Nitrogen Foliage Application at Anthesis Improves Grain Yield and Quality of Wheat in a Genotype-Dependent Manner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Experimental Design
2.3. Sampling and Measurement
2.3.1. Grain Yield Determination
2.3.2. Determination of Protein Content and Components, Starch, and Dough Rheological Properties
2.3.3. Determination of the Microelement and Phytic Acid Contents
2.4. Statistical Analysis
3. Results
3.1. Grain Yield and Total Protein
3.2. Grain Protein Component
3.3. Grain Starch Component and Dough Properties
3.4. Bioavailability of Trace Elements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, Z.; Chang, X.; Wang, D.; Zhao, G.; Zhao, B. Long-term fertilization effects on processing quality of wheat grain in the North China Plain. Field Crops Res. 2015, 174, 55–60. [Google Scholar] [CrossRef]
- Giordano, N.; Sadras, V.O.; Lollato, R.P. Late-season nitrogen application increases grain protein concentration and is neutral for yield in wheat. A global meta-analysis. Field Crops Res. 2023, 290, 108740. [Google Scholar] [CrossRef]
- Dick, C.D.; Thompson, N.M.; Epplin, F.M.; Arnall, D.B. Managing late-season foliar nitrogen fertilization to increase grain protein for winter wheat. Agron. J. 2016, 108, 2329–2338. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Kelly, J.; Chim, B.K.; Rutto, E.; Waldschmidt, K.; Mullock, J.; Torres, G.; Desta, K.G.; Raun, W. Nitrogen fertilizer management for improved grain quality and yield in winter wheat in Oklahoma. J. Plant Nutr. 2013, 36, 749–761. [Google Scholar] [CrossRef]
- Klikocka, H.; Cybulska, M.; Bożena, B.; Narolski, B.; Szostak, B.; Kobiałka, A.; Nowak, A.; Wójcik, E. The effect of sulphur and nitrogen fertilization on grain yield and technological quality of spring wheat. Plant Soil Environ. 2016, 62, 230–236. [Google Scholar] [CrossRef]
- Fernández, V.; Brown, P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013, 4, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Ding, Y.; Long, M.; Liang, W.; Gu, X.; Liu, Y.; Wen, X. Effect of foliar application of various nitrogen forms on starch accumulation and grain filling of wheat (Triticum aestivum L.) under drought stress. Front. Plant Sci. 2021, 12, 645379. [Google Scholar] [CrossRef]
- Abad, A.; Lloveras, J.; Michelena, A. Nitrogen fertilization and foliar urea effects on durum wheat yield and quality and on residual soil nitrate in irrigated Mediterranean conditions. Field Crops Res. 2004, 87, 257–269. [Google Scholar] [CrossRef]
- Xue, C.; Schulte auf’m Erley, G.; Warnig, A.; Schuster, R.; Koehler, P.; Mühling, K. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Front. Plant Sci. 2016, 7, 112–133. [Google Scholar] [CrossRef]
- Altenbach, S.; Tanaka, C.; Whitehand, L.; Vensel, W. Effects of post-anthesis fertilizer on the protein composition of the gluten polymer in a US bread wheat. J. Cereal Sci. 2015, 68, 333–366. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Wang, C.; Zhu, Y.; Guo, T. Mineral elements bioavailability in milling fractions of wheat grain response to Zinc and nitrogen application. Agron. J. 2019, 111, 2504–2511. [Google Scholar] [CrossRef]
