Performance of Nitrogen Fertilization and Nitrification Inhibitors in the Irrigated Wheat Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experiments and Growing Conditions
2.2. Sampling and Measurements
2.2.1. Wheat Plant Parameters
2.2.2. Soil Nitrogen Content
2.3. Statistical Analyses
3. Results
3.1. First Experiment: Spring Wheat
3.2. Second Experiment: Winter Wheat
4. Discussion
5. General Remark
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Wirén, N.; Gazzarrini, S.; Frommer, W.B. Regulation of mineral nitrogen uptake in plants. Plant Soil 1997, 196, 191–199. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 8, 97–185. [Google Scholar]
- Xu, A.; Li, L.; Xie, J.; Wang, X.; Coulter, J.A.; Liu, C.; Wang, L. Effect of long-term nitrogen addition on wheat yield, nitrogen use efficiency, and residual soil nitrate in a semiarid area of the loess plateau of China. Sustainability 2020, 12, 1735. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef] [PubMed]
- Omara, P.; Aula, L.; Oyebiyi, F.; Raun, W.R. World cereal nitrogen use efficiency trends: Review and current knowledge. Agrosyst. Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Farzadfar, S.; Knight, J.D.; Congreves, K.A. Soil organic nitrogen: An overlooked but potentially significant contribution to crop nutrition. Plant Soil 2021, 462, 7–23. [Google Scholar] [CrossRef]
- Gaudin, R.; Dupuy, J. Ammoniacal nutrition of transplanted rice fertilized with large urea granules. Agron. J. 1999, 91, 33–36. [Google Scholar] [CrossRef]
- Salsac, L.; Chaillou, S.; Morot-Gaudry, J.F.; Lesaint, C.H.; Jolivet, E. Nitrate and ammonium nutrition in plants. Plant Physiol. Biochem. 1987, 25, 805–812. [Google Scholar]
- Bloom, A.J.; Meyerhoff, P.A.; Taylor, A.R.; Rost, T.L. Root development and absorption of ammonium and nitrate from the rhizosphere. J. Plant Growth Regul. 2002, 21, 416–431. [Google Scholar] [CrossRef]
- Fageria, N.K. The Use of Nutrients in Crop Plants; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kishchenko, O.; Stepanenko, A.; Straub, T.; Zhou, Y.; Neuhäuser, B.; Borisjuk, N. Ammonium Uptake, Mediated by Ammonium Transporters, Mitigates Manganese Toxicity in Duckweed, Spirodela polyrhiza. Plants 2023, 12, 208. [Google Scholar] [CrossRef]
- Barth, G.; von Tucher, S.; Schmidhalter, U.; Otto, R.; Motavalli, P.; Ferraz-Almeida, R.; Meinl Schmiedt Sattolo, T.; Cantarella, H.; Vitti, G.C. Performance of nitrification inhibitors with different nitrogen fertilizers and soil textures. J. Plant Nutr. Soil Sci. 2019, 182, 694–700. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, J.J.; Wei, Z.; Dodla, S.K.; Fultz, L.M.; Gaston, L.A.; Xiao, R.; Park, J.H.; Scaglia, G. Nitrification inhibitors reduce nitrogen losses and improve soil health in a subtropical pastureland. Geoderma 2021, 388, 114947. [Google Scholar] [CrossRef]
- McCarty, G.W. Modes of action of nitrification inhibitors. Biol. Fertil. Soils 1999, 29, 1–9. [Google Scholar] [CrossRef]
- Jiang, R.; Yang, J.; Drury, C.F.; Grant, B.B.; Smith, W.N.; He, W.; Reynolds, D.W.; He, P. Modelling the impacts of inhibitors and fertilizer placement on maize yield and ammonia, nitrous oxide and nitrate leaching losses in southwestern Ontario, Canada. J. Clean. Prod. 2023, 384, 135511. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Sánchez-Martín, L.; García-Torres, L.; Vallejo, A. Gaseous emissions of N2O and NO and NO3− leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agric. Ecosyst. Environ. 2012, 149, 64–73. [Google Scholar] [CrossRef]
