Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
2.2. Methods
2.3. System Boundaries
2.4. Life-Cycle Inventory
3. Results
4. Discussion
4.1. Environmental Performance
4.2. Critical Evaluation of the Data Used and Assumptions Made
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EIA. International Energy Outlook 2019 with Projections to 2050; U.S. Department of Energy: Washington, DC, USA, 2019.
- IEA. World Energy Balances: Overview; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Fraunhofer ISE. Current and Future Cost of Photovoltaics. Longterm Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems: Study on Behalf of Agora Energiewende. 2015. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/AgoraEnergiewende_Current_and_Future_Cost_of_PV_Feb2015_web.pdf (accessed on 12 December 2022).
- Fraunhofer ISE. Stromgestehungskosten Erneuerbare Energien. 2018. Available online: https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/studie-stromgestehungskosten-erneuerbare-energien.html (accessed on 12 December 2022).
- Timilsina, G.R. Are renewable energy technologies cost competitive for electricity generation? Renew. Energy 2021, 180, 658–672. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- European Commission. EU Agricultural Outlook for the Agricultural Markets and Income 2017–2030; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic systems to optimise land use for electric energy production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Kumar, N.M.; Anand, A.; Kant, K.; Chopra, S.S. Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renew. Sustain. Energy Rev. 2022, 158, 112126. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- DIN. DIN SPEC 91434; Agri-Photovoltaic Systems—Requirements for Primary Agricultural Use. Deutsches Institut für Normung e. V.: Berlin, Germany, 2021.
- Fan, T. Agrivoltaics in China: A Study of the Current State of Agrivoltaics Development, Governmental Support Schemes, and Stakeholder Groups’ Perspectives and Acceptance based on Expert Interviews; Fraunhofer Institute for Solar Energy Systems ISE: Freiburg, Germany, 2022. [Google Scholar]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Praderio, S.; Perego, A. Photovoltaics and the Agricultural Landscape: The Agrovoltaico Concept. 2017. Available online: http://www.remtec.energy/en/2017/08/28/photovoltaics-form-landscapes/ (accessed on 6 April 2018).
- Weselek, A.; Bauerle, A.; Hartung, J.; Zikeli, S.; Lewandowski, I.; Högy, P. Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron. Sustain. Dev. 2021, 41, 59. [Google Scholar] [CrossRef]
- Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Appl. Energy 2021, 281, 116102. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.; Weselek, A.; Bauerle, A.; Högy, P.; et al. Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Appl. Energy 2020, 265, 114737. [Google Scholar] [CrossRef]
- Leon, A.; Ishihara, K.N. Influence of allocation methods on the LC-CO2 emission of an agrivoltaic system. Resour. Conserv. Recycl. 2018, 138, 110–117. [Google Scholar] [CrossRef]
- Leon, A.; Ishihara, K.N. Assessment of new functional units for agrivoltaic systems. J. Environ. Manag. 2018, 226, 493–498. [Google Scholar] [CrossRef]
- Brandão, M.; Martin, M.; Cowie, A.; Hamelin, L.; Zamagni, A. Consequential Life Cycle Assessment: What, How, and Why? In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 277–284. [Google Scholar]
