Evaluation of the Effectiveness of Loose and Compressed Wood Chip Mulch in Field-Grown Blueberries—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chip Collection and Board Fabrication
2.2. Site Description
2.3. Treatments, Experimental Procedure, and Management
2.4. Fruit Yield and Quality Analyses
2.5. Weed Dry Weight and Soil Characteristics
2.6. Statistical Analyses
3. Results
3.1. Fruit Quality Characteristics as Affected by Different Mulching Materials
3.2. Effects of Different Mulch Treatments on Weed Suppression
3.3. Impact of Mulch Treatments on Soil Properties
4. Discussion
4.1. Mulching Effects on Fruit Yield and Quality
4.2. Weed Suppression Effects of Different Mulch Materials
4.3. Impact of Different Mulching Materials on Soil Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, H.Y.; Kadowaki, M.; Che, J.; Takahashi, S.; Horiuchi, N.; Ogiwara, I. Influence of Light Quality on Flowering Characteristics, Potential for Year-Round Fruit Production and Fruit Quality of Blueberry in a Plant Factory. Fruits 2019, 74, 3–10. [Google Scholar] [CrossRef]
- Tamada, T. Blueberry production in Japan—Today and in the future. Acta Hortic. 2006, 715, 267–272. [Google Scholar] [CrossRef]
- Grieshop, M.J.; Hanson, E.; Schilder, A.; Isaacs, R.; Mutch, D.; Garcia-Salazar, C.; Longstroth, M.; Sadowsky, J. Status update on organic blueberries in Michigan. Int. J. Fruit Sci. 2012, 12, 232–245. [Google Scholar] [CrossRef]
- Retamales, J.B.; Mena, C.; Lobos, G.; Morales, Y. A regression analysis on factors affecting yield of highbush blueberries. Sci. Hortic. 2015, 186, 7–14. [Google Scholar] [CrossRef]
- Albert, T.K.; Karp, M.; Starast, M.; Paal, T. The effect of mulching and pruning on the vegetative growth and yield of the half-high blueberry. Agron. Res. 2010, 8, 759–769. [Google Scholar]
- Eichholz, I.; Huyskens-Keil, S.; Kroh, L.W.; Rohn, S. Phenolic compounds, pectin and antioxidant activity in blueberries (Vaccinium corymbosum L.) influenced by boron and mulch cover. J. Appl. Bot. Food Qual. 2011, 84, 26. [Google Scholar]
- Chen, Z.; Sun, S.; Zhu, Z.; Jiang, H.; Zhang, X. Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach. Agric. Water Manag. 2019, 225, 105765. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. Effects of soil conservation techniques on water erosion control: A global analysis. Sci. Total Environ. 2018, 645, 753–760. [Google Scholar] [CrossRef]
- Gough, R.E. The Highbush Blueberry and Its Management; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar] [CrossRef]
- Retamales, J.B.; Hancock, J.F. Blueberries; Crop Production Science in Horticulture Series, 21; CAB International: Wallingford, UK, 2012. [Google Scholar]
- Moore, J.N. Adapting low organic upland mineral soils for culture of highbush blueberries. Acta Hortic. 1993, 346, 221–229. [Google Scholar] [CrossRef]
- Taak, P.; Koul, B.; Chopra, M.; Sharma, K. Comparative assessment of mulching and herbicide treatments for weed management in Stevia rebaudiana (Bertoni) Cultivation. S. Afr. J. Bot. 2021, 140, 303–311. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Benoit, G.R.; Grant, W.J.; Ismail, A.A.; Yarborough, D.E. Effect of soil moisture and fertilizer on the potential and actual yield of lowbush blueberries. Can. J. Plant Sci. 1984, 64, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Glass, V.M.; Percival, D.C.; Proctor, J.T.A. Tolerance of lowbush blueberries (Vaccinium angustifolium Ait.) to drought stress. II. Leaf gas exchange, stem water potential and dry matter partitioning. Can. J. Plant Sci. 2005, 85, 919–927. [Google Scholar] [CrossRef]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci. Total Environ. 2021, 750, 141228. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Wu, W. Use of plastic mulch in agriculture and strategies to mitigate the associated environmental concerns. Adv. Agron. 2020, 164, 231–287. [Google Scholar] [CrossRef]
