Substitution of Chemical Fertilizer with Organic Fertilizer Can Affect Soil Labile Organic Carbon Fractions and Garlic Yield by Mediating Soil Aggregate-Associated Organic Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling and Measurement
2.4. Garlic Yield
2.5. Statistical Analysis
3. Results
3.1. Soil TOC and Labile Organic-Carbon Fractions
3.2. Carbon Pool Management Index
3.3. Soil Aggregate Mass Distribution and Soil Water-Stable Aggregate Organic Carbon
3.4. Garlic Yield
3.5. Correlation Analysis
3.6. SEM Analysis
4. Discussion
4.1. Effects of Different N Fertilizer Applications on TOC and Labile Organic-Carbon Fractions
4.2. Effects of Different N Fertilizer Applications on CPMI
4.3. Effects of Different N Fertilizer Applications on Aggregate Mass Distribution and Water-Stable Aggregate Organic Carbon
4.4. Effects of Different N Fertilizer Applications on Garlic Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef]
- Zhang, H.M.; Wang, B.R.; Xu, M.G.; Fan, T.L. Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere 2009, 19, 199–207. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Heumann, S.; Fier, A.; Haßdenteufel, M.; Hoper, H.; Schafer, S.; Eiler, T.; Bottcher, J. Minimizing nitrate leaching while maintaining crop yields: Insights by simulating net n mineralization. Nutr. Cycl. Agroecosyst. 2013, 95, 395–408. [Google Scholar] [CrossRef]
- Shang, Q.; Gao, C.; Yang, X.; Wu, P.; Ling, N.; Shen, Q.; Guo, S. Ammonia volatilization in chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Biol. Fertil. Soil: Coop. J. Int. Soc. Soil Sci. 2014, 50, 715–725. [Google Scholar] [CrossRef]
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.; Zhu, W.; Wang, J.; Liu, J.; Moran, D.; et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Qaswar, M.; Jing, H.; Ahmed, W.; Li, D.C.; Liu, S.J.; Lu, Z.; Cai, A.D.; Liu, L.S.; Xu, Y.M.; Gao, J.S.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Till. Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- Liu, J.A.; Shu, A.P.; Song, W.; Shi, W.C.; Li, M.C.; Zhang, W.X.; Li, Z.Z.; Liu, G.R.; Yuan, F.S.; Zhang, S.X.; et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- He, F.; Wang, H.; Chen, Q.L.; Yang, B.S.; Gao, Y.C.; Wang, L.H. Short-term response of soil enzyme activity and soil respiration to repeated carbon nanotubes exposure. Soil Sediment Contam. 2015, 24, 250–261. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wu, J.Q.; Li, G.; Yan, L.J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 2020, 10, 12211–12223. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.; Fallah, S.; Sourki, A.A. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella sativa L. Int. Agrophys. 2017, 31, 103–116. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefory, R.D.B.; Lise, L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural system. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Singh, P. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma 2015, 237, 149–158. [Google Scholar] [CrossRef]
- Luo, M.X.; Hu, Z.D.; Liu, X.L.; Li, Y.F.; Hu, J.; Ou, D.H.; Wu, D.Y. Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China. Acta Ecol. Sin. 2021, 41, 5632–5642. [Google Scholar]
- Cressey, E.L.; Dungait, J.A.J.; Jones, D.L.; Nicholas, A.P.; Quine, T.A. Soil microbial populations in deep floodplain soils are adapted to infrequent but regular carbon substrate addition. Soil Biol. Biochem. 2018, 122, 60–70. [Google Scholar] [CrossRef]
- Wang, K.; Sheng, M.Y.; Wang, L.J.; He, Y.; Guo, C. Response of soil phytolith occluded organic carbon accumulation to long-term vegetation restoration in Southwest China karst. Land Degrad. Dev. 2022, 33, 3088–3102. [Google Scholar] [CrossRef]