- UNEP/SETAC. Global Guidance Principles for Life Cycle Assessment Databases: A Basis for Greener Processes and Products: “Shonan Guidance Principles”; UNEP/SETAC Life Cycle Initiative: Paris, France, 2011. [Google Scholar]
- FAO. Crops and Livestock Products; FAO: Rome, Italy, 2021. [Google Scholar]
- Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium graveolens L. var. rapaceum) Cultivated Underneath an Agrivoltaic System. Agronomy 2021, 11, 733. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- ISO. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Pant, R.; Zampori, L. Suggestions for Updating the Organisation Environmental Footprint (OEF) Method; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-00654-1. [Google Scholar]
- Bach, V.; Lehmann, A.; Görmer, M.; Finkbeiner, M. Product Environmental Footprint (PEF) Pilot Phase—Comparability over Flexibility? Sustainability 2018, 10, 2898. [Google Scholar] [CrossRef]
- Sala, S.; Cerutti, A.K.; Pant, R. Development of a Weighting Approach for the Environmental Footprint; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-68042-7. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int.J. Life Cycle Assess 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Müller, A.; Friedrich, L.; Reichel, C.; Herceg, S.; Mittag, M.; Neuhaus, D.H. A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Sol. Energy Mater. Sol. Cells 2021, 230, 111277. [Google Scholar] [CrossRef]
- UBA. Emissionsbilanz Erneuerbarer Energieträger Bestimmung der Vermiedenen Emissionen im Jahr 2020; Umweltbundesamt: Dessau, Germany, 2021. [Google Scholar]
- Yao, X.; Cui, X. Agricultural suitability assessment and rehabilitation of subsided coal mines: A case study of the Dawu coal mine in Jiangsu, Eastern China. Geosci. Lett. 2021, 8, 28. [Google Scholar] [CrossRef]
- Schmäck, J.; Weihermüller, L.; Klotzsche, A.; Hebel, C.; Pätzold, S.; Welp, G.; Vereecken, H. Large-scale detection and quantification of harmful soil compaction in a post-mining landscape using multi-configuration electromagnetic induction. Soil Use Manag. 2022, 38, 212–228. [Google Scholar] [CrossRef]
- Pascaris, A.S.; Handler, R.; Schelly, C.; Pearce, J.M. Life cycle assessment of pasture-based agrivoltaic systems: Emissions and energy use of integrated rabbit production. Clean. Responsible Consum. 2021, 3, 100030. [Google Scholar] [CrossRef]
- Ott, E.M.; Kabus, C.A.; Baxter, B.D.; Hannon, B.; Celik, I. Environmental Analysis of Agrivoltaic Systems; Elsevier: Amsterdam, Netherlands, 2022; pp. 127–139. ISBN 9780128197349. [Google Scholar]
- Kim, S.; Kim, S.; Yoon, C.-Y. An Efficient Structure of an Agrophotovoltaic System in a Temperate Climate Region. Agronomy 2021, 11, 1584. [Google Scholar] [CrossRef]
- Cuppari, R.I.; Higgins, C.W.; Characklis, G.W. Agrivoltaics and weather risk: A diversification strategy for landowners. Appl. Energy 2021, 291, 116809. [Google Scholar] [CrossRef]
- Frischknecht, R.; Stolz, P.; Krebs, L.; de Wild-Scholten, M.; Sinha, P. Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems 2020 Task 12 PV Sustainability; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Fraunhofer ISE. Kreisdiagramme zur Stromerzeugung | Energy-Charts. 2022. Available online: https://www.energy-charts.info/charts/energy_pie/chart.htm?l=de&c=DE&year=2021 (accessed on 11 May 2022).
- Federal Government. Development of Renewable Energies | Federal Government. 2022. Available online: https://www.bundesregierung.de/breg-en/issues/amendment-of-the-renewables-act-2024096 (accessed on 26 April 2022).
