A Simple and Safe Electrostatic Method for Managing Houseflies Emerging from Underground Pupae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Species
2.2. Experimental Instrument
2.2.1. Formation of an Electric Field by Two Oppositely Charged Metal Nets
2.2.2. Arcing between Two Oppositely Charged Metal Nets
2.3. Arcing to Adult Houseflies
2.3.1. Carbon Dioxide (CO2) Anesthetization of Adult Houseflies
2.3.2. Arc-Discharge Exposure Assay for Adult Houseflies
2.4. Relationship between Autonomous Stoppage of Arc-Discharge Exposure and Loss of Body Water in Houseflies
2.4.1. Effect on Houseflies of Autonomous Stoppage of Arcing on the G-MN
2.4.2. Measurement of the Body Water Content of Houseflies
2.5. Construction of the Arc-Discharge Exposure
2.6. Application of the ADE to Control Houseflies Emerging from Underground Pupae
2.7. Assessment of the Ability of the ADE to Control Adult Housefly Invasions
2.8. Statistical Analysis
3. Results and Discussion
3.1. Prevention of Target-Independent Arcing
3.2. Arcing to Kill Houseflies
3.3. Practical Application of the ADE to Control Houseflies Emerging from the Soil
3.3.1. Successful Grounding of the ADE
3.3.2. Construction of the ADE and Its Two-Step Arcing System to Control Houseflies
3.3.3. Application of the ADE to Adult Houseflies Emerging from Underground Pupae
3.3.4. Capability of the ADE to Control Adult Houseflies Invading Successively
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Green, J.M. Current state of herbicides in herbicide-resistant crops. Pest Manag. Sci. 2014, 70, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Helps, J.C.; Paveley, N.D.; White, S.; van den Bosch, F. Determinants of optimal insecticide resistance management strategies. J. Theor. Biol. 2020, 503, 110383. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Storer, N.; Porter, A.; Slater, R.; Nauen, R. Insecticide resistance management and industry: The origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Manag. Sci. 2021, 77, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- van den Bosch, F.; Gilligan, C.A. Models of fungicide resistance dynamics. Annu. Rev. Phytopathol. 2008, 46, 123–147. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, N.J.; Fraaije, B.A. Fitness penalties in the evolution of fungicide resistance. Annu. Rev. Phytopathol. 2018, 56, 339–360. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.J.; Zurek, L. Association of Escherichia coli O157:H7 with houseflies on a cattle farm. Appl. Environ. Microbiol. 2004, 70, 7578–7580. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Nagaraja, T.G.; Zurek, L. Transmission of Escherichia coli O157:H7 to cattle by house flies. Prev. Vet. Med. 2007, 80, 74–81. [Google Scholar] [CrossRef]
- Russell, J.B.; Jarvis, G.N. Practical mechanisms for interrupting the oral-fecal lifecycle of Escherichia coli. Mol. Microbiol. Biotechnol. 2001, 3, 265–272. [Google Scholar]
- Mukherjee, A.; Cho, S.; Scheftel, J.; Jawahir, S.; Smith, K.; Diez-Gonzalez, F. Soil survival of Escherichia coli O157:H7 acquired by a child from garden soil recently fertilized with cattle manure. J. Appl. Microbiol. 2006, 101, 429–436. [Google Scholar] [CrossRef]
- Brandl, M.T. Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce. Appl. Environ. Microbiol. 2008, 74, 5285–5289. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, A.M.; Grieve, C.M.; Papiernik, S.K.; Yang, C.-H. Persistence of Escherichia coli O157:H7 on the rhizosphere and phyllosphere of lettuce. Lett. Appl. Microbiol. 2009, 49, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; He, Q.; McEvoy, J.L. Effect of storage temperature and duration on the behavior of Escherichia coli O157:H7 on packaged fresh-cut salad containing romaine and Iceberg lettuce. J. Food Sci. 2010, 75, M390–M397. [Google Scholar] [CrossRef]
- Petrikovszki, R.; Zalai, M.; Bogdányi, F.T.; Ferenc Tóth, F. The effect of organic mulching and irrigation on the weed species composition and the soil. Plants 2020, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Sun, X.; Long, B.; Li, F.; Yang, C.; Chen, J.; Ma, C.; Xie, D.; Wei, Y. Green production of biodegradable mulch films for effective weed control. ACS Omega 2021, 6, 32327–32333. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, T.; Toyoda, H. Soil surface-trapping of tomato leaf-miner flies emerging from underground pupae with a simple electrostatic cover of seedbeds in a greenhouse. Insects 2020, 11, 878. [Google Scholar] [CrossRef]
- Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Selective electrostatic eradication of Sitopholus oryzae nesting in stored rice. J. Food Technol. Press 2018, 2, 15–20. [Google Scholar]
- Kakutani, K.; Takikawa, Y.; Matsuda, Y. Selective arcing electrostatically eradicates rice weevils in rice grains. Insects 2021, 12, 522. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Electrocution of mosquitoes by a novel electrostatic window screen to minimize mosquito transmission of Japanese encephalitis viruses. Int. J. Sci. Res. 2018, 7, 47–50. [Google Scholar]