- Lan, J.C. Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in Southwest China. J. Soils Sediments 2020, 21, 978–989. [Google Scholar] [CrossRef]
- Diekow, J.; Mielniczuk, J.; Knicker, H.; Bayer, C.; Dick, D.P.; Kogel-Knaber, I. Carbon and nitrogen stocks in physical fractions of a subtropical Acrisol as influenced by long-term no-till cropping systems and N fertilization. Plant Soil 2005, 268, 319–328. [Google Scholar] [CrossRef]
- Zhang, L.G.; Chen, X.; Xu, Y.J.; Jin, M.C.; Ye, X.X.; Gao, H.J.; Chu, W.Y.; Mao, J.D.; Thompson, M.L. Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. Sci. Rep. 2020, 10, 11318. [Google Scholar] [CrossRef]
- Xu, W.X.; Liu, W.J.; Tang, S.R.; Yang, Q.; Meng, L.; Wu, Y.Z.; Wang, J.J.; Wu, L.; Wu, M.; Xue, X.X.; et al. Long-term partial substitution of chemical nitrogen fertilizer with organic fertilizers increased SOC stability by mediating soil C mineralization and enzyme activities in a rubber plantation of Hainan Island, China. Appl. Soil Ecol. 2023, 182, 104691. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, C.; Ma, W.; Wang, S.; Wang, S.; Han, W.; Anwar, M.; David, R.; Smith, P. Significant soil acidification across northern China’s grasslands during 1980s–2000s. Glob. Chang. Biol. 2012, 18, 2292–2300. [Google Scholar] [CrossRef]
- Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agric. Ecosyst. Environ. 2013, 164, 14–22. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil Sci. Soc. Amer. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Das, B.; Chakraborty, D.; Singh, V.K.; Aggarwal, P.; Singh, R.; Dwivedi, B.S.; Mishra, R.P. Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system. Soil Till. Res. 2014, 136, 9–18. [Google Scholar] [CrossRef]
- Zuo, F.L.; Li, X.Y.; Yang, X.F.; Wang, Y.; Ma, Y.J.; Huang, Y.H.; Wei, C.F. Soil particle-size distribution and aggregate stability of new reconstructed purple soil affected by soil erosion in overland flow. J. Soils Sediments 2020, 20, 272–283. [Google Scholar] [CrossRef]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.M.; Niggli, U. Soil fertility and biodiversity in organic farming. Science. 2002, 296, 1694–1697. [Google Scholar] [CrossRef]
- Li, R.; Tao, R.; Wang, D.; Chu, G.X. Effect of mineral N fertilizer reduction and organic fertilizer substitution on soil biological properties and aggregate characteristics in drip-irrigated cotton field. Chin. J. Appl. Ecology 2017, 28, 3297–3304. [Google Scholar]
- Qin, W.; Huber, K.; Popp, M.; Bauer, P.; Buettner, A.; Sharapa, C.; Scheffler, L.; Loos, H. Quantification of allyl methyl sulfide, allyl methyl sulfoxide, and allyl methylsulfone in human milk and urine after ingestion of cooked and roasted garlic. Front. Nutr. 2020, 7, 565496. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhu, P.; Wang, Y.; Wei, Z.; Tao, L.; Zhu, Z.; Sheng, X.; Wang, S.; Ruan, J.; Liu, Z.; et al. Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (tnbc) via suppressing mmp2/9 by blocking NF-kB and ERK/MAPK signaling pathways. PLoS ONE 2015, 10, e0123781. [Google Scholar] [CrossRef]
- FAO. Food Outlook—Biannual Report on Global Food Markets. Food Outlook; FAO: Rome, Italy, 2020. [Google Scholar]
- Li, J.; Wen, Y.C.; Li, X.H.; Li, Y.T.; Yang, X.D.; Lin, Z.A.; Song, Z.Z.; Cooper, J.M.; Zhao, B.Q. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil Till. Res. 2018, 175, 281–290. [Google Scholar] [CrossRef]
