Optimizing Nitrogen Management for Summer Maize in the Yellow River Basin a Water Heat Carbon and N Simulator Model Approach with Entropy-Weighted Technique for Order Preference by Similarity to Ideal Solution Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Observational Items and Methods
2.3.1. Meteorological Data
2.3.2. Soil Moisture Content
2.3.3. Soil Nitrate-N Content
2.3.4. Above-Ground Biomass
2.3.5. Yield
2.4. Model Introduction
2.5. Inputs and Rates of Model Parameters
2.6. Inputs and Rates of Model Parameters
- (1)
- Root mean square error (RMSE)
- (2)
- Relative root mean square error (nRMSE)
- (3)
- Mean error (ME)
2.7. Indicator System for Evaluating the Effectiveness of N Application Management
- (1)
- N agronomic efficiency (NAE):
- (2)
- Value-to-cost ratio (VCR):
2.8. Entropy-Weighted TOPSIS Method
- (1)
- Define the initial matrix as R, with i representing the evaluation objects and j representing evaluation indicators, and rij is the original data.
- (2)
- Determine the share pij of the ith evaluation object in the jth indicator.
- (3)
- Compute the entropy value ej for the jth indicator.
- (4)
- Determine the entropy weight wj for the jth indicator.
- (5)
- Multiply the weights derived from the entropy weighting method with the normalized decision matrix to create a weighted decision evaluation matrix X.
- (6)
- Compute the positive () and negative () ideal solutions for each indicator.
- (7)
- Calculate the distance of each object to the positive and negative ideal solutions.
- (8)
- Calculate Ci, relative proximity, and the progress of each object toward the positive ideal solution. The value of Ci ranges between 0 and 1, with values closer to 1 indicating a higher level of N application management effectiveness.
3. Results and Analyses
3.1. Model Calibration
3.2. Situational Application Analysis
3.2.1. Scenario Setting
3.2.2. Scenario Simulation Results
3.2.3. Analysis of Optimal N Fertilizer Management Based on the Entropy-Weighted TOPSIS Method
4. Discussion
4.1. Evaluation of WHCNS Model Simulations
4.2. Optimal N Management for Summer Maize Based on the Entropy-Weighted TOPSIS Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, X.S. Study on Production Water Footprint of Main Grain Crops in Yellow River Basin. Master’s Thesis, North China Electric Power University, Beijing, China, 2018. [Google Scholar]
- Zand-Parsa, S.; Sepaskhah, A.R.; Ronaghi, A. Development and evaluation of integrated water and nitrogen model for maize. Agric. Water Manag. 2006, 81, 227–256. [Google Scholar] [CrossRef]
- Huang, S.M.; Bao, D.J.; Huangfu, X.R.; Zhang, H.C.; Zhao, B.Q.; Zhang, F.D.; Shi, X.H. Effect of long-term fertilizer application and contribution to crop yield in fluvo-aquic soil. Plant Nutr. Fertil. Sci. 2002, 8, 141–145. [Google Scholar]