- Lin, S.; Hernandez-Ramirez, G. Nitrous oxide emissions from manured soils as a function of various nitrification inhibitor rates and soil moisture contents. Sci. Total Environ. 2020, 738, 139669. [Google Scholar] [CrossRef] [PubMed]
- de Souza, T.L.; de Oliveira, D.P.; Santos, C.F.; Reis, T.H.P.; Cabral, J.P.C.; da Silva Resende, É.R.; Fernandes, T.J.; de Souza, T.R.; Builes, V.R.; Guelfi, D. Nitrogen fertilizer technologies: Opportunities to improve nutrient use efficiency towards sustainable coffee production systems. Agric Ecosyst. Environ. 2023, 345, 108317. [Google Scholar] [CrossRef]
- Fettweis, U.; Mittelstaedt, W.; Schimansky, C.; Führ, F. Lysimeter experiments on the translocation of the carbon-14-labelled nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in a gleyic cambisol. Biol. Fertil. Soils 2001, 34, 126–130. [Google Scholar] [CrossRef]
- Bhatia, A.; Sasmal, S.; Jain, N.; Pathak, H.; Kumar, R.; Singh, A. Mitigating nitrous oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric. Ecosyst. Environ. 2010, 136, 247–253. [Google Scholar] [CrossRef]
- Liu, C.; Wang, K.; Zheng, X. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat–maize cropping system. Biogeosciences 2013, 10, 2427–2437. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Sun, L.; Zhang, X.; Yang, B.; Wang, J.; Yin, B.; Yan, X.; Xiong, Z. Mitigation of nitrous oxide emissions from paddy soil under conventional and no-till practices using nitrification inhibitors during the winter wheat-growing season. Biol. Fertil. Soils 2013, 49, 627–635. [Google Scholar] [CrossRef]
- Dawar, K.; Rahman, U.; Alam, S.S.; Tariq, M.; Khan, A.; Fahad, S.; Datta, R.; Danish, S.; Saud, S.; Noor, M. Nitrification Inhibitor and Plant Growth Regulators Improve Wheat Yield and Nitrogen Use Efficiency. J. Plant Growth Regul. 2022, 41, 1–11. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Chen, C.; Jensen, T. Urease and nitrification inhibitors impact on winter wheat fertilizer timing, yield, and protein content. Agron. J. 2016, 108, 905–912. [Google Scholar] [CrossRef]
- Dawar, K.; Zaman, M.; Rowarth, J.S.; Blennerhassett, J.; Turnbull, M.H. The impact of urease inhibitor on the bioavailability of nitrogen in urea and in comparison, with other nitrogen sources in ryegrass (Lolium perenne L.). Crop Pasture Sci. 2010, 61, 214–221. [Google Scholar] [CrossRef]
- Chen, D.; Suter, H.C.; Islam, A.; Edis, R. Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol. Biochem. 2010, 42, 660–664. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L.; Šimek, M.; Nawaz, S.; Khan, M.J.; Babar, M.N.; Zaman, S. Emissions of Nitrous Oxide (N2O) and Di-nitrogen (N2) from the Agricultural Landscapes, Sources, Sinks, and Factors Affecting N2O and N2 Ratios. In Greenhouse Gases—Emission, Measurement and Management; Liu, G.X., Ed.; InTech.: London, UK, 2012; pp. 1–32. [Google Scholar]
- Amberger, A. Research on dicyandiamide as a nitrification inhibitor and future outlook. Commun. Soil Sci. Plant Anal. 1989, 20, 1933–1955. [Google Scholar] [CrossRef]
- Kelliher, F.M.; Clough, T.J.; Clark, H.; Rys, G.; Sedcole, J.R. The temperature dependence of dicyandiamide (DCD) degradation in soils: A data synthesis. Soil Biol. Biochem. 2008, 40, 1878–1882. [Google Scholar] [CrossRef]