- Tang, Q.X.; Ren, T.Z.; Schweers, W.; Liu, H.B.; Lei, B.K.; Lin, T.; Zhang, G.L. Study on environmental risk and economic benefits of rotation systems in Farmland of Erhai Lake Basin. J. Integr. Agric. 2012, 11, 1038–1047. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, A.; Liu, J.; Liu, H.; Lei, B.; Zhai, L.; Zhang, D.; Wang, H. Cropping systems affect paddy soil organic carbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China. Sci. Total Environ. 2017, 609, 1640–1649. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Shen, S.Z.; Wan, C.; Wang, S.Q.; Yang, F.X.; Zhang, K.Q.; Gao, W.X. Organic fertilizer substitution over six years improves the productivity of garlic, bacterial diversity, and microbial communities network complexity. Appl. Soil Ecol. 2023, 182, 104718. [Google Scholar] [CrossRef]
- Shen, S.Z.; Yang, Y.; Wang, R.Q.; Wu, F.; Hu, Y.K.; Wang, F.; Zhang, K.Q. Effects of fertilization on ammonia volatilization and garlic yield in Erhai Lake Basin of Yunnan Province. J. Plant Nutri. Fertil. 2021, 27, 470–479. [Google Scholar]
- Dorodnikov, M.; Blagodatskaya, E.; Blagodatsky, S.; Marhan, S.; Fangmeier, A.; Kuzyakov, Y. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Glob. Chang. Biol. 2009, 15, 1603–1614. [Google Scholar] [CrossRef]
- Pang, D.B.; Cui, M.; Liu, Y.G.; Wang, G.Z.; Cao, J.H.; Wang, X.R.; Dan, X.Q.; Zhou, J.X. Responses of soil labile organic carbon fractions and stocks to different vegetation restoration strategies in degraded karst ecosystems of Southwest China. Ecol. Eng. 2019, 138, 391–402. [Google Scholar] [CrossRef]
- Vance, F.; Brookes, P.; Jenkinson, D. Microbial biomass measurements in forest soils: The use of the chloroform fumigation–incubation method in strongly acid soils. Soil Biol. Biochem. 1987, 19, 697–702. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhou, Y.C.; Wang, S.J.; Huang, X.F. Change in SOC content in a small karst basin for the past 35 years and its influencing factors. Arch. Agron. Soil Sci. 2018, 64, 19–29. [Google Scholar] [CrossRef]
- Cambardella, M.R.; Elliott, E.T. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–778. [Google Scholar] [CrossRef]
- Barreto, R.C.; Madari, B.E.; Maddock, J.E.L.; Machado, P.L.O.A.; Torres, E.; Franchini, J.; Costa, A.R. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsolin Southern Brazil. Agric. Ecosyst. Environ. 2009, 132, 243–251. [Google Scholar] [CrossRef]
- Li, H.; Feng, W.T.; He, X.H.; Zhu, P.; Gao, H.J.; Sun, N.; Xu, M.G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J. Integr. Agric. 2017, 16, 937–946. [Google Scholar] [CrossRef]
- He, H.; Peng, M.W.; Lu, W.D.; Hou, Z.A.; Li, J.H. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Sci. Total Environ. 2022, 851, 158132. [Google Scholar] [CrossRef] [PubMed]
- Saikia, P.; Bhattacharya, S.S.; Baruah, K.K. Organic substitution in fertilizer schedule: Impacts on soil health, photosynthetic efficiency, yield and assimilation in wheat grown in alluvial soil. Agric. Ecosyst. Environ. 2015, 203, 102–109. [Google Scholar] [CrossRef]
- Abdalla, K.; Sun, Y.; Zarebanadkouki, M.; Gaiser, T.; Seidel, S.; Pausch, J. Long-term continuous farmyard manure application increases soil carbon when combined with mineral fertilizers due to lower priming effects. Geoderma 2022, 428, 116216. [Google Scholar] [CrossRef]
- Li, T.T.; Zhang, Y.L.; Bei, S.K.; Li, X.L.; Reinsch, S.; Zhang, H.Y.; Zhang, J.L. Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. Catena 2020, 194, 104739. [Google Scholar] [CrossRef]
- He, H.; Peng, M.W.; Lu, W.D.; Ru, S.B.; Hou, Z.A.; Li, J.H. Organic fertilizer substitution promotes soil organic carbon sequestration by regulating permanganate oxidizable carbon fractions transformation in oasis wheat fields. Catena 2023, 221, 106784. [Google Scholar] [CrossRef]