- Fang, Q.; Ma, L.; Yu, Q.; Malone, R.W.; Saseendran, S.A.; Ahuja, L.R. Modeling nitrogen and water management effects in a wheat-maize double-cropping system. J. Environ. Qual. 2008, 37, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.L.; Chen, D.L. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosystems 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W.; Hecky, R.E. Eutrophication: More Nitrogen Data Needed. Science 2009, 324, 721–722. [Google Scholar] [CrossRef] [PubMed]
- Hvistendahl, M. China’s push to add by subtracting fertilizer. Science 2010, 327, 801. [Google Scholar] [CrossRef]
- Hu, H.; Ning, T.; Li, Z.; Han, H.; Zhang, Z.; Qin, S.; Zheng, Y. Coupling effects of urea types and subsoiling on nitrogen–water use and yield of different varieties of maize in northern China. Field Crops Res. 2013, 142, 85–94. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, G.; Dang, Y.; Fan, T.; Wang, L.; Li, S.; Zhou, G.; Fudjoe, S.K.; Wang, L.; Palta, J.A. Enhancing Maize Yield and Resource Efficiency through Controlled-Release Nitrogen Fertilization on the Semiarid Loess Plateau. Agronomy 2023, 13, 2320. [Google Scholar] [CrossRef]
- Wang, Q.X.; Wang, P.; Shen, L.X.; Wang, X.L.; Zhai, Z.X. Effect of nitrogen application time on dynamics of nitrate content and apparent nitrogen budget in the soil of summer maize fields. Acta Ecol. Sin. 2004, 24, 1582–1588. [Google Scholar]
- Ying, Z.; Yan-An, T.; Hu-Bing, Z. Effects of different N rates on nutrients accumulation, transformation and yield of summer maize. Plant Nutr. Fertil. Sci. 2006, 12, 622–627. [Google Scholar]
- Zhang, X.Z.; Shang, W.B.; Qi, Z.J.; Zheng, E.N.; Liu, M. Effects of Different Water and Nitrogen Managements on Nitrogen Remobilization Efficiency during Leaf Senescence in Maize. Trans. Chin. Soc. Agric. Mach. 2019, 50, 8. [Google Scholar] [CrossRef]
- Wang, H.Y.; Hu, K.L.; Li, B.G.; Jin, L. Analysis of Water and Nitrogen Use Efficiencies and Their Environmental Impact Under Different Water and Nitrogen Management Practices. Sci. Agric. Sin. 2011, 44, 2701–2710. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Nakamura, K.; Harter, T.; Hirono, Y.; Horino, H.; Mitsuno, T. Assessment of Root Zone Nitrogen Leaching as Affected by Irrigation and Nutrient Management Practices. Vadose Zone J. 2004, 3, 1353–1366. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Liu, S.; Lei, Q.; Liu, J.; He, J.; Zhai, L.; Ren, T.; Liu, H. Identifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC model. Sci. Total Environ. 2015, 514, 388–398. [Google Scholar] [CrossRef]
- Liang, H.; Qi, Z.; Hu, K.; Prasher, S.O.; Zhang, Y. Can nitrate contaminated groundwater be remediated by optimizing flood irrigation rate with high nitrate water in a desert oasis using the WHCNS model? J. Environ. Manag. 2016, 181, 16–25. [Google Scholar] [CrossRef]
