Rice Straw Mulch Installation in a Vineyard Improves Weed Control and Modifies Soil Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatments and Determinations
2.3. Experimental Design and Statistical Analysis
3. Results
3.1. Influence on Weed Control
3.2. Influence on Physical Soil Properties
3.3. Influence on Biological Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGourty, G.T.; Reganold, J.P. Managing vineyard soil organic matter with cover crops. In Proceedings of the Soil Environment and Vine Mineral Nutrition Symposium; American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 145–151. [Google Scholar]
- Mansoor, Z.; Tchuenbou-Magaia, F.; Kowalczuk, M.; Adamus, G.; Manning, G.; Parati, M.; Radecka, I.; Khan, H. Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers 2022, 14, 5062. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, V.; Westbrook, A.S.; Bellinder, R.R.; DiTommaso, A. Integrated management of living mulches for weed control: A review. Weed Technol. 2021, 35, 856–868. [Google Scholar] [CrossRef]
- Crutchfield, D.A.; Wicks, G.A.; Burnside, O.C. Effect of Winter Wheat (Triticum aestivum) Straw Mulch Level on Weed Control. Weed Sci. 1986, 34, 110–114. [Google Scholar] [CrossRef]
- Jalota, S.K.; Khera, R.; Arora, V.K.; Beri, V. Benefits of straw mulching in crop production: A review. J. Res. Punjab Agric. Univ. 2007, 44, 104–107. [Google Scholar]
- Johnson, J.M.; Hough-Goldstein, J.A.; Vangessel, M.J. Effects of straw mulch on pest insects, predators, and weeds in watermelons and potatoes. Environ. Entomol. 2004, 33, 1632–1643. [Google Scholar] [CrossRef]
- Bakshi, P.; Wali, V.K.; Iqbal, M.; Jasrotia, A.; Kour, K.; Ahmed, R.; Bakshi, M. Sustainable fruit production by soil moisture conservation with different mulches: A review. Afr. J. Agric. Res. 2015, 10, 4718–4729. [Google Scholar] [CrossRef]
- Rahman, M.A.; Chikushi, J.; Saifizzaman, M.; Lauren, J.G. Rice straw mulching and nitrogen response of no-till wheat following rice in Bangladesh. Field Crops Res. 2005, 91, 71–81. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 2006, 95, 115–125. [Google Scholar] [CrossRef]
- Anzalone, A.; Cirujeda, A.; Aibar, J.; Pardo, G.; Zaragoza, C. Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol. 2017, 24, 369–377. [Google Scholar] [CrossRef]
- Abouziena, H.F.; Hafez, O.M.; El-Metwally, I.M.; Sharma, S.D.; Singh, M. Comparison of weed suppression and mandarin fruit yield and quality obtained with organic mulches, synthetic mulches, cultivation, and glyphosate. HortScience 2008, 43, 795–799. [Google Scholar] [CrossRef]
- Devasinghe, D.A.U.D.; Premarathne, K.P.; Sangakkara, U.R. Weed management by rice straw mulching in direct seeded lowland rice (Oryza sativa L.). Trop. Agric. Res. 2011, 22, 263–272. [Google Scholar] [CrossRef]
- Torregrosa, A.; Giner, J.M.; Velázquez-Martí, B. Equipment performance, costs and constraints of packaging and transporting rice straw for alternative uses to burning in the “Parc Natural l’Albufera de València” (Spain). Agriculture 2021, 11, 570. [Google Scholar] [CrossRef]