- Prasad, S.; Singh, A.; Korres, N.E.; Rathore, D.; Sevda, S.; Pant, D. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective. Bioresour. Technol. 2020, 303, 122964. [Google Scholar] [CrossRef] [PubMed]
- Sinkevičienė, A.; Jodaugienė, D.; Pupalienė, R.; Urbonienė, M. The influence of organic mulches on soil properties and crop yield. Agron. Res. 2009, 7, 485–491. [Google Scholar]
- Chivenge, P.; Vanlauwe, B.; Six, J. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant Soil 2011, 342, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Omari, R.A.; Fujii, Y.; Sarkodee-Addo, E.; Oikawa, Y.; Onwona-Agyeman, S.; Bellingrath-Kimura, S.D. Organic and chemical fertilizer input management on maize and soil productivity in two agro-ecological zones of Ghana. Environ. Sustain. 2018, 1, 437–447. [Google Scholar] [CrossRef]
- Ito, Y.; Tanahashi, M.; Shigematsu, M.; Shinoda, Y.; Ohta, C. Compressive-molding of wood by high-pressure steam-treatment: Part 1. Development of compressively molded squares from thinnings. Holzforschung 1998, 52, 211–216. [Google Scholar] [CrossRef]
- Ito, Y.; Tanahashi, M.; Shigematsu, M.; Shinoda, Y. Compressive-molding of wood by high-pressure steam-treatment: Part 2. Mechanism of permanent fixation. Holzforschung 1998, 52, 217–221. [Google Scholar] [CrossRef]
- Onwona-Agyeman, S.; Fuke, M.; Kawabata, Y.; Yamada, M.; Tanahashi, M. Compressed biomass as mulches in no-till farming. J. Arid Land Stud. 2015, 256, 253–256. [Google Scholar]
- Wu, T.; Wang, X.; Kito, K. Effects of pressures on the mechanical properties of corn straw bio-board. Eng. Agric. Environ. Food 2015, 8, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Kusumah, S.S.; Umemura, K.; Yoshioka, K.; Miyafuji, H.; Kanayama, K. Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard I: Effects of pre-drying treatment and citric acid content on the board properties. Ind. Crops Prod. 2016, 84, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Oshima, S.; Onwona-Agyeman, S.; Saho, N.; Appiah, K.S.; Fujii, Y. Development and evaluation of mulching boards fabricated from bagasse. Transact. Mater. Res. Soc. Jpn. 2020, 45, 9–13. [Google Scholar] [CrossRef]
- Nadhari, W.N.A.W.; Karim, N.A.; Boon, J.G.; Salleh, K.M.; Mustapha, A.; Hashim, R.; Sulaiman, O.; Azni, M.E. Sugarcane (Saccharum officinarium L.) bagasse binderless particleboard: Effect of hot pressing time study. Mater. Today Proc. 2020, 31, 313–317. [Google Scholar] [CrossRef]
- Hirata, H.; Watanabe, K.; Fukushima, K.; Aoki, M.; Imamura, R.; Takahashi, M. Effect of continuous application of farmyard manure and inorganic fertilizer for 9 years on changes in phosphorus compounds in plow layer of an upland andosol. Soil Sci. Plant Nutr. 1999, 45, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Aung, T.; Muramatsu, Y.; Horiuchi, N.; Che, J.; Mochizuki, Y.; Ogiwara, I. Plant growth and fruit quality of blueberry in a controlled room under artificial light. Jpn. Soc. Hortic. Sci. 2014, 83, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Strik, B.C.; Davis, A.J. Individual and combined use of sawdust and weed mat mulch in a new planting of northern highbush blueberry. III. Yield, fruit quality, and costs. HortScience 2021, 56, 363–367. [Google Scholar] [CrossRef]
- Strik, B.C.; Davis, A.J.; Bryla, D.R. Individual and combined use of sawdust and weed mat mulch in a new planting of northern highbush blueberry. II. Nutrient uptake and allocation. HortScience 2020, 55, 1614–1621. [Google Scholar] [CrossRef]
- Schindelbeck, R.R.; van Es, H.M.; Abawi, G.S.; Wolfe, D.W.; Whitlow, T.L.; Gugino, B.K.; Idowu, O.J.; Moebi-us-Clune, B.N. Comprehensive assessment of soil quality for landscape and urban management. Landsc. Urban Plan. 2008, 88, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Spiers, J.M. Substrate temperatures influence root and shoot growth of southern highbush and rabbiteye blueberries. HortScience 1995, 30, 1029–1030. [Google Scholar] [CrossRef]
- Forge, T.A.; Temple, W.; Bomke, A.A. Using compost as mulch for highbush blueberry. Acta Hortic. 2013, 1001, 369–376. [Google Scholar] [CrossRef]