- Lambers, H.; Barrow, N.J. P2O5, K2O, CaO, MgO, and basic cations: Pervasive use of references to molecules that do not exist in soil. Plant Soil 2020, 452, 1–4. [Google Scholar] [CrossRef]
- Liu, G.S. Soil Physical and Chemical Analysis & Description of Soil Profiles; Standards Press of China: Beijing, China, 1996. [Google Scholar]
- Green, W.H. Studies on Soil Physics—Part 1. The flow of air and water through soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Allen, R.G. Crop Evapotranspiration-Guidelines for computing crop water requirements. FAO Irrig. Drain. Pap. 1998, 300, D05109. [Google Scholar] [CrossRef]
- Hansen, S.; Jensen, H.E.; Nielsen, N.E.; Svendsen, H. DAISY: Soil Plant Atmosphere System Model. NPo-Research 1990, A10, 272. [Google Scholar]
- Driessen, P.M.; Konijn, N.T. Land-Use Systems Analysis; Deptartment of Soil Science & Geology Wageningen Agricultural University: Wageningen, The Netherlands, 1992. [Google Scholar]
- Fang, Q.X.; Ma, L.; Green, T.R.; Yu, Q.; Ahuja, L.R. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Li, Z.T.; Yang, J.Y.; Drury, C.F.; Hoogenboom, G. Evaluation of the DSSAT-CSM for simulating yield and soil organic C and N of a long-term maize and wheat rotation experiment in the Loess Plateau of Northwestern China. Agric. Syst. 2015, 135, 90–104. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Z.J.; Hu, K.L.; Li, B.G. Optimal management of water and nitrogen for farmland in North China Plain based on osculating value method and WHCNS model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 152–158. [Google Scholar]
- Basilio, M.P.; Pereira, V.; Yigit, F. New Hybrid EC-Promethee Method with Multiple Iterations of Random Weight Ranges: Applied to the Choice of Policing Strategies. Mathematics 2023, 11, 4432. [Google Scholar] [CrossRef]
- Bilbao-Terol, A.; Arenas-Parra, M.; Cañal-Fernández, V.; Antomil-Ibias, J. Using TOPSIS for assessing the sustainability of government bond funds. Omega 2014, 49, 1–17. [Google Scholar] [CrossRef]
- Chung, E.S.; Kim, Y. Development of fuzzy multi-criteria approach to prioritize locations of treated wastewater use considering climate change scenarios. J. Environ. Manag. 2014, 146, 505–516. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, J.; Tang, G.; Sun, T.; Jia, H.; Zhao, H.; Zhang, Y.; Lin, L.; Xu, W. Evaluating the Application Potential of Acid-Modified Cotton Straw Biochars in Alkaline Soils Based on Entropy Weight TOPSIS. Agronomy 2023, 13, 2807. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Chen, Y.; Li, H. An Optimisation–Evaluation Framework for the Sustainable Management of the Water–Energy–Food Nexus for an Irrigation District under Uncertainty. Agronomy 2023, 13, 1714. [Google Scholar] [CrossRef]
- Li, Z.; Hu, K.; Li, B.; He, M.; Zhang, J. Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach. Agric. Water Manag. 2015, 159, 19–34. [Google Scholar] [CrossRef]