- Li, S.; Sheng, M.Y.; Yuan, F.Y.; Yin, J. Effect of land cover change on total SOC and soil PhytOC accumulation in the karst subtropical forest ecosystem, SW China. J. Soils Sediments 2021, 21, 2566–2577. [Google Scholar] [CrossRef]
- Luan, H.A.; Gao, W.; Huang, S.W.; Tang, J.W.; Li, M.Y.; Zhang, H.Z.; Chen, X.P.; Masiliunas, D. Organic amendment increases soil respiration in a greenhouse vegetable production system through decreasing soil organic carbon recalcitrance and increasing carbon-degrading microbial activity. J. Soils Sediments 2020, 20, 287–2892. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Zhang, C.Z.; Zhang, J.B.; Liu, C.H.; Wu, Q.C. Effects of substituting manure for fertilizer on aggregation and aggregate associated carbon and nitrogen in a Vertisol. Agron. J. 2019, 111, 368–377. [Google Scholar] [CrossRef]
- Liu, X.; Bol, R.; Ge, Z.; Ma, N.; Li, T.Y.; Liu, Y.C.; Li, S.Y.; An, T.T.; Wang, J.K. Plastic film mulching maintains soil organic carbon by increasing fungal necromass carbon under manure application. Eur. J. Soil Sci. 2023, 74, e13433. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Misra, A.; Ghosh, P.; Hati, K. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil Till. Res. 2010, 110, 115–125. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, J.; Liang, W. Impacts of 22-year organic and inorganic N managements on soil organic C fractions in a maize field, Northeast China. Catena 2011, 87, 386–390. [Google Scholar] [CrossRef]
- Whalen, J.K.; Gul, S.; Poirier, V.; Yanni, S.F.; Simpson, M.J.; Clemente, J.S.; Feng, X.; Grayston, S.J.; Barker, J.; Gregorich, E.G.; et al. Transforming plant carbon into soil carbon: Process-level controls on carbon sequestration. Can. J. Plant Sci. 2014, 94, 1065–1073. [Google Scholar] [CrossRef]
- Li, X.S.; Qu, C.Y.; Li, Y.N.; Liang, Z.Y.; Tian, X.H.; Shi, J.L.; Ning, P.; Wei, P. Long term effects of straw mulching coupled with N application on soil organic carbon sequestration and soil aggregation in a winter wheat monoculture system. Agron. J. 2020, 113, 2118–2131. [Google Scholar] [CrossRef]
- Villarino, S.H.; Pinto, P.; Jackson, R.B.; Pineiro, G. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Sci. Adv. 2021, 7, eabd31763176. [Google Scholar] [CrossRef]
- Chen, Z.M.; Wang, Q.; Wang, H.Y.; Bao, L.; Zhou, J.M. Crop yields and soil organic carbon fractions as influenced by straw incorporation in a rice-wheat cropping system in southeastern China. Nutr. Cycl. Agroecosys. 2018, 112, 61–73. [Google Scholar] [CrossRef]
- Verma, S.; Sharma, P.K. Effect of long-term manuring and fertilizer on carbon pools, soil structure, and sustainability under different cropping systems in wettemperate zone of northwest Himalayas. Biol. Fertil. Soils. 2007, 19, 235–240. [Google Scholar] [CrossRef]
- Gong, W.; Yan, X.Y.; Wang, J.Y.; Hu, T.X.; Gong, Y.B. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China Plain. Plant Soil 2009, 314, 67–76. [Google Scholar] [CrossRef]
- Ma, L.J.; Lv, X.B.; Cao, N.; Wang, Z.; Zhou, Z.G.; Meng, Y.L. Alterations of soil labile organic carbon fractions and biological properties under different residuemanagement methods with equivalent carbon input. Appl. Soil Ecol. 2021, 161, 103821. [Google Scholar] [CrossRef]
- Tirol-Padre, A.; Ladha, J.K. Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Sci. Soc. Am. J. 2004, 68, 969–978. [Google Scholar]