- Retamal-Salgado, J.; Loor, B.; Hirzel, J.; López, M.D.; Undurraga, P.; Zapata, N.; Vergara-Retamales, R.; Olivares-Soto, H. Chlorophyll fluorescence and fruit quality response of blueberry to different mulches. Agronomy 2022, 12, 1702. [Google Scholar] [CrossRef]
- Pliszka, K.; Scibisz, K.; Rojek, H.; Zakowiez, S. Effect of Soil management and water stress upon growth and cropping of the highbush blueberry. Acta Hortic 1997, 446, 487–495. [Google Scholar] [CrossRef]
- Krewer, G.; Ruter, J.M.; Thomas, D.; Sumner, P.; Harrison, K.; Mullinix, B.; NeSmith, D.S.; Westberry, G.; Knox, D. Preliminary report on the effect of tire chips as a mulch and substrate component for blueberries. Acta Hortic. 1997, 446, 309–318. [Google Scholar] [CrossRef]
- Hussain, S.; Ramzan, M.; Akhter, M.; Aslam, M. Weed Management in Direct Seeded Rice. J. Anim. Plant Sci 2008, 18, 3. [Google Scholar]
- Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop Prot. 2015, 72, 57–65. [Google Scholar] [CrossRef]
- Yakubu, A.; Sabi, E.B.; Onwona-Agyeman, S.; Takada, H.; Watanabe, H. Impact of sugarcane bagasse mulching boards on soil erosion and carrot productivity. Catena 2021, 206, 105575. [Google Scholar] [CrossRef]
- Messiga, A.J.; Haak, D.; Dorais, M. Blueberry yield and soil properties response to long-term fertigation and broadcast nitrogen. Sci. Hortic. 2018, 230, 92–101. [Google Scholar] [CrossRef]
- Gumbrewicz, R.; Calderwood, L. Comparison of wood mulch particle sizes for wild blueberry management in a changing climate. Int. J. Fruit Sci. 2022, 22, 551–567. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R. The Nature and Properties of Soils, 12th ed.; Prentice-Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Mohammadi, K.; Heidari, G.; Khalesro, S.; Sohrabi, Y. Soil management, microorganisms and organic matter interactions: A review. Afr. J. Biotechnol. 2011, 10, 19840–19849. [Google Scholar] [CrossRef] [Green Version]
- Omari, R.A.; Addo, E.S.; Matey, D.M.; Fujii, Y.; Okazaki, S.; Oikawa, Y.; Bellingrath-Kimura, S.D. Influence of organic inputs with mineral fertilizer on maize yield and soil microbial biomass dynamics in different seasons in a tropical acrisol. Environ. Sustain. 2020, 3, 45–57. [Google Scholar] [CrossRef]
Parameter (Unit) | Value/Concentration |
---|---|
Total carbon (g kg−1) | 42.4 ± 2.6 |
Total nitrogen (g kg−1) | 4.41 ± 5.2 |
Carbon: Nitrogen ratio | 9.61 |
TOC (mg kg−1) | 610 ± 21.1 |
NH4+ (mg kg−1) | 116 ± 6.1 |
NO3− (mg kg−1) | 289 ± 58.3 |
Available phosphorus (mg kg−1) | 42.4 ± 6.9 |
Available potassium (mg kg−1) | 8.32 ± 1.1 |
Soil organic matter (%) | 4.91 |
Sand (%) | 32.4 |
Silt (%) | 29.4 |
Clay (%) | 38.2 |
pH (H2O) | 6.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Appiah, K.S.; Onwona-Agyeman, S.; Omari, R.A.; Horiuchi, N.; Sarkodee-Addo, E.; Sabi, E.B.; Fujii, Y. Evaluation of the Effectiveness of Loose and Compressed Wood Chip Mulch in Field-Grown Blueberries—A Preliminary Study. Agronomy 2023, 13, 351. https://doi.org/10.3390/agronomy13020351
Appiah KS, Onwona-Agyeman S, Omari RA, Horiuchi N, Sarkodee-Addo E, Sabi EB, Fujii Y. Evaluation of the Effectiveness of Loose and Compressed Wood Chip Mulch in Field-Grown Blueberries—A Preliminary Study. Agronomy. 2023; 13(2):351. https://doi.org/10.3390/agronomy13020351
Chicago/Turabian StyleAppiah, Kwame Sarpong, Siaw Onwona-Agyeman, Richard Ansong Omari, Naomi Horiuchi, Elsie Sarkodee-Addo, Edward Benjamin Sabi, and Yoshiharu Fujii. 2023. "Evaluation of the Effectiveness of Loose and Compressed Wood Chip Mulch in Field-Grown Blueberries—A Preliminary Study" Agronomy 13, no. 2: 351. https://doi.org/10.3390/agronomy13020351
APA StyleAppiah, K. S., Onwona-Agyeman, S., Omari, R. A., Horiuchi, N., Sarkodee-Addo, E., Sabi, E. B., & Fujii, Y. (2023). Evaluation of the Effectiveness of Loose and Compressed Wood Chip Mulch in Field-Grown Blueberries—A Preliminary Study. Agronomy, 13(2), 351. https://doi.org/10.3390/agronomy13020351