- Wang, S.; Li, M.; Tian, X.; Li, J.; Li, H.; Ni, Y.; Zhao, J.; Chen, Y.; Guo, C.; Zhao, A. Foliar zinc, nitrogen, and phosphorus application effects on micronutrient concentrations in winter wheat. Agron. J. 2015, 107, 61–72. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhang, Y.; Shi, Y. Optimized nitrogen fertilizer application strategies under supplementary irrigation improved winter wheat (Triticum aestivum L.) yield and grain protein yield. PeerJ 2021, 9, e11467. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, A.; Buchner, P.; Savill, G.P.; Hawkesford, M.J.; Scherf, K.A.; Mühling, K.H. Foliar N application at anthesis alters grain protein composition and enhances baking quality in winter wheat only under a low N fertiliser regimen. Eur. J. Agron. 2019, 109, 125909. [Google Scholar] [CrossRef]
- Li, X.; Zhou, L.; Liu, F.; Zhou, Q.; Cai, J.; Wang, X.; Dai, T.; Cao, W.; Jiang, D. Variations in protein concentration and nitrogen sources in different positions of grain in wheat. Front. Plant Sci. 2016, 7, 56–75. [Google Scholar] [CrossRef]
- Ben Mariem, S.; González-Torralba, J.; Collar, C.; Aranjuelo, I.; Morales, F. Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes. Plants 2020, 9, 1636. [Google Scholar] [CrossRef]
- Wieser, H.; Koehler, P.; Scherf, K. The two faces of wheat. Front. Nutr. 2020, 7, 517313. [Google Scholar] [CrossRef]
- Guo, J.; Bian, Y.-Y.; Zhu, K.-X.; Guo, X.-N.; Peng, W.; Zhou, H.-M. Reducing phytate content in wheat bran by directly removing the aleurone cell content with teeth roller mill and ultrasonic cleaner. J. Cereal Sci. 2015, 64, 133–138. [Google Scholar] [CrossRef]
- Gargari, B.P.; Mahboob, S.; Razavieh, S.V. Content of phytic acid and its mole ratio to zinc in flour and breads consumed in Tabriz, Iran. Food Chem. 2007, 100, 1115–1119. [Google Scholar] [CrossRef]
- Balk, J.; Connorton, J.M.; Wan, Y.; Lovegrove, A.; Moore, K.L.; Uauy, C.; Sharp, P.A.; Shewry, P.R. Improving wheat as a source of iron and zinc for global nutrition. Nutr. Bull. 2019, 44, 53–59. [Google Scholar] [CrossRef]
- Warnig, A.; Pitann, B.; Mühling, K. Splitting nitrogen applications improves wheat storage protein composition under low N supply. J. Plant Nutr. Soil Sci. 2019, 182, 347–355. [Google Scholar]
- Wang, S.; Li, M.; Liu, K.; Tian, X.; Li, S.; Chen, Y.; Jia, Z. Effects of Zn, macronutrients, and their interactions through foliar applications on winter wheat grain nutritional quality. PLoS ONE 2017, 12, e0181276. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Persson, D.P.; Hansen, T.H.; Husted, S.R.; Schjoerring, J.K.; Kim, Y.S.; Jeon, U.S.; Kim, Y.K.; Kakei, Y.; Masuda, H. Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol. J. 2011, 9, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Latshaw, S.P.; Vigil, M.F.; Haley, S.D. Genotypic differences for nitrogen use efficiency and grain protein deviation in hard winter wheat. Agron. J. 2016, 108, 2201–2213. [Google Scholar] [CrossRef]
- Feng, X.-M.; Yang, Y.; Ren, C.-Z.; Hu, Y.-G.; Zeng, Z.-H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agron. Sin. 2015, 41, 1426–1434. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, B.; Wei, Y.; Zhang, B. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. Food Chem. 2013, 138, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Cheng, F.M.; Cheng, W.D.; Zhang, G.P. Positional variations in phytic acid and protein content within a panicle of japonica rice. J. Cereal Sci. 2005, 41, 297–303. [Google Scholar] [CrossRef]
