, C.K. Status of adsorptive removal of dye from textile industry effluent. Desalinat. Water Treat. 2012, 50, 226–244. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, J.; Wang, J.; Wang, X.; Jin, R.; Lv, H. Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Appl. Microbiol. Biotechnol. 2011, 91, 417–424. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, M.; Sun, X.; Zhao, J. Implication for adsorption and degradation of dyes by humic acid: Light driven of environmentally persistent free radicals to activate reactive oxygen species. Bioresour. Technol. 2020, 307, 123183. [Google Scholar] [CrossRef]
- Cai, Z.; Sun, Y.; Liu, W.; Pan, F.; Sun, P.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res. 2017, 24, 15882–15904. [Google Scholar] [CrossRef]
- Cervantes, F.J.; Gómez, R.; Alvarez, L.H.; Martinez, C.M.; Hernandez-Montoya, V. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles. Biodegradation 2015, 26, 289–298. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Adane, T.; Adugna, A.T.; Alemayehu, E. Textile industry effluent treatment techniques. J. Chem. 2021, 2021, 5314404. [Google Scholar] [CrossRef]
- Islam, M.A.; Ali, I.; Karim, S.M.A.; Firoz, M.S.H.; Chowdhury, A.-N.; Morton, D.W.; Angove, M.J. Removal of dye from polluted water using novel nano manganese oxide-based materials. J. Water Process Eng. 2019, 32, 100911. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, Y.; Wu, G.; Wei, F.; Li, X.; Chen, H.; Wang, S. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3−xO4) for Fenton-like reaction in water. J. Hazard. Mater. 2015, 296, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Basuki, R.; Rusdiarso, B.; Santosa, S.J.; Siswanta, D. The dependency of kinetic parameters as a function of initial solute concentration: New insight from adsorption of dye and heavy metals onto humic-like modified adsorbents. Bull. Chem. React. Eng. Catal. 2021, 16, 773–795. [Google Scholar] [CrossRef]
- Gautam, R.K.; Tiwari, I. Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: Application in real water samples, recycling and reuse of nanosorbents. Chemosphere 2020, 245, 125553. [Google Scholar] [CrossRef]
- Sulistyaningsih, T.; Ariyani, S.; Astuti, W. Preparation of magnetite coated humic acid (Fe3O4–HA) as malachite green dye adsorbent. J. Phys. Conf. Ser. 2021, 1918, 032005. [Google Scholar] [CrossRef]
- Abate, G.Y.; Alene, A.N.; Habte, A.T.; Addis, Y.A. Adsorptive removal of basic green dye from aqueous solution using humic acid modified magnetite nanoparticles: Kinetics, equilibrium and thermodynamic studies. J. Polym. Environ. 2021, 29, 967–984. [Google Scholar] [CrossRef]
- Ahmad, N.; Arsyad, F.S.; Royani, I.; Lesbani, A. Selectivity of malachite green on cationic dye mixtures toward adsorption on magnetite humic acid. Environ. Nat. Resour. J. 2022, 20, 634–643. [Google Scholar] [CrossRef]
- Luo, W.-J.; Gao, Q.; Wu, X.-L.; Zhou, C.-G. Removal of cationic dye (methylene blue) from aqueous solution by humic acid-modified expanded perlite: Experiment and theory. Sep. Sci. Technol. 2014, 49, 2400–2411. [Google Scholar] [CrossRef]