- Hu, C.; Saseendran, S.A.; Green, T.R.; Ma, L.; Li, X.; Ahuja, L.R. Evaluating Nitrogen and Water Management in a Double-Cropping System Using RZWQM. Vadose Zone J. 2006, 5, 493–505. [Google Scholar] [CrossRef]
- Zhou, Q.S.; Wu, Q.X.; Zhu, J.Q.; Qiao, Y.; Peng, R.X.; Fan, C.J. Effects of different basal-topdressing ratios of nitrogen fertilizer on nitrogen absorption, transportaiton and utilization of direct-seeding rice. Jiangsu J. Agric. Sci. 2022, 38, 915–923. [Google Scholar] [CrossRef]
- Wang, S.S.; Luo, M.P.; Liu, T.F.; Li, Y.; Ding, J.L.; Yang, R.J.; Liu, Y.L.; Zhou, W.; Wang, D.R.; Zhang, H. Optimization of Nitrogen Fertilizer Management in the Yellow River Irrigation Area Based on the Root Zone Water Quality Model. Agronomy 2023, 13, 1628. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Qiu, J.; Li, C.; Gao, M.; Gao, C. Calibration of DNDC model for nitrate leaching from an intensively cultivated region of Northern China. Geoderma 2014, 223, 108–118. [Google Scholar] [CrossRef]
- Li, Z.J. Evaluating Nitrogen Loss and Water and Nitrogen Use Efficiencies in a Double Cropping System under Different Integrated Mangagements in the North China Plain; China Agricultural University: Beijing, China, 2015. [Google Scholar]
- Lu, R.K. Soil-Plant Nutrition Principles and Fertilisation; Chemical Industry Press: Beijing, China, 1998. [Google Scholar]
- Wang, X.; Huang, G. Evaluation on the irrigation and fertilization management practices under the application of treated sewage water in Beijing, China. Agric. Water Manag. 2008, 95, 1011–1027. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Qin, X.; Wang, E.L.; Carberry, P.; Zhang, Y.H.; Zhou, S.L.; Zhang, X.Y.; Hu, C.S.; Wang, Z.M. Modelling to increase the eco-efficiency of a wheat-maize double cropping system. Agr. Ecosyst. Environ. 2015, 210, 36–46. [Google Scholar] [CrossRef]
- Jin, L.; Cui, H.; Li, B.; Zhang, J.; Dong, S.; Liu, P. Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crops Res. 2012, 134, 30–35. [Google Scholar] [CrossRef]
- Zou, X.J.; Zhang, X.Y.; An, J.W. Effect of reducing and postponing of N application on yield, plant N uptake, utilization and N balance in maize. Soil Fertil. Sci. China 2011, 6, 25–29. [Google Scholar]
- Zhang, W.L.; Tian, Z.X.; Zhang, N.; Li, X.Q. Nitrate pollution of groundwater in northern China. Ecosyst. Environ. 1996, 59, 223–231. [Google Scholar] [CrossRef]
- Cao, Q.H.; Gong, Y.S. Simulation and analysis of water balance and nitrogen leachingusing Hydrus-1D under winter wheat crop. Plant Nutr. Fertil. Sci. 2003, 9, 7. [Google Scholar] [CrossRef]
- Huang, M.X.; Liang, T.; Ou-Yang, Z.; Wang, L.Q.; Zhang, C.S.; Zhou, C.H. Leaching losses of nitrate nitrogen and dissolved organic nitrogen from a yearly two crops system, wheat-maize, under monsoon situations. Nutr. Cycl. Agroecosystems 2011, 91, 77–89. [Google Scholar] [CrossRef]