- Schirmer, M.; Jekle, M.; Becker, T.; Arendt, E. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin content. Food Hydrocoll. 2012, 32, 52–63. [Google Scholar] [CrossRef]
- Persson, D.P.; De Bang, T.C.; Pedas, P.R.; Kutman, U.B.; Cakmak, I.; Andersen, B.; Finnie, C.; Schjoerring, J.K.; Husted, S. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status. New Phytol. 2016, 211, 1255–1265. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.; Wang, Z.; Yang, J.; Zhang, J. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J. Exp. Bot. 2010, 61, 3719–3733. [Google Scholar] [CrossRef]
- Zheng, Y.-M.; Ding, Y.-F.; Liu, Z.-H.; Wang, S.-H. Effects of panicle nitrogen fertilization on non-structural carbohydrate and grain filling in Indica rice. Agric. Sci. China 2010, 9, 1630–1640. [Google Scholar] [CrossRef]
- Altenbach, S.B.; Chang, H.C.; Simon-Buss, A.; Jang, Y.R.; Denery-Papini, S.; Pineau, F.; Gu, Y.Q.; Huo, N.; Lim, S.H.; Kang, C.S. Towards reducing the immunogenic potential of wheat flour: Omega gliadins encoded by the D genome of hexaploid wheat may also harbor epitopes for the serious food allergy WDEIA. BMC Plant Biol. 2018, 18, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Xue, X.; Li, X.; Khan, M.R.; Yan, J.; Ren, T.; Cong, R.; Lu, J. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res. 2019, 236, 14–23. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Ge, J.; Li, R.; Zhang, R.; Zhang, Y.; Huo, Z.; Xu, K.; Wei, H.; Dai, Q. Improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate. Front. Plant Sci. 2022, 13, 112–129. [Google Scholar] [CrossRef] [PubMed]
- Peck, A.W.; McDonald, G.K.; Graham, R.D. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). J. Cereal Sci. 2008, 47, 266–274. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Jeliazkov, V.; Gollany, H.; Kleber, M.; Xing, B. Micronutrients decline under long-term tillage and nitrogen fertilization. Sci. Rep. 2019, 9, 12020. [Google Scholar] [CrossRef]
- Li, M.; Wang, S.X.; Tian, X.H.; Zhao, J.H.; Li, H.Y.; Guo, C.H.; Chen, Y.L.; Zhao, A.Q. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P. J. Cereal Sci. 2015, 61, 26–32. [Google Scholar] [CrossRef]
- Unbehend, L.; Unbehend, G.; Lindhauer, M.G. Protein composition of some Croatian and German wheat varieties and their influence on the loaf volume. Food/Nahrung 2003, 47, 145–148. [Google Scholar] [CrossRef]
- Kozlovsky, O.; Balik, J.; Cerny, J.; Kulhanek, M.; Kos, M.; Prasilova, M. Regulation of nitrogen application on grain yield and qualityof strong-gluten wheat in Huaibei region. J. Triticeae Crops 2022, 42, 99–112. [Google Scholar]
- Gozé, P.; Rhazi, L.; Pauss, A.; Aussenac, T. Starch characterization after ozone treatment of wheat grains. J. Cereal Sci. 2016, 70, 39–51. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, G.; Huo, Z. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll. 2017, 63, 525–532. [Google Scholar] [CrossRef]