- Kaur, J.; Bons, H.K. Mulching: A viable option to increase productivity of field and fruit crops. J. Appl. Nat. Sci. 2017, 9, 974–982. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop Residue Removal Impacts on Soil Productivity and Environmental Quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Impact of Rice Straw Mulch on Soil Physical Properties, Sunflower Root Distribution and Yield in a Salt-Affected Clay-Textured Soil. Agriculture 2021, 11, 264. [Google Scholar] [CrossRef]
- Karlen, D.L.; Wollenhaupt, N.C.; Erbach, D.C.; Berry, E.C.; Swan, J.B.; Eash, N.S.; Jordahl, J.L. Crop residue effects on soil quality following 10 years of no-till corn. Soil Tillage Res. 1994, 31, 149–167. [Google Scholar] [CrossRef]
- Salinas-Garcia, J.R.; Báez-González, A.D.; Tiscareno-López, M.; Rosales-Robles, E. Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico. Soil Tillage Res. 2001, 59, 67–79. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Rubio, J.L.; Sánchez, J.; Forteza, J. Mapa de suelos de la Comunidad Valenciana. Hoja: Valencia 722. Ed. Generalitat Valenciana; Consellería d’Agricultura i Mig Ambient: Valencia, Spain, 1996; 101p. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Yakovchenko, V.P.; Sikora, L.J. Modified dichromate method for determining low concentrations of extractable organic carbon in soil. Commun. Soil Sci. Plant Anal. 1998, 29, 421–433. [Google Scholar] [CrossRef]
- Marí, A.I.; Pardo, G.; Aibar, J.; Cirujeda, A. Purple nutsedge (Cyperus rotundus L.) control with biodegradable mulches and its effect on fresh pepper production. Sci. Hortic. 2020, 263, 109111. [Google Scholar] [CrossRef]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Qamar, R.; Ullah, E.; Saqib, M.; Javeed, H.M.R.; Rehman, A.; Ali, A. Influence of tillage and mulch on soil physical properties and wheat yield in rice-wheat system. West Afr. J. Appl. Ecol. 2015, 23, 21–38. [Google Scholar]
- Ram, H.; Dadhwal, V.; Vashist, K.K.; Kaur, H. Grain yield and water use efficiency of wheat (Triticum aestivum L.) in relation to irrigation levels and rice straw mulching in North West India. Agric. Water Manag. 2013, 128, 92–101. [Google Scholar] [CrossRef]
- Segarra, R. Acolchado de Paja de Arroz y Calidad de Suelo: Efecto de la Dosis Aplicada. Master’s Thesis, School of Agricultural Engineering and Environment, Polytechnic University of Valencia, Valencia, Spain, 2022. [Google Scholar]
- Hadas, A.; Rawitz, E.; Etkin, H.; Margolin, M. Short-term variations of soil physical properties as a function of the amount and C/N ratio of decomposing cotton residues. I. Soil aggregation and aggregate tensile strength. Soil Tillage Res. 1994, 32, 183–198. [Google Scholar] [CrossRef]
- Sharratt, B.S. Corn stubble height and residue placement in the northern US Corn Belt Part I. Soil physical environment during winter. Soil Tillage Res. 2002, 64, 243–252. [Google Scholar] [CrossRef]
- Balwinder-Singh, A.; Humphreys, E.; Eberbach, P.L.; Katupitiya, A. The partitioning of evapotranspiration of irrigated wheat as affected by rice straw mulch. In Proceedings of the 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
Date | Weed Coverage (%) | LSD | p-Value | |||
---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | |||
19 April 2021 | 86.7 | 90.0 | 80.0 | 68.3 | 25.34 | 0.3271 |
13 May 2021 | Mulch application | – | – | |||
22 July 2021 | 21.7 a | 4.0 b | 0.7 b | 0.1 b | 5.75 | 0.0001 |
20 September 2021 | 95.0 a | 10.0 b | 5.1 b | 0.4 b | 13.25 | 0.0000 |