- Cao, Y.S.; Tian, Y.H.; Yin, B.; Zhu, Z.L. Improving agronomic practices to reduce nitrate leaching from the rice-wheat rotation system. Agric. Ecosyst. Environ. 2014, 195, 61–67. [Google Scholar] [CrossRef]
- Tang, L.-Y.; Li, C.-F.; Ma, W.; Zhao, M.; Li, X.-L.; Li, L.-L. Characteristics of Plant Morphological Parameters and Its Correlation Analysis in Maize under Planting with Gradually Increased Density. Acta Agron. Sin. 2012, 38, 1529–1537. [Google Scholar] [CrossRef]
- Min-Wei, D.; Xiong, D.U.; Meng-Xing, L.; Jian-Heng, Z.; Yan-Hong, C. Effects of nitrogen management modes on yield formation and nitrogen utilization efficiency of summer maize. Plant Nutr. Fertil. Sci. 2010, 16, 1100–1107. [Google Scholar]
Soil Depth/cm | Volume/(g·cm−3) | Mechanical Composition/% | Soil Organic Matter /(g·kg−1) | Initial Nitrate-N Content /(mg·kg−1) | ||
---|---|---|---|---|---|---|
Grit | Granule | Agglomerate | ||||
0–20 | 1.52 | 42.2 | 43.3 | 14.5 | 15.6 | 6.8 |
20–40 | 1.48 | 44.2 | 35.3 | 20.5 | 13.2 | 4.8 |
40–60 | 1.46 | 38.4 | 39.5 | 22.1 | 3.2 | 3.8 |
60–80 | 1.55 | 43.7 | 38.6 | 17.7 | 3.5 | 4.1 |
80–100 | 1.55 | 43.3 | 38.5 | 18.2 | 1.6 | 4.0 |
Treatment | Base Fertilizer/(kg·ha−1) | Fertilizer Dates | N Application/(kg·ha−1) | ||
---|---|---|---|---|---|
June 20 (June 25) ** | July 18 (July 23) | August 7 (August 12) | |||
N120 (1:1:0) * | 60 | 30 | 30 | 0 | 120 |
N120 (1:0:1) | 60 | 30 | 0 | 30 | 120 |
N120 (0:1:1) | 60 | 0 | 30 | 30 | 120 |
N220 (1:1:0) | 60 | 80 | 80 | 0 | 220 |
N220 (1:0:1) | 60 | 80 | 0 | 80 | 220 |
N220 (0:1:1) | 60 | 0 | 80 | 80 | 220 |
N320 (1:1:0) | 60 | 130 | 130 | 0 | 320 |
N320 (1:0:1) | 60 | 130 | 0 | 130 | 320 |
N320 (0:1:1) | 60 | 0 | 130 | 130 | 320 |
CK | 0 | 0 | 0 | 0 | 0 |
Soil Depth/cm | Saturated Hydraulic Conductivity Ks /(cm·d−1) | Saturated Water Content θs /(cm3·cm−3) | Residual Moisture Content θr /(cm3·cm−3) | α/(cm−1) * | m | n | l |
---|---|---|---|---|---|---|---|
0–20 | 14.7 | 0.365 | 0.056 | 0.02 | 0.25 | 1.34 | 0.5 |
20–40 | 33.8 | 0.380 | 0.046 | 0.016 | 0.21 | 1.27 | 0.5 |
40–60 | 21.0 | 0.400 | 0.046 | 0.016 | 0.25 | 1.34 | 0.5 |
60–80 | 28.9 | 0.380 | 0.030 | 0.011 | 0.22 | 1.29 | 0.5 |
80–100 | 30.2 | 0.380 | 0.030 | 0.015 | 0.24 | 1.32 | 0.5 |
Parameter | Numerical Value | Unit |
---|---|---|
SOM1 library decomposition rate | 2.7 × 10−6 | d−1 |
SOM2 library decomposition rate | 1.4 × 10−4 | d−1 |
SMB1 library death rate | 1.85 × 10−4 | d−1 |
SMB2 library death rate | 1 × 10−2 | d−1 |
AOM1 library decomposition rate | 5 × 10−2 | d−1 |
AOM2 pool decomposition rate | 5 × 10−2 | d−1 |
Maximum nitrification rate Vn | 20 | g·(m3·d)−1 |
Nitrification half-saturation constant Kn | 80 | g·m−3 |
Denitrification example coefficient Kd | 0.5 | / |
Denitrification empirical constant Ad | 0.05 | / |