- Peixoto, L.; Petersen, S.O. Efficacy of three nitrification inhibitors to reduce nitrous oxide emissions from pig slurry and mineral fertilizers applied to spring barley and winter wheat in Denmark. Geoderma Reg. 2023, 32, e00597. [Google Scholar] [CrossRef]
- Kim, D.G.; Palmada, T.; Berben, P.; Giltrap, D.; Saggar, S. Seasonal variations in the degradation of a nitrification inhibitor, dicyandiamide (DCD), in a Manawatu grazed pasture soil. In Advanced Nutrient Management: Gains from the Past—Goals for the Future; Currie, L.D., Christensen, C.L., Eds.; Massey University: Auckland, New Zealand, 2012; 7p. [Google Scholar]
- Di, H.J.; Cameron, K.C. Treating grazed pasture soil with a nitrification inhibitor, eco-n™, to decrease nitrate leaching in a deep sandy soil under spray irrigation—A lysimeter study. N. Z. J. Agric. Res. 2004, 47, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.C.; Orchiston, T.; Monaghan, R.M. The effectiveness of the nitrification inhibitor dicyandiamide (DCD) for mitigating nitrogen leaching losses from a winter grazed forage crop on a free draining soil in Northern Southland. Proc. N. Z. Grassl. Assoc. 2012, 74, 39–44. [Google Scholar]
- Suter, H.; Lam, S.K.; Walker, C.; Chen, D. Nitrogen use efficiency for pasture production–impact of enhanced efficiency fertilisers and N rate. In Proceedings of the 17th Australian Society of Agronomy Conference, Hobart, Australia, 20–24 September 2015; pp. 20–24. [Google Scholar]
- Cookson, W.R.; Cornforth, I.S. Dicyandiamide slows nitrification in dairy cattle urine patches: Effects on soil solution composition, soil pH and pasture yield. Soil Biol. Biochem. 2002, 34, 1461–1465. [Google Scholar] [CrossRef]
- Sassman, A.M.; Barker, D.W.; Sawyer, J.E. Corn Response to Urea–Ammonium Nitrate Solution Treated with Encapsulated Nitrapyrin. Agron. J. 2018, 110, 1058–1067. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph, 2nd ed.; Blackwell Science: Berlin, Germany, 2001; p. 158. [Google Scholar]
- Chapman, S.C.; Barreto, H.J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron. J. 1997, 89, 557–562. [Google Scholar] [CrossRef]
- Sadras, V.O.; Echarte, L.; Andrade, F.H. Profiles of leaf senescence during reproductive growth of sunflower and maize. Ann Bot. 2000, 85, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.A.; Blackmer, T.M.; Francis, D.D.; Schepers, J.S. G93-1171 Using a Chlorophyll Meter to Improve N Management; University of Nebraska: Lincoln, NE, USA, 1993. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Miller, R.O.; Gavlak, R.; Horneck, D. Soil Nitrate N, NO3-N Cadmium Reduction S-3.10. In Soil, Plant, and Water Reference Methods for the Western Region, 4th ed.; Western Rural Development Center: UT, USA, 2013; p. 39. [Google Scholar]
- Miller, R.O.; Gavlak, R.; Horneck, D. Soil Ammonium Nitrogen S-3.50. In Soil, Plant, and Water Reference Methods for the Western Region, 4th ed.; Western Rural Development Center: UT, USA, 2013; p. 43. [Google Scholar]
- Weiske, A.; Benckiser, G.; Herbert, T.; Ottow, J.C.G. Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol. Fertil. Soils 2001, 34, 109–117. [Google Scholar]