- Gu, D.-D.; Liu, Z.-H.; Liu, Y.; Wang, S.-H.; Wang, Q.-S.; Li, G.-H.; Ding, Y.-F. Effect of lipid content and components on cooking quality and their responses to nitrogen in milled japonica rice. Acta Agron. Sin. 2011, 37, 2001–2010. [Google Scholar] [CrossRef]
- Zi, Y.; Ding, J.; Song, J.; Humphreys, G.; Peng, Y.; Li, C.; Zhu, X.; Guo, W. Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4548–4567. [Google Scholar] [CrossRef]
- Cheng, W.; Sakai, H.; Yagi, K.; Hasegawa, T. Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agric. For. Meteorol. 2010, 150, 1174–1181. [Google Scholar] [CrossRef]
Cultivar | Origin | Thousand Grain Weight (g) | Breeding Sites |
---|---|---|---|
LM18 | 4336/Zhoumai16 | 46.90 | Henan Province |
BN6 | Bonong653/Zhengmai9023 | 42.10 | Henan Province |
LH7 | Wenmai4/Shannong45 | 39.71 | Henan Province |
XN509 | VP145/86585 | 37.30 | Shaanxi Province |
XN528 | Xinong538/Shanmai159 | 37.20 | Shaanxi Province |
WL323 | Xinong822/Zhengmai366 | 48.00 | Shaanxi Province |
XN836 | Xiong979/Zhengmai7698 | 42.40 | Shaanxi Province |
XN109 | Zhoumai16/Zhengmai366 | 47.80 | Shaanxi Province |
XM918 | Hengguan35/9735 | 47.00 | Shaanxi Province |
ND1108 | 5108/Riband/Wenmai6/3/4*Zhoumai13 | 45.00 | Shaanxi Province |
XN5812 | Zhoumai16/Xinong2000 | 46.40 | Shaanxi Province |
WL123 | W212/9229-888/Shanmai94 | 48.00 | Shaanxi Province |
ZM158 | (Bigeaz-250/96)/Zhoumai16 /SPZhengmai366 | 45.40 | Henan Province |
JM22 | 9411/200040919 | 36.70 | Shandong Province |
XN256 | 08E37/Zhoumai98165 | 48.20 | Shaanxi Province |
XY22 | Xiaoyan775-1/Xiaoyan107 | 38.00 | Henan Province |
XY58 | 9910/Xiaoyan22 | 45.00 | Henan Province |
XN585 | Xinong4211/Xinong9871 | 44.40 | Shaanxi Province |
Grain Yield | Total Protein | |||||||
---|---|---|---|---|---|---|---|---|
Cultivars | CK | N1 | N2 | CV | CK | N1 | N2 | CV |
WL123 | 6.68 ± 0.03 a | 6.58 ± 0.05 a | 5.77 ± 0.10 b | 7.87 | 15.17 ± 0.33 a | 15.39 ± 0.15 a | 15.02 ± 0.08 a | 1.22 |
XM918 | 6.46 ± 0.07 a | 6.36 ± 0.18 a | 5.91 ± 0.11 b | 4.71 | 14.12 ± 0.06 b | 14.3 ± 0.11 ab | 14.67 ± 0.32 a | 1.96 |
XN836 | 6.05 ± 0.05 a | 5.74 ± 0.17 b | 5.71 ± 0.09 b | 3.23 | 14.38 ± 0.12 a | 14.4 ± 0.15 a | 14.74 ± 0.16 a | 1.41 |
ND1108 | 6.31 ± 0.04 b | 6.3 ± 0.03 a | 6.46 ± 0.03 a | 1.45 | 13.46 ± 0.25 c | 14.33 ± 0.02 b | 15.53 ± 0.15 a | 7.19 |
WL323 | 6.56 ± 0.11 a | 6.65 ± 0.13 a | 6.46 ± 0.19 a | 1.45 | 14.13 ± 0.03 c | 14.77 ± 0.17 b | 15.32 ± 0.16 a | 4.06 |
XN528 | 4.88 ± 0.14 c | 5.46 ± 0.04 a | 5.12 ± 0.08 b | 5.66 | 15.64 ± 0.1 b | 15.98 ± 0.3 ab | 16.28 ± 0.04 a | 2.01 |
XN109 | 4.79 ± 0.14 a | 5.16 ± 0.03 a | 4.76 ± 0.23 a | 4.55 | 15.07 ± 0.07 c | 15.56 ± 0.12 b | 16.11 ± 0.09 a | 3.34 |
XN5812 | 4.99 ± 0.06 a | 5.11 ± 0.22 a | 4.43 ± 0.01 b | 7.42 | 13.53 ± 0.08 b | 14.47 ± 0.38 a | 14.58 ± 0.34 a | 4.06 |
LM18 | 5.53 ± 0.14 a | 5.42 ± 0.12 ab | 5.26 ± 0.13 b | 2.51 | 14.19 ± 0.09 b | 14.38 ± 0.09 b | 15.05 ± 0.34 a | 3.13 |
BN6 | 5.59 ± 0.18 b | 6.18 ± 0.17 a | 5.5 ± 0.10 b | 6.41 | 14.58 ± 0.04 c | 15.13 ± 0.23 b | 15.62 ± 0.26 a | 3.44 |
LH7 | 5.3 ± 0.29 a | 5.71 ± 0.02 a | 5.57 ± 0.18 a | 3.77 | 13.16 ± 0.05 c | 13.92 ± 0.16 b | 14.52 ± 0.10 a | 4.93 |
XN509 | 4.91 ± 0.03 a | 4.98 ± 0.18 a | 4.4 ± 0.15 b | 6.65 | 14.48 ± 0.10 b | 15.03 ± 0.3 ab | 15.26 ± 0.04 a | 2.67 |