- Abdalla, K.; Gaiser, T.; Seide, S.J.; Pausch, J. Soil organic carbon and nitrogen in aggregates in response to over seven decades of farmyard manure application. J. Plant Nutr. Soil Sci. 2023, 186, 253–258. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Peng, X.; Zhou, H.; Lin, H.; Sun, H. Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve. Soil Till. Res. 2015, 146, 53–65. [Google Scholar] [CrossRef]
- Li, P.P.; Han, Y.L.; He, J.Z.; Zhang, S.Q.; Zhang, L.M. Soil aggregate size and long-term fertilization effects on the function and community of ammonia oxidizers. Geoderma 2019, 338, 107–117. [Google Scholar] [CrossRef]
- Xue, Y.K.; Liu, K.L.; Wu, L.; Wang, B.; Zhang, W.J.; Xu, M.G.; Li, Y.E.; Cai, A.D. Comparative analysis of the carbon sequestration characteristics of red soil aggregates in paddy fields and upland under varying long-term fertilization practices. Chin. J. Eco-Agric. 2023, 31, 1428–1438. [Google Scholar]
- Gao, Y.X.; Feng, H.J.; Zhang, M.; Shao, Y.Q.; Wang, J.Q.; Liu, Y.L.; Li, C.L. Straw returning combined with controlled-release nitrogen fertilizer affected organic carbon storage and crop yield by changing humic acid composition and aggregate distribution. J. Clean. Prod. 2023, 415, 137783. [Google Scholar] [CrossRef]
- O’Brien, S.L.; Jastrow, J.D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biol. Biochem. 2013, 61, 1–13. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Griffiths, H.; Chamberlain, P.M.; Stott, A.W.; Tanner, E.V.J. Soil priming by sugar and leaf-litter substrates: A link to microbial groups. Appli. Soil Ecol. 2009, 42, 183–190. [Google Scholar] [CrossRef]
- Zhao, H.L.; Shar, A.G.; Li, S.; Chen, Y.L.; Shi, J.L.; Zhang, X.Y.; Tiao, X.H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil Till. Res. 2018, 175, 178–186. [Google Scholar] [CrossRef]
- Qiao, Y.F.; Miao, S.J.; Li, N.; Xu, Y.L.; Han, X.Z.; Zhang, B. Crop species affect soil organic carbon turnover in soil profile and among aggregate sizes in a Mollisol as estimated from natural C-13 abundance. Plant Soil 2015, 392, 163–174. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhang, G.L. Water infiltration in urban soils and its effects on the quantity and quality of runoff. J. Soils Sediments 2011, 11, 751–761. [Google Scholar] [CrossRef]
- Sun, D.; Li, K.; Bi, Q. Effects of organic amendment on soil aggregation and microbial community composition during drying rewetting alternation. Sci. Total Environ. 2017, 574, 735–743. [Google Scholar] [CrossRef]
- Wang, F.; Li, Q.H.; He, C.M.; Wang, K.; You, Y.L.; Huang, Y.B. Long-term fertilization effects on soil aggregates organic carbon sequestration and distribution in a yellow-mud paddy soil. Chin. J. Eco. Agri. 2023, 31, 315–324. [Google Scholar]
- Liu, C.Y.; Yang, F.; Lu, X.J.; Zhao, Y.Q.; Zhang, B.W.; Fan, J.D. Effects of combined application of organic and inorganic fertilizers on the growth, yield and quality of garlic. Hunan Agri. Sci. 2021, 12, 40–43. [Google Scholar]
- Zhu, J.; Peng, H.; Ji, X.H.; Li, C.J.; Li, S.N. Effects of reduced inorganic fertilization and rice straw recovery on soil enzyme activities and bacterial community in double-rice paddy soils. Eur. J. Soil Biol. 2019, 94, 103116. [Google Scholar] [CrossRef]
- Bharali, A.; Baruah, K.K.; Bhattacharyya, P.; Gorh, D. Integrated nutrient management in wheat grown in a northeast India soil: Impacts on soil organic carbon fractions in relation to grain yield. Soil Till. Res. 2017, 168, 81–91. [Google Scholar] [CrossRef]
- Lv, F.L.; Song, J.S.; Giltrap, D.; Feng, Y.T.; Yang, X.Y.; Zhang, S.L. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize cropping system. Sci. Total Environ. 2020, 732, 139321. [Google Scholar] [CrossRef] [PubMed]