9 November 2021 | 98.3 a | 33.3 b | 21.7 b | 15.7 b | 33.90 | 0.0017 |
15 December 2021 | 93.3 a | 14.0 b | 10.0 b | 9.0 b | 19.05 | 0.0000 |
13 January 2022 | 88.3 a | 10.7 b | 6.9 b | 1.7 b | 22.59 | 0.0001 |
4 March 2022 | 93.3 a | 26.7 b | 14.0 b | 5.7 b | 21.39 | 0.0000 |
19 May 2022 | 96.7 a | 61.7 ab | 26.7 b | 23.3 b | 49.22 | 0.0277 |
31 May 2022 | Weed harvesting | – | – | |||
26 July 2022 | 8.3 | 5.3 | 3.7 | 2.0 | 6.29 | 0.1995 |
3 October 2022 | 21.7 | 12.3 | 9.3 | 9.0 | 16.95 | 0.3407 |
4 October 2022 | Mulch application | – | – | |||
27 December 2022 | 88.3 a | 61.7 b | 38.3 c | 10.0 d | 21.57 | 0.0002 |
24 March 2023 | 86.7 a | 80.0 ab | 61.7 b | 33.3 c | 22.57 | 0.0026 |
26 April 2023 | 80.0 a | 66.7 a | 46.7 ab | 25.0 b | 37.26 | 0.0413 |
25 July 2023 | 78.3 a | 61.7 a | 60.0 a | 16.7 b | 33.94 | 0.0161 |
25 July 2023 | Weed harvesting | – | – |
Treatment | BD (g cm−3) | SOC (g C kg−1) | WSOC (g C kg−1) | WSOC/SOC (%) |
---|---|---|---|---|
T0 | 1.36 ± 0.04 a | 10.15 ± 0.97 a | 0.119 ± 0.045 a | 1.19 ± 0.48 |
T1 | 1.29 ± 0.08 b | 11.87 ± 1.99 b | 0.143 ± 0.044 ab | 1.22 ± 0.38 |
T2 | 1.30 ± 0.09 b | 12.62 ± 1.84 bc | 0.160 ± 0.048 bc | 1.29 ± 0.42 |
T3 | 1.27 ± 0.08 b | 13.39 ± 2.87 c | 0.188 ± 0.062 c | 1.45 ± 0.60 |
p-value | 0.0101 | 0.0004 | 0.0037 | 0.4373 |
Treatment | Soil Temperature (°C) | Volumetric Water Content (%) | ||||||
---|---|---|---|---|---|---|---|---|
Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | Spring | |
T0 | 27.2 | 19.7 a | 10.6 a | 17.6 | 4.5 a | 7.9 a | 6.7 a | 10.1 a |
T1 | 26.5 | 20.8 ab | 12.0 b | 17.4 | 6.8 b | 11.3 b | 10.4 b | 12.5 a |
T2 | 26.4 | 21.4 b | 12.5 bc | 17.4 | 8.7 c | 14.6 c | 14.3 c | 16.7 b |
T3 | 26.4 | 21.8 b | 12.8 c | 17.5 | 9.9 c | 17.1 d | 16.5 d | 18.4 b |
p-value | 0.149 | 0.026 | 0.000 | 0.994 | 0.000 | 0.000 | 0.000 | 0.000 |
Treatment | Model | R-Squared | F Ratio | df * | p-Value |
---|---|---|---|---|---|
T0 | SR = −0.48 + 0.02 × VWC + 0.21 × logT | 0.3524 | 75.11 | 278 | 0.000 |
T1 | SR = −1.68 + 0.04 × VWC + 0.66 × logT | 0.2917 | 56.84 | 278 | 0.000 |
T2 | SR = −3.16 + 0.06 × VWC + 1.14 × logT | 0.3011 | 59.45 | 278 | 0.000 |
T3 | SR = −7.33 + 0.11 × VWC + 2.41 × logT | 0.3343 | 69.32 | 278 | 0.000 |
All treatments | SR = −3.05 + 0.07 × VWC + 1.04 × logT | 0.3164 | 257.65 | 1115 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez de Barreda, D.; Bautista, I.; Castell, V.; Lidón, A. Rice Straw Mulch Installation in a Vineyard Improves Weed Control and Modifies Soil Characteristics. Agronomy 2023, 13, 3068. https://doi.org/10.3390/agronomy13123068
Gómez de Barreda D, Bautista I, Castell V, Lidón A. Rice Straw Mulch Installation in a Vineyard Improves Weed Control and Modifies Soil Characteristics. Agronomy. 2023; 13(12):3068. https://doi.org/10.3390/agronomy13123068
Chicago/Turabian StyleGómez de Barreda, Diego, Inmaculada Bautista, Vicente Castell, and Antonio Lidón. 2023. "Rice Straw Mulch Installation in a Vineyard Improves Weed Control and Modifies Soil Characteristics" Agronomy 13, no. 12: 3068. https://doi.org/10.3390/agronomy13123068
APA StyleGómez de Barreda, D., Bautista, I., Castell, V., & Lidón, A. (2023). Rice Straw Mulch Installation in a Vineyard Improves Weed Control and Modifies Soil Characteristics. Agronomy, 13(12), 3068. https://doi.org/10.3390/agronomy13123068