ZM158 | 6.06 ± 0.04 a | 6.15 ± 0.05 a | 5.58 ± 0.11 b | 5.17 | 12.95 ± 0.12 c | 13.83 ± 0.21 b | 15.02 ± 0.21 a | 7.45 |
JM22 | 5.62 ± 0.09 b | 6.37 ± 0.08 a | 5.66 ± 0.17 b | 7.18 | 14.57 ± 0.09 b | 15.32 ± 0.11 a | 15.42 ± 0.1 a | 3.09 |
XN256 | 5.18 ± 0.07 ab | 5.31 ± 0.12 a | 5.06 ± 0.05 b | 2.41 | 13.59 ± 0.11 c | 14.36 ± 0.11 b | 15.11 ± 0.11 a | 5.3 |
XY22 | 4.89 ± 0.32 b | 5.67 ± 0.08 a | 5.6 ± 0.08 a | 8.01 | 14.11 ± 0.16 b | 14.36 ± 0.21 b | 15.14 ± 0.07 a | 3.7 |
XY58 | 5.59 ± 0.18 a | 5.63 ± 0.17 a | 5.37 ± 0.24 a | 2.53 | 14.42 ± 0.17 b | 14.7 ± 0.1 ab | 15.02 ± 0.12 a | 2.03 |
XN585 | 5.61 ± 0.24 a | 5.83 ± 0.06 a | 5.76 ± 0.16 a | 1.96 | 12.62 ± 0.28 c | 14.05 ± 0.15 b | 14.92 ± 0.17 a | 8.4 |
Albumin | Globulin | |||||||
Cultivars | CK | N1 | N2 | CV | CK | N1 | N2 | CV |
WL123 | 1.63 ± 0.1 c | 1.8 ± 0.07 b | 1.95 ± 0.15 a | 5.66 | 1.05 ± 0.08 a | 1.02 ± 0.07 a | 1.17 ± 0.01 a | 7.35 |
XM918 | 1.58 ± 0.01 b | 1.74 ± 0.04 a | 1.66 ± 0.01 ab | 4.82 | 0.98 ± 0.02 b | 1.21 ± 0.1 a | 1.18 ± 0.25 a | 11.13 |
XN836 | 1.66 ± 0.14 b | 1.58 ± 0.04 b | 1.82 ± 0.01 a | 7.25 | 1.02 ± 0.01 a | 1.03 ± 0.06 a | 1.06 ± 0.02 a | 2.01 |
ND1108 | 1.99 ± 0.02 a | 2.02 ± 0.09 a | 1.92 ± 0.1 a | 2.6 | 0.74 ± 0.01 a | 0.84 ± 0.02 a | 0.86 ± 0.03 a | 7.91 |
WL323 | 2.12 ± 0.01 a | 2.07 ± 0.09 a | 2.11 ± 0.01 a | 1.26 | 0.98 ± 0.02 a | 1.05 ± 0.03 a | 1.07 ± 0.05 a | 4.57 |
XN528 | 1.85 ± 0.11 b | 2.02 ± 0.06 a | 2.07 ± 0.01 a | 5.82 | 0.97 ± 0.1 b | 1.07 ± 0.03 a b | 1.21 ± 0.04 a | 11.13 |
XN109 | 1.42 ± 0.03 b | 1.61 ± 0.02 a | 1.6 ± 0.05 a | 6.93 | 1.07 ± 0.01 a | 1.01 ± 0.04 a | 1.08 ± 0.13 a | 3.59 |
XN5812 | 1.57 ± 0.04 a | 1.63 ± 0.04 a | 1.58 ± 0.1 a | 2.02 | 1.03 ± 0.08 a | 1.14 ± 0.02 a | 1.05 ± 0.08 a | 5.46 |
LM18 | 1.75 ± 0.01 a | 1.58 ± 0.02 b | 1.64 ± 0.02 ab | 5.2 | 0.88 ± 0.04 a | 0.92 ± 0.09 a | 0.91 ± 0.06 a | 2.3 |
BN6 | 1.64 ± 0.06 b | 1.98 ± 0.36 a | 2.1 ± 0.07 a | 12.51 | 1.18 ± 0.11 a | 1.29 ± 0.1 a | 1.19 ± 0.15 a | 4.99 |
LH7 | 1.91 ± 0.03 a | 1.83 ± 0.01 a | 1.86 ± 0.16 a | 2.17 | 1.02 ± 0.06 b | 1.02 ± 0.14 b | 1.23 ± 0.03 a | 11.12 |
XN509 | 1.87 ± 0.07 b | 1.98 ± 0.11 ab | 2.07 ± 0.05 a | 5.08 | 1.18 ± 0.03 a | 1.15 ± 0.1 a | 1.21 ± 0.12 a | 2.54 |
ZM158 | 1.63 ± 0.02 a | 1.69 ± 0.02 a | 1.75 ± 0.07 a | 3.55 | 1.32 ± 0.59 a | 1.3 ± 0.17 a | 1.36 ± 0.1 a | 2.3 |
JM22 | 1.49 ± 0.02 a | 1.62 ± 0.01 a | 1.59 ± 0.09 a | 4.34 | 0.95 ± 0.02 b | 1.02 ± 0.25 b | 1.26 ± 0.05 a | 15.1 |
XN256 | 1.67 ± 0.03 a | 1.61 ± 0.12 a | 1.59 ± 0.07 a | 2.56 | 0.83 ± 0.01 a | 0.77 ± 0.01 a | 0.74 ± 0.02 a | 5.88 |
XY22 | 2.05 ± 0.08 a | 2.1 ± 0.06 a | 2.12 ± 0.01 a | 1.73 | 0.94 ± 0.01 b | 1.12 ± 0.06 a | 1.07 ± 0.02 ab | 8.91 |
XY58 | 2.15 ± 0.1 a | 2.24 ± 0.04 a | 2.22 ± 0.08 a | 2.14 | 1.25 ± 0.07 a | 1.2 ± 0.1 ab | 1.05 ± 0.04 b | 8.92 |
XN585 | 1.7 ± 0.06 a | 1.62 ± 0.04 a | 1.79 ± 0.05 b | 4.99 | 0.97 ± 0.04 a | 0.94 ± 0.05 a | 0.97 ± 0.07 a | 1.8 |
Prolamin | Glutelin | |||||||
CK | N1 | N2 | CV | CK | N1 | N2 | CV | |
WL123 | 3.11 ± 0.2 b | 3.37 ± 0.16 ab | 3.51 ± 0.03 | 5.97 | 3.09 ± 0.03 a | 3.23 ± 0.08 a | 3.17 ± 0.16 a | 2.22 |
XM918 | 3.7 ± 0.03 a | 3.78 ± 0.06 a | 3.85 ± 0.45 a | 1.99 | 3.13 ± 0.64 b | 3.18 ± 0.07 b | 3.5 ± 0.13 a | 6.14 |
XN836 | 4.48 ± 0.11 a | 4.74 ± 0.14 a | 4.81 ± 0.07 a | 3.72 | 3.32 ± 0.48 b | 3.64 ± 0.13 a | 3.8 ± 0.12 a | 6.81 |