Ammonia volatilization first-order kinetic constant Kv | 0.05 | d−1 |
Parameter | Numerical Value | Unit |
---|---|---|
Accumulated temperature required for crop maturity | 1660 | ℃ |
Early crop coefficient Kc | 0.6 | / |
Middle crop coefficient Kc | 1.55 | / |
Late crop coefficient Kc | 1.05 | / |
Maximum specific leaf area | 27 | m2·kg−1 |
Minimum specific leaf area | 18 | m2·kg−1 |
Minimum assimilation rate | 0.5 | kg·ha−1·h−1 |
Maximum assimilation rate | 60 | kg·ha−1·h−1 |
Maximum root length | 120 | cm |
Treatment | Statistical Indicator | Soil Depth/cm | ||||
---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | ||
N120 (1:1:0) | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 13% | 10% | |
ME/(cm3·cm−3) | −0.036 | 0.008 | −0.004 | 0.025 | 0.008 | |
N120 (1:0:1) | RMSE/(cm3·cm−3) | 0.04 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 13% | 10% | |
ME/(cm3·cm−3) | −0.036 | 0.008 | −0.003 | 0.025 | 0.009 | |
N120 (0:1:1) | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 13% | 10% | |
ME/(cm3·cm−3) | −0.036 | 0.008 | −0.003 | 0.025 | 0.008 | |
N220 (1:1:0) | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 11% | 10% | |
ME/(cm3·cm−3) | −0.036 | 0.006 | −0.006 | 0.022 | 0.005 | |
N220 (1:0:1) | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 12% | 10% | |
ME/(cm3·cm−3) | −0.035 | 0.007 | −0.004 | 0.024 | 0.008 | |
N220 (0:1:1) | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 12% | 10% | |
ME/(cm3·cm−3) | −0.036 | 0.007 | −0.004 | 0.024 | 0.008 | |
N320 (1:1:0) | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 11% | 10% | |
ME/(cm3·cm−3) | −0.036 | 0.006 | −0.006 | 0.022 | 0.005 | |
N320 (1:0:1) | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 12% | 10% | |
ME/(cm3·cm−3) | −0.035 | 0.007 | −0.004 | 0.024 | 0.008 | |
N320 (0:1:1) | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 12% | 10% | |
ME/(cm3·cm−3) | −0.036 | 0.007 | −0.004 | 0.024 | 0.008 | |
CK | RMSE/(cm3·cm−3) | 0.05 | 0.02 | 0.03 | 0.03 | 0.02 |
nRMSE/% | 21% | 9% | 10% | 13% | 10% | |
ME/(cm3·cm−3) | −0.036 | 0.008 | −0.005 | −0.024 | 0.008 |
Treatment | Statistical Indicator | Soil Depth/cm | ||||
---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | ||
N120 (1:1:0) | RMSE/(mg·kg−1) | 2.76 | 1.19 | 1.00 | 0.78 | 0.46 |
nRMSE/% | 27% | 23% | 24% | 25% | 16% | |
ME/(mg·kg−1) | −1.629 | 0.036 | −0.100 | 0.429 | 0.257 | |
N120 (1:0:1) | RMSE/(mg·kg−1) | 2.18 | 1.07 | 0.81 | 0.24 | 0.36 |
nRMSE/% | 24% | 26% | 26% | 9% | 16% | |
ME/(mg·kg−1) | −1.288 | 0.083 | −0.316 | 0.002 | 0.071 | |
N120 (0:1:1) | RMSE/(mg·kg−1) | 1.34 | 0.47 | 0.34 | 0.47 | 0.23 |
nRMSE/% | 28% | 22% | 18% | 27% | 13% | |
ME/(mg·kg−1) | −0.817 | −0.098 | 0.065 | 0.174 | −0.051 | |
N220 (1:1:0) | RMSE/(mg·kg−1) | 3.20 | 2.07 | 1.05 | 1.16 | 0.37 |
nRMSE/% | 27% | 22% | 15% | 25% | 10% | |