- Berry, P.M.; Sylvester-Bradley, R.; Philipps, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Fang, Q.C.; Zhang, T.; Ma, W.Q.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F.S. Benefifits and trade–offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta–analysis. Glob. Chang. Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef]
- Subehia, S.K.; Sepehya, S.; Rana, S.S.; Negi, S.C.; Sharma, S.K. Long-term effect of organic and inorganic fertilizers on rice (Oryza sativa L.) yield, and chemical properties of an acidic soil in the western Himalayas. Exp. Agric. 2013, 49, 382–394. [Google Scholar] [CrossRef]
- Xia, L.L.; Lam, S.K.; Yan, X.Y.; Chen, D.L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.F.; Gao, S.C.; Ma, M.C.; Zhou, X.L.; Zhao, T.K.; Sun, D.J.; Shen, D.L. Impact of organic manure supplement chemical fertilizer partially on soil nutrition, enzyme activity and crop yield in north China plain. Soil Fertil. Sci. China 2016, 3, 98–104. [Google Scholar]
Treatments | Base Fertilizer (kg·ha−1) | Topdressing (kg·ha−1) | ||||
---|---|---|---|---|---|---|
Synthetic Fertilizer (N:P:K = 15:15:15) | Urea (N ≥ 46%) | Organic Fertilizer (N ≥ 0.79%, P ≥ 0.75%, K ≥ 0.62%) | K2O (P ≥ 51%) | P2O5 (K ≥ 12.0%) | Urea (N ≥ 46%) | |
N0 | / | / | / | 220 | 937 | / |
NF | 750 | 300 | / | / | / | 225 |
1/2OF | / | / | 22,525 | / | / | / |
1/3OF + 2/3NF | / | 286 | 15,017 | 38 | / | 225 |
Treatments | TOC g·kg−1 | MBC mg·kg−1 | DOC mg·kg−1 | POC mg·kg−1 | EOC mg·kg−1 |
---|---|---|---|---|---|
N0 | 12.7 ± 0.56 b | 21.7 ± 3.73 d | 30.4 ± 2.50 b | 39.4 ± 3.99 b | 2.59 ± 0.07 c |
NF | 12.9 ± 0.52 b | 53.6 ± 4.07 b | 35.7 ± 8.56 ab | 42.6 ± 1.02 ab | 3.13 ± 0.14 bc |
1/2OF | 16.0 ± 1.19 a | 68.7 ± 7.62 a | 39.3 ± 7.10 a | 42.8 ± 4.80 ab | 4.04 ± 0.39 a |
1/3OF + 2/3NF | 15.1 ± 0.08 a | 34.8 ± 0.35 c | 35.2 ± 7.80 ab | 48.5 ± 1.57 a | 3.95 ± 0.89 ab |
Treatments | L | LI | CPI | CPMI |
---|---|---|---|---|
N0 | 0.26 ± 0.02 b | 1.00 ± 0.00 b | 1.00 ± 0.00 b | 100 ± 0.00 c |
NF | 0.32 ± 0.01 a | 1.25 ± 0.10 a | 1.02 ± 0.02 b | 127 ± 11.3 bc |
1/2OF | 0.34 ± 0.04 a | 1.33 ± 0.20 a | 1.26 ± 0.14 a | 167 ± 20.0 a |
1/3OF + 2/3NF | 0.31 ± 0.06 ab | 1.21 ± 0.23 ab | 1.19 ± 0.05 a | 143 ± 28.0 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, N.; Liu, C.; Chen, Q.; Fan, J.; Wang, Y.; Sun, H. Substitution of Chemical Fertilizer with Organic Fertilizer Can Affect Soil Labile Organic Carbon Fractions and Garlic Yield by Mediating Soil Aggregate-Associated Organic Carbon. Agronomy 2023, 13, 3062. https://doi.org/10.3390/agronomy13123062
Hu N, Liu C, Chen Q, Fan J, Wang Y, Sun H. Substitution of Chemical Fertilizer with Organic Fertilizer Can Affect Soil Labile Organic Carbon Fractions and Garlic Yield by Mediating Soil Aggregate-Associated Organic Carbon. Agronomy. 2023; 13(12):3062. https://doi.org/10.3390/agronomy13123062
Chicago/Turabian StyleHu, Naijuan, Canyu Liu, Qian Chen, Jide Fan, Yutao Wang, and Hongwu Sun. 2023. "Substitution of Chemical Fertilizer with Organic Fertilizer Can Affect Soil Labile Organic Carbon Fractions and Garlic Yield by Mediating Soil Aggregate-Associated Organic Carbon" Agronomy 13, no. 12: 3062. https://doi.org/10.3390/agronomy13123062
APA StyleHu, N., Liu, C., Chen, Q., Fan, J., Wang, Y., & Sun, H. (2023). Substitution of Chemical Fertilizer with Organic Fertilizer Can Affect Soil Labile Organic Carbon Fractions and Garlic Yield by Mediating Soil Aggregate-Associated Organic Carbon. Agronomy, 13(12), 3062. https://doi.org/10.3390/agronomy13123062