- De Antoni Migliorati, M.; Scheer, C.; Grace, P.R.; Rowlings, D.W.; Bell, M.; McGree, J. Influence of different nitrogen rates and DMPP nitrification inhibitor on annual N2O emissions from a subtropical wheat-maize cropping system. Agric. Ecosyst. Environ. 2014, 186, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Chen, X.; Jia, J.; Chen, H.; Shi, Y.; Ma, J.; Liang, C.; Liu, Y.; Xie, H.; He, H.; et al. Stover mulching and inhibitor application maintain crop yield and decrease fertilizer N input and losses in no-till cropping systems in Northeast China. Agric. Ecosyst. Environ. 2021, 312, 107360. [Google Scholar] [CrossRef]
- Perez-Castillo, A.G.; Chinchilla-Soto, C.; Elizondo-Salazar, J.A.; Barboza, R.; Dong-Gill, K.I.M.; Muller, C.; Alberto, S.C.; Borzouei, A.; Dawar, K.; Zaman, M. Nitrification inhibitor nitrapyrin does not affect yield-scaled nitrous oxide emissions in a tropical grassland. Pedosphere 2021, 31, 265–278. [Google Scholar] [CrossRef]
- Merino, P.; Menéndez, S.; Pinto, M.; González-Murua, C.; Estavillo, J.M. 3,4-Dimethylpyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manage 2005, 21, 53–57. [Google Scholar] [CrossRef]
- Dougherty, W.J.; Collins, D.; Van Zwieten, L.; Rowlings, D.W. Nitrification (DMPP) and urease (NBPT) inhibitors had no effect on pasture yield, nitrous oxide emissions, or nitrate leaching under irrigation in a hot-dry climate. Soil Res. 2016, 54, 675. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, L.M.; Bhogal, A.; Chadwick, D.R.; McGeough, K.; Misselbrook, T.; Rees, R.M.; Thorman, R.E.; Watson, C.J.; Williams, J.R.; Smith, K.A.; et al. Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands. Sci. Total Environ. 2019, 661, 696–710. [Google Scholar] [CrossRef] [PubMed]
- Nauer, P.A.; Fest, B.J.; Visser, L.; Arndt, S.K. On-farm trial on the effectiveness of the nitrification inhibitor DMPP indicates no benefits under commercial Australian farming practices. Agric. Ecosyst. Environ. 2018, 253, 82–89. [Google Scholar] [CrossRef]
- Asing, J.; Saggar, S.; Singh, J.; Bolan, N.S. Assessment of nitrogen losses from urea and organic manure with and without nitrification inhibitor, dicyandiamide, applied to lettuce under glasshouse conditions. Aust. J. Soil Res. 2008, 46, 535–541. [Google Scholar] [CrossRef]
- Pfab, H.; Palmer, I.; Buegger, F.; Fiedler, S.; Müller, T.; Ruser, R. Influence of a nitrification inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil. Agric. Ecosyst. Environ. 2012, 150, 91–101. [Google Scholar] [CrossRef]
- Tao, R.; Li, J.; Hu, B.; Shah, J.A.; Chu, G. A 2-year study of the impact of reduced nitrogen application combined with double inhibitors on soil nitrogen transformation and wheat productivity under drip irrigation. J. Sci. Food Agric. 2021, 101, 1772–1781. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, H.; Fan, J.; Zhang, F.; Guo, J.; Liao, Z.; Zhuang, Q. Wheat straw mulching with nitrification inhibitor application improves grain yield and economic benefit while mitigating gaseous emissions from a dryland maize field in northwest China. Field Crops Res. 2021, 265, 108125. [Google Scholar] [CrossRef]
- Borzouei, A.; Mander, U.; Teemusk, A.; Alberto, S.C.; Zaman, M.; Dong-Gill, K.I.M.; Muller, C.; Kelestanie, A.A.; Amin, P.S.; Moghiseh, E.; et al. Effects of the nitrification inhibitor nitrapyrin and tillage practices on yield-scaled nitrous oxide emission from a maize field in Iran. Pedosphere 2021, 31, 314–322. [Google Scholar] [CrossRef]