ND1108 | 4.27 ± 0.19 b | 4.67 ± 0.57 ab | 4.84 ± 0.03 a | 6.37 | 3.41 ± 0.09 b | 3.78 ± 0.01 a | 3.9 ± 0.09 a | 6.91 |
WL323 | 3.35 ± 0.27 b | 3.54 ± 0.05 ab | 3.89 ± 0.08 a | 5.89 | 2.93 ± 0.13 c | 3.39 ± 0.08 b | 4.16 ± 0.13 a | 17.79 |
XN528 | 3.07 ± 0.04 b | 3.16 ± 0.14 ab | 3.37 ± 0.27 a | 4.81 | 2.86 ± 0.03 a | 2.99 ± 0.08 a | 3.06 ± 0.04 a | 3.42 |
XN109 | 3.36 ± 0.14 b | 3.87 ± 0.54 a | 3.84 ± 0.05 a | 7.76 | 3.46 ± 0.09 a | 3.41 ± 0.06 a | 3.6 ± 0.14 a | 2.82 |
XN5812 | 3.22 ± 0.39 a | 3.35 ± 0.1 a | 3.35 ± 0.12 a | 2.27 | 3.21 ± 0.07 a | 3.22 ± 0.04 a | 3.11 ± 0.1 a | 1.91 |
LM18 | 3.21 ± 0.15 b | 3.62 ± 0.13 ab | 3.81 ± 0.14 a | 8.65 | 3.36 ± 0.06 a | 3.46 ± 0.09 a | 3.61 ± 0.18 a | 3.62 |
BN6 | 4.15 ± 0.03 b | 4.74 ± 0.08 a | 4.85 ± 0.25 a | 8.22 | 3.41 ± 0.01 b | 4.01 ± 0.1 a | 4.32 ± 0.1 a | 11.82 |
LH7 | 2.87 ± 0.21 b | 3.14 ± 0.1 ab | 3.35 ± 0.15 a | 7.71 | 2.25 ± 0.17 b | 2.87 ± 0.04 a | 3.01 ± 0.35 a | 22.11 |
XN509 | 3.62 ± 0.71 b | 3.59 ± 0.2 b | 4.23 ± 1.17 a | 9.47 | 3.93 ± 0.02 a | 4.02 ± 0.03 a | 4.21 ± 0.07 a | 3.53 |
ZM158 | 2.44 ± 0.41 b | 3 ± 0.26 a | 3.12 ± 1.02 a | 12.72 | 2.5 ± 0.32 b | 2.66 ± 0.07 b | 3.02 ± 0.11 a | 9.77 |
JM22 | 3.57 ± 0.27 b | 3.63 ± 0.22 b | 4.16 ± 0.24 a | 8.57 | 3.79 ± 0.73 a | 3.73 ± 0.06 a | 3.84 ± 0.37 a | 1.45 |
XN256 | 3.07 ± 0.21 b | 3.19 ± 0.13 ab | 3.31 ± 0.11 a | 3.76 | 2.89 ± 0.11 b | 3.27 ± 0.13 a | 3.49 ± 0.06 a | 9.44 |
XY22 | 2.66 ± 0.14 b | 2.96 ± 0.25 ab | 3.35 ± 0.12 a | 11.57 | 2.72 ± 0.13 b | 3.21 ± 0.2 a | 3.33 ± 0.23 a | 10.47 |
XY58 | 3.18 ± 0.06 b | 3.29 ± 0.03 ab | 3.53 ± 0.2 a | 5.37 | 2.9 ± 0.1 b | 3.03 ± 0.17 b | 3.57 ± 0.27 a | 11.22 |
XN585 | 2.59 ± 0.07 c | 3.04 ± 0.1 b | 3.43 ± 0.27 a | 13.92 | 2.57 ± 0.1 b | 3.09 ± 0.03 a | 3.12 ± 0.03 a | 10.57 |
Amylose | Amylopectin | |||||||
Cultivars | CK | N1 | N2 | CV | CK | N1 | N2 | CV |
WL123 | 12.33 ± 0.02 a | 11.84 ± 0.03 a | 10.78 ± 0.07 b | 6.8 | 54.3 ± 0.33 a | 53.23 ± 0.15 a | 53.46 ± 0.08 a | 1.05 |
XM918 | 14.28 ± 0.07 a | 13.55 ± 0.04 ab | 13.34 ± 0.1 b | 3.6 | 53.45 ± 0.06 a | 53.72 ± 0.11 a | 52.66 ± 0.32 a | 1.03 |
XN836 | 14.21 ± 0.64 a | 14.31 ± 0.07 a | 12.81 ± 0.13 b | 6.09 | 51.11 ± 0.12 a | 50.66 ± 0.15 a | 50.84 ± 0.16 a | 0.45 |
ND1108 | 14.42 ± 0.03 a | 13.61 ± 0.08 b | 12.78 ± 0.16 c | 6.03 | 42.69 ± 0.25 a | 42.31 ± 0.02 a | 41.88 ± 0.15 a | 0.72 |
WL323 | 13.65 ± 0.09 a | 13.29 ± 0.06 ab | 13.08 ± 0.14 b | 2.16 | 49.52 ± 0.03 a | 48.97 ± 0.17 a | 48.87 ± 0.16 a | 0.72 |
XN528 | 12.2 ± 0.48 a | 12.6 ± 0.13 a | 11.98 ± 0.12 a | 2.56 | 50.77 ± 0.1 a | 49.55 ± 0.3 a | 49.84 ± 0.04 a | 1.27 |
XN109 | 12.65 ± 0.09 a | 12.13 ± 0.01 ab | 11.48 ± 0.09 b | 4.85 | 50.85 ± 0.07 a | 50.77 ± 0.12 a | 49.5 ± 0.09 a | 1.5 |
XN5812 | 14.48 ± 0.17 a | 14.39 ± 0.04 a | 13.32 ± 0.35 b | 4.59 | 54.23 ± 0.08 a | 54.11 ± 0.38 b | 52.41 ± 0.34 b | 0.16 |
LM18 | 13.81 ± 0.06 a | 12.63 ± 0.09 b | 12.42 ± 0.18 b | 5.78 | 51.13 ± 0.09 a | 51.19 ± 0.09 a | 50.9 ± 0.34 a | 0.3 |
BN6 | 12.81 ± 0.01 a | 11.6 ± 0.1 b | 11.61 ± 0.1 b | 5.79 | 52.11 ± 0.04 a | 50.09 ± 0.23 ab | 49.76 ± 0.26 b | 2.51 |
LH7 | 14.69 ± 0.03 a | 14.08 ± 0.08 a | 13.01 ± 0.04 b | 6.11 | 50.63 ± 0.05 a | 49.79 ± 0.16 ab | 48.49 ± 0.1 b | 2.17 |