ME/(mg·kg−1) | 0.333 | 1.097 | 0.654 | 0.872 | −0.110 | |
N220 (1:0:1) | RMSE/(mg·kg−1) | 3.10 | 1.87 | 0.96 | 0.33 | 0.58 |
nRMSE/% | 26% | 29% | 25% | 12% | 24% | |
ME/(mg·kg−1) | −1.730 | −0.605 | −0.467 | 0.128 | 0.162 | |
N220 (0:1:1) | RMSE/(mg·kg−1) | 0.85 | 0.83 | 0.69 | 0.54 | 0.33 |
nRMSE/% | 13% | 24% | 27% | 28% | 17% | |
ME/(mg·kg−1) | −0.503 | −0.157 | −0.177 | 0.335 | 0.101 | |
N320 (1:1:0) | RMSE/(mg·kg−1) | 3.09 | 2.25 | 1.71 | 1.43 | 0.54 |
nRMSE/% | 29% | 25% | 27% | 28% | 14% | |
ME/(mg·kg−1) | 1.838 | 1.510 | 1.222 | 0.983 | 0.235 | |
N320 (1:0:1) | RMSE/(mg·kg−1) | 2.03 | 1.37 | 1.26 | 0.71 | 0.90 |
nRMSE/% | 17% | 22% | 22% | 18% | 25% | |
ME/(mg·kg−1) | −1.471 | 0.792 | −0.479 | 0.230 | −0.213 | |
N320 (0:1:1) | RMSE/(mg·kg−1) | 2.30 | 1.57 | 0.97 | 0.56 | 0.40 |
nRMSE/% | 25% | 29% | 28% | 21% | 16% | |
ME/(mg·kg−1) | −0.379 | 0.412 | −0.105 | 0.402 | 0.128 | |
CK | RMSE/(mg·kg−1) | 1.56 | 0.89 | 0.78 | 0.43 | 0.23 |
nRMSE/% | 23% | 27% | 23% | 15% | 12% | |
ME/(mg·kg−1) | 0.231 | 0.210 | 0.164 | 0.151 | 0.080 |
Treatment | Base Fertilizer /(kg·ha−1) | Fertilizer/(kg·ha−1) | Treatment | Base Fertilizer /(kg·ha−1) | Fertilizer/(kg·ha−1) | ||||
---|---|---|---|---|---|---|---|---|---|
13 June | 23 July | 12 August | 13 June | 23 July | 12 August | ||||
N80 (1:1:0)a * | 16 | 32 | 32 | 0 | N170 (1:1:0)b | 43 | 64 | 64 | 0 |
N80 (0:1:1)a | 16 | 0 | 32 | 32 | N170 (0:1:1)b | 43 | 0 | 64 | 64 |
N80 (1:0:1)a | 16 | 32 | 0 | 32 | N170 (1:0:1)b | 43 | 64 | 0 | 64 |
N80 (1:1:1)a | 16 | 21 | 21 | 21 | N170 (1:1:1)b | 43 | 43 | 43 | 43 |
N80 (1:1:0)b | 20 | 30 | 30 | 0 | N200 (1:1:0)a | 40 | 80 | 80 | 0 |
N80 (0:1:1)b | 20 | 0 | 30 | 30 | N200 (0:1:1)a | 40 | 0 | 80 | 80 |
N80 (1:0:1)b | 20 | 30 | 0 | 30 | N200 (1:0:1)a | 40 | 80 | 0 | 80 |
N80 (1:1:1)b | 20 | 20 | 20 | 20 | N200 (1:1:1)a | 40 | 53 | 53 | 53 |
N110 (1:1:0)a | 22 | 44 | 44 | 0 | N200 (1:1:0)b | 50 | 75 | 75 | 0 |
N110 (0:1:1)a | 22 | 0 | 44 | 44 | N200 (0:1:1)b | 50 | 0 | 75 | 75 |
N110 (1:0:1)a | 22 | 44 | 0 | 44 | N200 (1:0:1)b | 50 | 75 | 0 | 75 |
N110 (1:1:1)a | 22 | 29 | 29 | 29 | N200 (1:1:1)b | 50 | 50 | 50 | 50 |
N110 (1:1:0)b | 28 | 41 | 41 | 0 | N230 (1:1:0)a | 46 | 92 | 92 | 0 |
N110 (0:1:1)b | 28 | 0 | 41 | 41 | N230 (0:1:1)a | 46 | 0 | 92 | 92 |
N110 (1:0:1)b | 28 | 41 | 0 | 41 | N230 (1:0:1)a | 46 | 92 | 0 | 92 |
N110 (1:1:1)b | 28 | 28 | 28 | 28 | N230 (1:1:1)a | 46 | 61 | 61 | 61 |
N140 (1:1:0)a | 28 | 56 | 56 | 0 | N230 (1:1:0)b | 58 | 86 | 86 | 0 |
N140 (0:1:1)a | 28 | 0 | 56 | 56 | N230 (0:1:1)b | 58 | 0 | 86 | 86 |
N140 (1:0:1)a | 28 | 56 | 0 | 56 | N230 (1:0:1)b | 58 | 86 | 0 | 86 |
N140 (1:1:1)a | 28 | 37 | 37 | 37 | N230 (1:1:1)b | 58 | 58 | 58 | 58 |
N140 (1:1:0)b | 35 | 53 | 53 | 0 | N260 (1:1:0)a | 52 | 104 | 104 | 0 |
N140 (0:1:1)b | 35 | 0 | 53 | 53 | N260 (0:1:1)a | 52 | 0 | 104 | 104 |