- Raugei, M.; Leccisi, E.; Fthenakis, V.M. What Are the Energy and Environmental Impacts of Adding Battery Storage to Photovoltaics? A Generalized Life Cycle Assessment. Energy Technol. 2020, 8, 1901146. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
Reference Flow | Amount | Unit |
---|---|---|
Wheat grain | 1.3 | t DM yr−1 |
Celery bulb | 2.7 | t FM yr−1 |
Potato tuber | 6.5 | t FM yr−1 |
Clover grass | 1.6 | t DM yr−1 |
Electricity | 713 | MWh yr−1 |
Crop Yield | REF | AVS | Unit |
---|---|---|---|
Wheat grain | 5.2 | 4.3 | t DM ha−1 yr−1 |
Celeriac bulb | 10.8 | 9.4 | t DM ha−1 yr−1 |
Clover grass | 6.6 | 5.6 | t DM ha−1 yr−1 |
Potato tuber | 25.9 | 22.5 | t DM ha−1 yr−1 |
Components | Unit | Amount | Material | Dataset Used |
---|---|---|---|---|
Pillar total | kg ha−1 | 37,714 | Steel | Market for reinforcing steel, GLO |
Framework long total | kg ha−1 | 36,809 | Steel | Market for reinforcing steel, GLO |
Table total | kg ha−1 | 70,677 | Steel | Market for reinforcing steel, GLO |
PV-Module | m² ha−1 | 3500 | PV panel | Müller et al. (2021) |
Inverter | kg ha−1 | 797 | Steel, copper, plastic | Market for inverter, 2.5kW, GLO |
Control Unit | kg ha−1 | 14 | Steel, copper, plastic | Market for electronics, for control units |
Wiring | kg ha−1 | 846 | Copper, plastic | Market for cable, unspecified, GLO |
Fossil Fuel | Marginal German Electricity Mix in % | Ecoinvent Dataset Used |
---|---|---|
Nuclear energy | 0.5 | Electricity production, nuclear, pressure water reactor, DE |
Brown coal | 17.5 | Electricity production, lignite, DE |
Hard coal | 49.4 | Electricity production, hard coal, DE |
Gas | 32.6 | Electricity production, natural gas, combined cycle power plant, DE |
Impact Category | Absolute Values | In percent | ||
---|---|---|---|---|
Impact | Benefit | Impact | Benefit | |
Acidification | 0.26 | 1.51 | 3.1% | 3.7% |
Climate change | 1.43 | 16.34 | 17.4% | 40.2% |
Ecotoxicity, freshwater | 0.86 | 3.01 | n.a. | n.a. |
Eutrophication, freshwater | 0.47 | 9.60 | 5.7% | 23.7% |
Eutrophication, marine | 0.10 | 0.59 | 1.2% | 1.5% |
Eutrophication, terrestrial | 0.13 | 0.67 | 1.6% | 1.6% |
Human toxicity, cancer | 0.17 | 0.10 | n.a. | n.a. |
Human toxicity, non-cancer | 0.15 | 0.34 | n.a. | n.a. |
Ionising radiation | 0.02 | 0.28 | 0.3% | 0.7% |
Land use | 0.02 | 0.03 | 0.2% | 0.1% |
Ozone depletion | 0.01 | 0.03 | 0.1% | 0.1% |
Particulate matter | 0.46 | 0.50 | 5.6% | 1.2% |
Photochemical ozone formation | 0.28 | 0.99 | 3.3% | 2.5% |
Resource use, fossils | 0.86 | 9.49 | 10.4% | 23.4% |
Resource use, minerals, and metals | 3.87 | 0.18 | 47.0% | 0.4% |
Water use | 0.34 | 0.38 | 4.1% | 0.9% |
Total | 9.42 | 44.04 | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, M.; Lask, J.; Kiesel, A.; Lewandowski, I.; Weselek, A.; Högy, P.; Trommsdorff, M.; Schnaiker, M.-A.; Bauerle, A. Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation. Agronomy 2023, 13, 299. https://doi.org/10.3390/agronomy13020299
Wagner M, Lask J, Kiesel A, Lewandowski I, Weselek A, Högy P, Trommsdorff M, Schnaiker M-A, Bauerle A. Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation. Agronomy. 2023; 13(2):299. https://doi.org/10.3390/agronomy13020299
Chicago/Turabian StyleWagner, Moritz, Jan Lask, Andreas Kiesel, Iris Lewandowski, Axel Weselek, Petra Högy, Max Trommsdorff, Marc-André Schnaiker, and Andrea Bauerle. 2023. "Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation" Agronomy 13, no. 2: 299. https://doi.org/10.3390/agronomy13020299
APA StyleWagner, M., Lask, J., Kiesel, A., Lewandowski, I., Weselek, A., Högy, P., Trommsdorff, M., Schnaiker, M. -A., & Bauerle, A. (2023). Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation. Agronomy, 13(2), 299. https://doi.org/10.3390/agronomy13020299