XN509 | 13.28 ± 0.13 a | 13.32 ± 0.08 a | 12.91 ± 0.13 a | 1.72 | 50.6 ± 0.1 a | 49.74 ± 0.3 a | 49.93 ± 0.04 a | 0.9 |
ZM158 | 14.31 ± 0.32 a | 14.19 ± 0.07 ab | 13.46 ± 0.11 b | 0.6 | 51.62 ± 0.12 a | 51.57 ± 0.21 a | 50.22 ± 0.21 a | 1.88 |
JM22 | 12.65 ± 0.73 a | 12.13 ± 0.06 a | 10.48 ± 0.37 b | 9.64 | 54.47 ± 0.09 a | 53.33 ± 0.11 ab | 52.76 ± 0.1 b | 1.63 |
XN256 | 14.86 ± 0.11 a | 13.91 ± 0.13 b | 13.19 ± 0.06 c | 5.99 | 53.32 ± 0.11 a | 52.51 ± 0.11 a | 52.41 ± 0.11 a | 0.95 |
XY22 | 13.77 ± 0.13 a | 13.54 ± 0.2 a | 13.45 ± 0.23 a | 1.21 | 54.83 ± 0.16 a | 53.21 ± 0.21 ab | 52.2 ± 0.07 b | 2.49 |
XY58 | 13.08 ± 0.1 a | 12.51 ± 0.17 ab | 12.02 ± 0.27 b | 4.23 | 51.42 ± 0.17 a | 51.14 ± 0.1 a | 50.69 ± 0.12 a | 0.72 |
XN585 | 14.18 ± 0.1 ab | 14.51 ± 0.03 a | 13.42 ± 0.03 b | 3.98 | 50.96 ± 0.28 a | 50.37 ± 0.15 a | 49.59 ± 0.17 a | 0.82 |
Development Time | Stabilization Time | |||||||
Cultivars | CK | N1 | N2 | CV | CK | N1 | N2 | CV |
WL123 | 2.5 ± 0.3 b | 2.25 ± 0.15 b | 2.85 ± 0.15 a | 11.9 | 2.93 ± 0.73 b | 3 ± 1.25 b | 3.93 ± 1.14 a | 16.97 |
XM918 | 3.96 ± 0.06 a | 4.16 ± 0.15 a | 4.01 ± 0.12 a | 2.65 | 8.53 ± 0.45 a | 9.43 ± 0.99 a | 9.23 ± 0.42 a | 5.22 |
XN836 | 3.67 ± 0.21 b | 3.77 ± 0.15 b | 4.34 ± 0.1 b | 9.2 | 9.37 ± 0.69 b | 10.11 ± 0.91 ab | 10.78 ± 0.83 a | 6.52 |
ND1108 | 4.16 ± 0.14 b | 4.63 ± 0.06 a | 4.33 ± 0.12 ab | 5.4 | 11.3 ± 0.29 b | 12.31 ± 0.15 ab | 13.07 ± 0.84 a | 7.34 |
WL323 | 3.66 ± 0.21 b | 3.91 ± 0.15 a b | 4.16 ± 0.1 a | 6.4 | 9.23 ± 0.69 a | 10.51 ± 0.91 b | 11.93 ± 0.83 a | 12.8 |
XN528 | 3.03 ± 0.3 a | 3.16 ± 0.12 a | 3.2 ± 0.12 a | 2.82 | 3.73 ± 0.9 a | 4.6 ± 0.72 a | 4.43 ± 0.68 a | 10.85 |
XN109 | 3.01 ± 0.3 b | 3.31 ± 0.26 ab | 3.43 ± 0.15 a | 6.84 | 5.53 ± 0.67 a | 5.77 ± 1.67 a | 6.4 ± 0.87 a | 7.6 |
XN5812 | 3.85 ± 0.15 a | 3.43 ± 0.12 b | 3.83 ± 0.23 a | 6.37 | 5.05 ± 0.4 b | 5.23 ± 0.23 ab | 5.97 ± 0.51 a | 9 |
LM18 | 3.71 ± 0.11 a | 3.8 ± 0.1 a | 3.87 ± 0.52 a | 2.22 | 7.7 ± 0.76 b | 8.87 ± 0.85 a | 8.83 ± 0.42 a | 7.84 |
BN6 | 3.03 ± 0.06 b | 3.52 ± 0.16 ab | 3.71 ± 0.1 a | 10.21 | 8.9 ± 0.29 b | 9.31 ± 0.68 b | 10.45 ± 0.67 a | 8.41 |
LH7 | 3.4 ± 0.17 a | 3.41 ± 0.2 a | 3.43 ± 0.55 a | 0.56 | 8.71 ± 0.1 b | 8.71 ± 0.7 b | 10.07 ± 0.21 a | 8.57 |
XN509 | 3.83 ± 0.15 b | 4.33 ± 0.063 a | 4.56 ± 0.15 a | 8.83 | 8.73 ± 0.3 b | 8.75 ± 0.32 b | 9.6 ± 0.35 a | 5.5 |
ZM158 | 2.6 ± 0.2 b | 2.76 ± 0.15 b | 3.13 ± 0.31 a | 9.62 | 6.33 ± 0.9 b | 6.7 ± 0.67 b | 7.67 ± 0.8 a | 10.01 |
JM22 | 3.73 ± 0.06 b | 4.13 ± 0.12 a | 4.16 ± 0.06 a | 6.02 | 7.93 ± 0.67 a | 9.01 ± 0.62 a | 9.43 ± 0.55 a | 8.8 |
XN256 | 2.5 ± 0.2 b | 3.01 ± 0.17 a | 3.2 ± 0.1 a | 12.43 | 5.43 ± 0.86 b | 6.2 ± 0.4 a | 6.9 ± 0.7 a | 11.9 |
XY22 | 3.13 ± 0.06 b | 3.36 ± 0.25 ab | 3.46 ± 0.12 a | 5.16 | 8.57 ± 0.91 a | 7.87 ± 0.41 a | 7.93 ± 0.35 a | 4.78 |
XY58 | 2.96 ± 0.17 b | 3.03 ± 0.16 b | 3.36 ± 0.15 a | 6.87 | 5.63 ± 0.2 a | 6.83 ± 0.55 a | 7 ± 0.72 a | 11.51 |
XN585 | 3.06 ± 0.06 b | 3.43 ± 0.21 a | 3.7 ± 0.2 a | 9.46 | 4.41 ± 0.45 b | 4.8 ± 0.91 ab | 5.31 ± 0.4 a | 9.33 |
[Phytate]:[Fe] | [Phytate]:[Zn] | |||||||
---|---|---|---|---|---|---|---|---|
Cultivars | CK | N1 | N2 | CV | CK | N1 | N2 | CV |
WL123 | 5.57 ± 0.23 a | 5.31 ± 0.16 a | 5.3 ± 0.06 a | 2.84 | 8.21 ± 0.33 a | 8.04 ± 0.35 a | 7.85 ± 0.1 a | 2.24 |