- Matsuda, Y.; Shimizu, K.; Sonoda, T.; Takikawa, Y. Use of electric discharge for simultaneous control of weeds and houseflies emerging from soil. Insects 2020, 11, 861. [Google Scholar] [CrossRef]
- Kaiser, K.L. Air breakdown. In Electrostatic Discharge; Kaiser, K.L., Ed.; Taylor & Francis: New York, NY, USA, 2006; pp. 1–93. [Google Scholar]
- Griffith, W.T. Electrostatic phenomena. In The Physics of Everyday Phenomena, a Conceptual Introduction to Physics; Bruflodt, D., Loehr, B.S., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 232–252. [Google Scholar]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Structure and functions of discharge-generating screens. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 75–85. [Google Scholar]
- Matsuda, Y.; Takikawa, Y.; Kakutani, K.; Nonomura, T.; Okada, K.; Kusakari, S.; Toyoda, H. Use of pulsed arc discharge exposure to impede expansion of the invasive vine Pueraria montana. Agriculture 2020, 10, 600. [Google Scholar] [CrossRef]
- Burke, M.; Odell, M.; Bouwer, H.; Murdoch, A. Electric fences and accidental death. Forensic Sci. Med. Pathol. 2017, 13, 196–208. [Google Scholar] [CrossRef]
- Izumi, N.; Sajiki, J. Effects of bisphenol A (BPA) on sex ratio of a housefly. Bull. Public Health Lab. Chiba Prefect. 2003, 27, 14–17. [Google Scholar]
- Dubendorfer, A.; Hediger, M.; Burghardt, G.; Bopp, D. Musca domestica, a window on the evolution of sex-determining mechanisms in insects. Int. J. Dev. Biol. 2002, 46, 75–79. [Google Scholar] [PubMed]
- Nilson, T.L.; Sinclair, B.J.; Roberts, S.P. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect Physiol. 2006, 52, 1027–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizzi, C.A.; Barin, J.S.; Hermes, A.L.; Mortari, S.R.; Flores, É.M.M. A fast microwave-assisted procedure for loss on drying determination in saccharides. J. Braz. Chem. Soc. 2011, 22, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Jonassen, N. Abatement of static electricity. In Electrostatics, 2nd ed.; Jonassen, N., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 2002; pp. 101–120. [Google Scholar]
- Takikawa, Y.; Takami, T.; Kakutani, K. Body water-mediated conductivity actualizes the insect-control functions of electric fields in houseflies. Insects 2020, 11, 561. [Google Scholar] [CrossRef]
- McGonigle, D.G.; Jackson, C.W. Effect of surface material on electrostatic charging of houseflies (Musca domestica L). Pest Manag. Sci. 2002, 58, 374–380. [Google Scholar] [CrossRef]
- McGonigle, D.G.; Jackson, C.W.; Davidson, J.L. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrostat. 2002, 54, 167–177. [Google Scholar] [CrossRef]
- National Fire Protection Association. About the NEC®/Grounding & Bonding. Available online: https://www.nfpa.org/NEC/About-the-NEC/Grounding-and-bonding (accessed on 21 November 2022).
- Nor, N.M.; Rajab, R.R.; Ramar, K. Validation of the calculation and measurement techniques of earth resistance values. Am. J. Appl. Sci. 2008, 5, 1313–1317. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy. J. Phys. Conf. Ser. 2015, 646, 0120031–0120034. [Google Scholar] [CrossRef]
Size (mm) of Houseflies Used | Weight (mg) | Percentage of Body Water Lost | Duration (min) of Continuous Arcing | |
---|---|---|---|---|
Before Arcing | After Arcing | |||
6 | 13.5 ± 0.8 a | 6.5 ± 0.5 a | 48.6 ± 2.5 a | 18.8 ± 1.8 a |
7 | 17.1 ± 0.7 b | 8.3 ± 0.6 b | 48.4 ± 3.5 a | 30.3 ± 2.0 b |
8 | 23.5 ± 0.5 c | 11.5 ± 0.7 c | 49.1 ± 3.4 a | 40.2 ± 2.7 c |
9 | 29.2 ± 0.6 d | 14.9 ± 0.7 d | 51.1 ± 2.3 a | 49.8 ± 1.3 d |
No. of Pupae Used a | No. of Disable Pupae Bearing No Adults | No. of Dead Adult Houseflies on BLG b | No. of Dead Adult Houseflies on G-MN |
---|---|---|---|
100 | 6 | 94 | 0 |
200 | 12 | 188 | 0 |
300 | 4 | 296 | 0 |
400 | 11 | 389 | 0 |
7 | 393 | 0 | |
25 | 375 | 0 | |
11 | 389 | 0 | |
10 | 390 | 0 |
No. of Adult Houseflies Used a | No. of Dead Houseflies on BLG b | No. of Dead Houseflies on G-MN |
---|---|---|
25 | 25 | 0 |
50 | 50 | 0 |
100 | 100 | 0 |
150 | 150 | 0 |
149 | 1 | |
150 | 0 | |
150 | 0 | |
150 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakutani, K.; Matsuda, Y.; Toyoda, H. A Simple and Safe Electrostatic Method for Managing Houseflies Emerging from Underground Pupae. Agronomy 2023, 13, 310. https://doi.org/10.3390/agronomy13020310
Kakutani K, Matsuda Y, Toyoda H. A Simple and Safe Electrostatic Method for Managing Houseflies Emerging from Underground Pupae. Agronomy. 2023; 13(2):310. https://doi.org/10.3390/agronomy13020310
Chicago/Turabian StyleKakutani, Koji, Yoshinori Matsuda, and Hideyoshi Toyoda. 2023. "A Simple and Safe Electrostatic Method for Managing Houseflies Emerging from Underground Pupae" Agronomy 13, no. 2: 310. https://doi.org/10.3390/agronomy13020310
APA StyleKakutani, K., Matsuda, Y., & Toyoda, H. (2023). A Simple and Safe Electrostatic Method for Managing Houseflies Emerging from Underground Pupae. Agronomy, 13(2), 310. https://doi.org/10.3390/agronomy13020310