- Dawar, K.; Sardar, K.; Zaman, M.; Mueller, C.; Alberto, S.C.; Aamir, K.; Borzouei, A.; Perez-Castillo, A.G. Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions. Pedosphere 2021, 31, 323–331. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, C.H.; Li, Q.L.; Li, B.; Zhu, Y.Y.; Xiong, Z.Q. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agric. Ecosyst. Environ. 2015, 201, 43–50. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Zhu, Z.L. Fate and management of fertilizer nitrogen in agro-ecosystems. In Nitrogen in Soils of China; Springer: Dordrecht, Germany, 1997; pp. 239–279. [Google Scholar]
- Cai, J.; Jiang, D.; Liu, F.; Dai, T.; Cao, W. Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley. Acta Agric. Scand B Soil Plant Sci. 2011, 61, 410–420. [Google Scholar] [CrossRef]
- Rahman, M.A.; Sarker, M.A.Z.; Amin, M.F.; Jahan, A.H.S.; Akhter, M.M. Yield response and nitrogen use efficiency of wheat under different doses and split application of nitrogen fertilizer. Bangladesh J. Agric. Res. 2011, 36, 231–240. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, J.; Wang, J.; Fu, P.; Hou, Y.; Zhang, C.; Fahad, S.; Peng, S.; Cui, K.; Nie, L.; et al. Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China. Field Crops Res. 2015, 184, 50–57. [Google Scholar] [CrossRef]
- Zhou, Z.; Plauborg, F.; Liu, F.; Kristensen, K.; Andersen, M.N. Yield and crop growth of table potato affected by different split-N fertigation regimes in sandy soil. Eur. J. Agron. 2018, 92, 41–50. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.X.; Liang, X.Q.; Lian, Y.F.; Li, W.H. Mineral-nitrogen leaching and ammonia volatilization from a rice–rapeseed system as affected by 3,4-dimethylpyrazole phosphate. J. Environ. Qual. 2009, 38, 2131–2137. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.M.; Kronzucker, H.J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Qiao, C.; Liu, L.; Hu, S.; Compton, J.E.; Greaver, T.L.; Li, Q. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Chang Biol. 2015, 21, 1249–1257. [Google Scholar] [CrossRef]
- Pereira, J.; Fangueiro, D.; Chadwick, D.R.; Misselbrook, T.H.; Coutinho, J.; Trindade, H. Effect of cattle slurry pre-treatment by separation and addition of nitrification inhibitors on gaseous emissions and N dynamics: A laboratory study. Chemosphere 2010, 79, 620–627. [Google Scholar] [CrossRef]
- Ruser, R.; Schulz, R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils-a review. J. Plant. Nutr. Soil Sci. 2015, 178, 171–188. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, A.; Jaswal, A.; Singh, M.; Gaikwad, D. Nutrient use efficiency concept and interventions for improving nitrogen use efficiency. Plant Arch. 2018, 18, 1015–1023. [Google Scholar]
- Li, T.; Zhang, X.; Gao, H.; Li, B.; Wang, H.; Yan, Q.; Ollenburger, M.; Zhang, W. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions. J. Clean Prod. 2019, 241, 118295. [Google Scholar] [CrossRef]
- Janke, C.K.; Moody, P.; Bell, M.J. Three-dimensional dynamics of nitrogen from banded enhanced efficiency fertilizers. Nutr. Cycl. Agroecosyst. 2020, 118, 227–247. [Google Scholar] [CrossRef]
- Souza, E.F.; Soratto, R.P.; Sandaña, P.; Venterea, R.T.; Rosen, C.J. Split application of stabilized ammonium nitrate improved potato yield and nitrogen-use efficiency with reduced application rate in tropical sandy soils. Field Crop. Res. 2020, 254, 107847. [Google Scholar] [CrossRef]
- Nair, D.; Abalos, D.; Philippot, L.; Bru, D.; Mateo-Marín, N.; Petersen, S.O. Soil and temperature effects on nitrification and denitrification modified N2O mitigation by 3, 4-dimethylpyrazole phosphate. Soil Biol. Biochem. 2021, 157, 108224. [Google Scholar] [CrossRef]