- Vinod, V.P.; Anirudhan, T.S. Adsorption behaviour of basic dyes on the humic acid immobilized pillared clay. Water Air Soil Poll. 2003, 150, 193–217. [Google Scholar] [CrossRef]
- Volikov, A.B.; Ponomarenko, S.A.; Konstantinov, A.I.; Hatfield, K.; Perminova, I.V. Nature-like solution for removal of Direct Brown 1 azo dye from aqueous phase using humics-modified silica gel. Chemosphere 2016, 145, 83–88. [Google Scholar] [CrossRef]
- Chassapis, K.; Roulia, M.; Vrettou, E.; Fili, D.; Zervaki, M. Biofunctional characteristics of lignite fly ash modified by humates: A new soil conditioner. Bioinorg. Chem. Appl. 2010, 2010, 457964. [Google Scholar] [CrossRef] [PubMed]
- Akbour, R.A.; Ouachtak, H.; Jada, A.; Akhouairi, S.; Addi, A.A.; Douch, J.; Hamdani, M. Humic acid covered alumina as adsorbent for the removal of organic dye from coloured effluents. Desalinat. Water Treat. 2018, 112, 207–217. [Google Scholar] [CrossRef]
- Arifin, M.; Sudiono, S.; Mudasir, M.; Triyono, T. Adsorption of methylene blue dye using biosorbents based on humic acid cross-linked cellulose. Key Eng. Mater. 2021, 884, 47–53. [Google Scholar] [CrossRef]
- Sehaqui, H.; de Larraya, U.P.; Tingaut, P.; Zimmermann, T. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper (II) and a positively charged dye. Soft Matter 2015, 11, 5294–5300. [Google Scholar] [CrossRef]
- Yi, J.-Z.; Zhang, L.-M. Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Bioresour. Technol. 2008, 99, 2182–2186. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Singhal, R. Kinetics and thermodynamics of cationic dye adsorption onto dry and swollen hydrogels poly(acrylic acid-sodium acrylate-acrylamide) sodium humate. Desalinat. Water Treat. 2015, 53, 3668–3680. [Google Scholar] [CrossRef]
- Singh, T.; Singhal, R. Poly (acrylic acid/acrylamide/sodium humate) superabsorbent hydrogels for metal ion/dye adsorption: Effect of sodium humate concentration. J. Appl. Polym. Sci. 2012, 125, 1267–1283. [Google Scholar] [CrossRef]
- Li, D.; Hua, T.; Yuan, J.; Xu, F. Methylene blue adsorption from an aqueous solution by a magnetic graphene oxide/humic acid composite. Colloids Surf. A 2021, 627, 127171. [Google Scholar] [CrossRef]
- Lu, S.; Liu, W.; Wang, Y.; Zhang, Y.; Li, P.; Jiang, D.; Fang, C.; Li, Y. An adsorbent based on humic acid and carboxymethyl cellulose for efficient dye removal from aqueous solution. Int. J. Biol. Macromol. 2019, 135, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.M.; Badawy, A.A.; Essawy, H.A. Improvement of dyes removal from aqueous solution by nanosized cobalt ferrite treated with humic acid during coprecipitation. J. Nanostruct. Chem. 2019, 9, 281–298. [Google Scholar] [CrossRef]
- Gaayda, J.E.; Titchou, F.E.; Oukhrib, R.; Karmal, I.; Oualid, H.A.; Berisha, A.; Zazou, H.; Swanson, C.; Hamdani, M.; Akbour, R.A. Removal of cationic dye from coloured water by adsorption onto hematite–humic acid composite: Experimental and theoretical studies. Sep. Purif. Technol. 2022, 288, 120607. [Google Scholar] [CrossRef]
- Wang, A.; Li, B.; Wang, Y.; Sun, X.; Huang, Z.; Bian, S.; Fan, K.; Shang, H. Adsorption behavior of congo red on a carbon material based on humic acid. New J. Chem. 2022, 46, 498–510. [Google Scholar] [CrossRef]