N140 (1:0:1)b | 35 | 53 | 0 | 53 | N260 (1:0:1)a | 52 | 104 | 0 | 104 |
N140 (1:1:1)b | 35 | 35 | 35 | 35 | N260 (1:1:1)a | 52 | 69 | 69 | 69 |
N170 (1:1:0)a | 34 | 68 | 68 | 0 | N260 (1:1:0)b | 65 | 98 | 98 | 0 |
N170 (0:1:1)a | 34 | 0 | 68 | 68 | N260 (0:1:1)b | 65 | 0 | 98 | 98 |
N170 (1:0:1)a | 34 | 68 | 0 | 68 | N260 (1:0:1)b | 65 | 98 | 0 | 98 |
N170 (1:1:1)a | 34 | 45 | 45 | 45 | N260 (1:1:1)b | 65 | 65 | 65 | 65 |
Deal with | Yield /(kg·ha−1) | Nitrate-N Leaching/(kg·ha−1) | N Agronomic Efficiency/(kg·kg−1) | Evaluation of Calculation Results | ||
---|---|---|---|---|---|---|
VCR | Relative Proximity C | Sorting Results | ||||
N170(0:1:1)a * | 8354.3 | 25.7 | 22.5 | 19.7 | 0.980 | 1 |
N170(0:1:1)b | 8354.3 | 27.5 | 22.5 | 19.7 | 0.977 | 2 |
N200(0:1:1)a | 8354.3 | 29.0 | 19.1 | 16.7 | 0.973 | 3 |
N170(1:0:1)a | 8354.3 | 29.9 | 22.5 | 19.7 | 0.972 | 4 |
N200(0:1:1)b | 8354.3 | 30.9 | 19.1 | 16.7 | 0.970 | 5 |
… | … | … | … | … | … | … |
N110(1:1:0)b | 5459.0 | 28.6 | 8.5 | 19.9 | 0.225 | 52 |
N80(1:1:1)a | 5210.4 | 18.9 | 8.6 | 26.1 | 0.167 | 53 |
N80(1:1:1)b | 5202.8 | 19.6 | 8.5 | 26.0 | 0.165 | 54 |
N80(1:1:0)a | 4666.0 | 22.7 | 1.8 | 23.3 | 0.066 | 55 |
N80(1:1:0)b | 4648.6 | 23.0 | 1.5 | 23.2 | 0.065 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Liu, Y.; Liu, T.; Wang, D.; Zhou, W.; Luo, M.; Li, Y.; Yang, M.; Liang, S.; Zhao, Y. Optimizing Nitrogen Management for Summer Maize in the Yellow River Basin a Water Heat Carbon and N Simulator Model Approach with Entropy-Weighted Technique for Order Preference by Similarity to Ideal Solution Analysis. Agronomy 2023, 13, 3081. https://doi.org/10.3390/agronomy13123081
Wang S, Liu Y, Liu T, Wang D, Zhou W, Luo M, Li Y, Yang M, Liang S, Zhao Y. Optimizing Nitrogen Management for Summer Maize in the Yellow River Basin a Water Heat Carbon and N Simulator Model Approach with Entropy-Weighted Technique for Order Preference by Similarity to Ideal Solution Analysis. Agronomy. 2023; 13(12):3081. https://doi.org/10.3390/agronomy13123081
Chicago/Turabian StyleWang, Shunsheng, Yulong Liu, Tengfei Liu, Diru Wang, Wang Zhou, Minpeng Luo, Yuan Li, Mingwei Yang, Shuaitao Liang, and Yifei Zhao. 2023. "Optimizing Nitrogen Management for Summer Maize in the Yellow River Basin a Water Heat Carbon and N Simulator Model Approach with Entropy-Weighted Technique for Order Preference by Similarity to Ideal Solution Analysis" Agronomy 13, no. 12: 3081. https://doi.org/10.3390/agronomy13123081
APA StyleWang, S., Liu, Y., Liu, T., Wang, D., Zhou, W., Luo, M., Li, Y., Yang, M., Liang, S., & Zhao, Y. (2023). Optimizing Nitrogen Management for Summer Maize in the Yellow River Basin a Water Heat Carbon and N Simulator Model Approach with Entropy-Weighted Technique for Order Preference by Similarity to Ideal Solution Analysis. Agronomy, 13(12), 3081. https://doi.org/10.3390/agronomy13123081