XM918 | 6.37 ± 0.21 a | 5.86 ± 0.25 b | 5.8 ± 0.31 b | 5.21 | 9.98 ± 0.24 a | 9.56 ± 0.42 a | 9.78 ± 0.58 a | 2.15 |
XN836 | 9.32 ± 0.52 a | 8.41 ± 0.23 b | 8.12 ± 0.21 b | 7.26 | 12.33 ± 0.49 a | 12.26 ± 0.04 a | 11.53 ± 0.27 b | 3.68 |
ND1108 | 6.98 ± 0.51 a | 6.71 ± 0.21 a | 5.62 ± 0.37 b | 11.18 | 9.13 ± 0.55 a | 8.86 ± 0.35 a | 7.94 ± 0.36 b | 7.22 |
WL323 | 7.65 ± 0.37 b | 8.14 ± 0.06 a | 7.95 ± 0.31 ab | 3.12 | 12.87 ± 0.66 a | 10.68 ± 0.13 b | 10.03 ± 0.46 b | 13.3 |
XN528 | 7.18 ± 0.4 a | 7.11 ± 0.41 a | 7.58 ± 0.07 a | 3.48 | 12.25 ± 0.5 a | 11.75 ± 0.61 a | 11.56 ± 0.04 a | 3.01 |
XN109 | 7.35 ± 0.31 a | 6.88 ± 0.32 b | 6.67 ± 0.08 b | 5 | 11.07 ± 0.43 a | 10.14 ± 0.3 b | 9.77 ± 0.23 b | 6.48 |
XN5812 | 5.43 ± 0.28 b | 5.49 ± 0.02 a | 5.06 ± 0.21 b | 4.37 | 7.98 ± 0.3 a | 7.84 ± 0.05 a | 7.75 ± 0.37 a | 1.47 |
LM18 | 13.13 ± 0.51 a | 12.07 ± 0.37 b | 11.5 ± 0.36 b | 6.76 | 21.69 ± 0.79 a | 19.14 ± 0.44 b | 18.24 ± 0.46 b | 9.09 |
BN6 | 13.01 ± 0.72 a | 13.26 ± 0.47 a | 12.2 ± 0.45 b | 4.22 | 19.11 ± 0.79 a | 19.19 ± 0.9 a | 16.59 ± 0.46 b | 8.07 |
LH7 | 10.62 ± 0.35 a | 10.89 ± 0.02 a | 11.11 ± 0.53 a | 1.84 | 17.25 ± 0.52 a | 15.23 ± 0.06 b | 15.01 ± 0.65 b | 7.8 |
XN509 | 11.47 ± 0.53 a | 9.52 ± 0.22 b | 8.97 ± 0.25 b | 13.15 | 16.98 ± 0.37 a | 16.13 ± 0.32 a | 16.34 ± 0.6 a | 2.69 |
ZM158 | 15.81 ± 0.52 a | 14.64 ± 0.63 b | 14.8 ± 0.18 b | 4.17 | 24.48 ± 0.38 a | 23.19 ± 0.44 a | 24.03 ± 1.08 a | 2.74 |
JM22 | 15.44 ± 0.28 a | 14.02 ± 0.75 b | 12.54 ± 0.47 c | 10.36 | 21.52 ± 1.12 a | 20.78 ± 0.63 a | 18.83 ± 1 b | 6.82 |
XN256 | 12.38 ± 0.41 a | 11.87 ± 0.44 a | 10.74 ± 0.32 b | 7.2 | 21.26 ± 1.23 a | 19.59 ± 0.99 a | 17.33 ± 0.57 b | 10.17 |
XY22 | 13.06 ± 0.5 a | 12.58 ± 0.4 ab | 12.21 ± 0.34 b | 4.15 | 20.32 ± 0.78 a | 18.37 ± 0.65 b | 16.86 ± 0.66 c | 9.37 |
XY58 | 10.65 ± 0.69 a | 9.87 ± 0.6 a | 9.93 ± 0.74 a | 4.28 | 15.01 ± 0.51 a | 13.87 ± 0.8 ab | 13.27 ± 0.62 b | 6.29 |
XN585 | 9.96 ± 0.34 a | 8.62 ± 0.41 b | 8.04 ± 0.07 b | 11.1 | 15.14 ± 0.48 a | 13.73 ± 0.6 b | 12.73 ± 0.14 c | 8.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Yang, X.; Jiang, L.; Huang, S.; Zhou, H.; Zhu, J.; Chen, Y.; Li, Y.; Liu, Y. Nitrogen Foliage Application at Anthesis Improves Grain Yield and Quality of Wheat in a Genotype-Dependent Manner. Agronomy 2023, 13, 3077. https://doi.org/10.3390/agronomy13123077
Gu X, Yang X, Jiang L, Huang S, Zhou H, Zhu J, Chen Y, Li Y, Liu Y. Nitrogen Foliage Application at Anthesis Improves Grain Yield and Quality of Wheat in a Genotype-Dependent Manner. Agronomy. 2023; 13(12):3077. https://doi.org/10.3390/agronomy13123077
Chicago/Turabian StyleGu, Xiaoyan, Xiaofeng Yang, Ling Jiang, Shan Huang, Hong Zhou, Jianyu Zhu, Yuanwei Chen, Yuze Li, and Yang Liu. 2023. "Nitrogen Foliage Application at Anthesis Improves Grain Yield and Quality of Wheat in a Genotype-Dependent Manner" Agronomy 13, no. 12: 3077. https://doi.org/10.3390/agronomy13123077
APA StyleGu, X., Yang, X., Jiang, L., Huang, S., Zhou, H., Zhu, J., Chen, Y., Li, Y., & Liu, Y. (2023). Nitrogen Foliage Application at Anthesis Improves Grain Yield and Quality of Wheat in a Genotype-Dependent Manner. Agronomy, 13(12), 3077. https://doi.org/10.3390/agronomy13123077