Extract (Origin) | Carboxyl-C | O–Aryl-C | Aromatic-C | O–Alkyl-C | CH3O/C–N | Alkyl-C |
---|---|---|---|---|---|---|
HA (leonardite) | 5.3 | 5.5 | 35.7 | 14.7 | 7.8 | 31.0 |
HA (oak forest soil) | 9.7 | 3.2 | 15.7 | 26.0 | 13.0 | 32.4 |
HA (compost) a | 11.5 | 4.1 | 14.8 | 22.8 | 11.5 | 35.2 |
HA (treated lignite) | 5.6 | 4.8 | 64.5 | 6.6 | 2.3 | 16.3 |
HA (compost) b | 11.3 | 4.0 | 14.2 | 28.5 | 11.0 | 31.0 |
HA (oxidized coal) | 7.7 | 8.6 | 53.1 | 8.8 | 6.1 | 15.8 |
HA (forest soil) c | 6.7 | 3.8 | 15.8 | 26.1 | 11.8 | 35.8 |
HA (peat) | 9.6 | 5.6 | 20.6 | 16.9 | 10.0 | 37.3 |
HA (vermicompost) | 10.3 | 4.8 | 15.8 | 23.7 | 13.5 | 31.9 |
HA (lignite) | 6.7 | 6.1 | 39.9 | 9.2 | 2.3 | 35.7 |
FA (agricultural soil) d | 10.8 | 4.4 | 15.7 | 42.4 | 10.2 | 16.4 |
FA (agricultural soil) e | 15.2 | 3.8 | 7.8 | 32.4 | 13.5 | 27.4 |
FA (volcanic forest soil) | 13.0 | 3.7 | 15.0 | 40.2 | 11.3 | 16.8 |
Substance (Number of Samples) | Elemental Composition (wt%) a | |||
---|---|---|---|---|
C | H | O | N | |
Unsegregated HS | ||||
HA (410) | 55.1 ± 5.0 | 5.0 ± 1.1 | 35.6 ± 5.8 | 3.5 ± 1.5 |
FA (214) | 46.2 ± 5.4 | 4.9 ± 1.0 | 45.6 ± 5.5 | 2.5 ± 1.6 |
Humin (26) | 56.1 ± 2.6 | 5.5 ± 1.0 | 34.7 ± 3.4 | 3.7 ± 1.3 b |
HA from different sources | ||||
Soil HA (215) | 55.4 ± 3.8 | 4.8 ± 1.0 | 36.0 ± 3.7 | 3.6 ± 1.3 |
Freshwater HA (56) | 51.2 ± 3.0 | 4.7 ± 0.6 | 40.4 ± 3.8 | 2.6 ± 1.6 |
Peat HA (23) | 57.1 ± 2.5 | 5.0 ± 0.8 | 35.2 ± 2.7 | 2.8 ± 1.0 c |
FA from different sources | ||||
Soil FA (127) | 45.3 ± 5.4 | 5.0 ± 1.0 | 46.2 ± 5.2 | 2.6 ± 1.3 |
Freshwater FA (63) | 46.7 ± 4.3 | 4.2 ± 0.7 | 45.9 ± 5.1 | 2.3 ± 2.1 |
Peat FA (12) | 54.2 ± 4.3 | 5.3 ± 1.1 | 37.8 ± 3.7 | 2.0 ± 0.5 |
Sample a | Elemental Composition (wt%) | w (kDa) | |||
---|---|---|---|---|---|
C | H | O | N | ||
FA | 52.6 | 4.5 | 40.9 | 1.7 | 10.5 |
HA | 55.2 | 5.3 | 35.8 | 3.3 | >16.8 |
HA1 | 58.4 | 5.8 | 31.2 | 4.0 | >63.0 |
HA2 | 57.0 | 5.0 | 34.4 | 3.0 | 24.8 |
HA3 | 56.6 | 4.6 | 36.0 | 2.4 | 15.7 |
HA4 | 48.5 | 4.2 | 45.5 | 1.6 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragouli, P.G.; Roulia, M.; Vassiliadis, A.A. Macromolecular Size and Architecture of Humic Substances Used in the Dyes’ Adsorptive Removal from Water and Soil. Agronomy 2023, 13, 2926. https://doi.org/10.3390/agronomy13122926
Fragouli PG, Roulia M, Vassiliadis AA. Macromolecular Size and Architecture of Humic Substances Used in the Dyes’ Adsorptive Removal from Water and Soil. Agronomy. 2023; 13(12):2926. https://doi.org/10.3390/agronomy13122926
Chicago/Turabian StyleFragouli, Panagiota G., Maria Roulia, and Alexandros A. Vassiliadis. 2023. "Macromolecular Size and Architecture of Humic Substances Used in the Dyes’ Adsorptive Removal from Water and Soil" Agronomy 13, no. 12: 2926. https://doi.org/10.3390/agronomy13122926
APA StyleFragouli, P. G., Roulia, M., & Vassiliadis, A. A. (2023). Macromolecular Size and Architecture of Humic Substances Used in the Dyes’ Adsorptive Removal from Water and Soil. Agronomy, 13(12), 2926. https://doi.org/10.3390/agronomy13122926