- Slangen, J.H.G.; Kerkhoff, P. Nitrification inhibitors in agriculture and horticulture: A literature review. Fertil. Res. 1984, 5, 1–76. [Google Scholar] [CrossRef]
- Raza, S.; Jiang, Y.; Elrys, A.S.; Tao, J.; Liu, Z.; Li, Z.; Chen, Z.; Zhou, J. Dicyandiamide efficacy of inhibiting nitrification and carbon dioxide emission from calcareous soil depends on temperature and moisture contents. Arch. Agron. Soil Sci. 2021, 68, 1–17. [Google Scholar] [CrossRef]
- Pasda, G.; Hähndel, R.; Zerulla, W. Effect of fertilizers with the new nitrification inhibitor DMPP (3, 4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. Biol. Fertil. Soils. 2001, 34, 85–97. [Google Scholar] [CrossRef]
- Fisk, L.M.; Maccarone, L.D.; Barton, L.; Murphy, D.V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 2015, 88, 214–223. [Google Scholar] [CrossRef]
Growth Season | NH4+-N | NO3−-N | NH4+-N | NO3−-N |
---|---|---|---|---|
(0–30 cm) | (30–60 cm) | |||
2014 (spring wheat) | 10.3 | 34.0 | 10.8 | 16.0 |
2015–2016 (winter wheat) | 7.1 | 17.1 | 4.1 | 9.2 |
Source of Variation | df | PH (cm) | SPAD | Total N of Flag Leaf mg kg−1 | GY (t ha−1) | GM (%) | GP (%) |
---|---|---|---|---|---|---|---|
Rep | 4 | 0.61 | 0.28 | 0.01 | 0.08 | 0.25 | 0.78 |
Treatment | 10 | <0.01 | <0.01 | 0.50 | 0.05 | 0.36 | 0.16 |
Control | 47 ± 1.1 d | 37 ± 1.3 d | 3.5 ± 0.4 | 4.06 ± 0.45 b | 5.5 ± 0.2 | 13.0 ± 0.6 | |
85U | 60 ± 0.4 bc | 44 ± 0.4 ab | 3.5 ± 0.2 | 5.30 ± 0.45 a | 5.1 ± 0.1 | 14.2 ± 0.7 | |
85U + I | 62 ± 0.9 ab | 46 ± 0.9 ab | 4.1 ± 0.3 | 5.55 ± 0.41 a | 5.3 ± 0.1 | 13.6 ± 0.3 | |
85U + A | 63 ± 1.2 ab | 45 ± 1.0 ab | 4.0 ± 0.2 | 4.91 ± 0.55 a | 5.0 ± 0.1 | 14.5 ± 0.7 | |
100U | 64 ± 0.7 a | 46 ± 0.7 ab | 3.8 ± 0.1 | 5.45 ± 0.25 a | 5.5 ± 0.1 | 14.8 ± 0.4 | |
100U + I | 60 ± 1.4 bc | 43 ± 1.3 bc | 3.9 ± 0.2 | 5.32 ± 0.30 a | 5.3 ± 0.1 | 14.2 ± 0.5 | |
85UAN | 59 ± 0.8 c | 41 ± 2.3 c | 4.2 ± 0.4 | 5.45 ± 0.35 a | 5.3 ± 0.2 | 13.0 ± 0.5 | |
85UAN + I | 59 ± 1.0 c | 45 ± 0.6 ab | 3.7 ± 0.2 | 5.48 ± 0.22 a | 5.2 ± 0.1 | 14.5 ± 0.5 | |
85UAN + A | 60 ± 0.9 bc | 45 ± 0.7 ab | 3.9 ± 0.2 | 5.63 ± 0.23 a | 5.2 ± 0.1 | 14.1 ± 0.5 | |
100UAN | 61 ± 0.5 bc | 47 ± 1.1 a | 3.6 ± 0.1 | 5.15 ± 0.25 a | 5.1 ± 0.1 | 15.2 ± 0.5 | |
100UAN + I | 60 ± 1.2 bc | 45 ± 0.2 ab | 3.8 ± 0.3 | 4.95 ± 0.34 a | 5.5 ± 0.1 | 14.5 ± 0.2 |
Source of Variation | df | NH4+-N | NO3−-N | TMN | NH4+-N | NO3−-N | TMN |
---|---|---|---|---|---|---|---|
(mg kg−1 soil) | (mg kg−1 soil) | ||||||
0–30 cm | 30–60 cm | ||||||
Rep | 4 | 0.50 | 0.02 | 0.03 | 0.02 | 0.03 | 0.09 |
Treatment | 10 | <0.01 | <0.01 | <0.01 | 0.07 | <0.01 | 0.09 |
Sampling | 3 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Sampling × Treatment | 30 | <0.01 | <0.01 | <0.01 | 0.25 | 0.29 | 0.19 |
Treatment | |||||||
Control | 5.4 ± 1.2 d | 3.4 ± 0.5 d | 8.9 ± 1.5 f | 5.3 ± 1.2 | 6.4 ± 0.8 b | 11.7 ± 0.9 | |
85U | 12.1 ± 2.6 b | 23 ± 3.8 ab | 33.9 ± 4.4 abc | 5.7 ± 1.4 | 8.5 ± 1.1 ab | 14.3 ± 1.2 | |
85U + I | 9.7 ± 2.1 c | 15.8 ± 2.3 c | 24.9 ± 3.7 de | 5.3 ± 1.4 | 9.3 ± 1.1 a | 14.6 ± 1.3 | |
85U + A | 11.7 ± 2.7 bc | 24.5 ± 3.4 a | 36.4 ± 5 ab | 5.3 ± 2.4 | 7.9 ± 1.3 ab | 13.3 ± 3.3 | |
100U | 12.4 ± 2.7 b | 26.7 ± 2.9 a | 38.1 ± 4.4 a | 5.1 ± 1.3 | 9.9 ± 0.9 a | 15 ± 1.1 | |
100U + I | 10.6 ± 2.2 bc | 26.1 ± 2.9 a | 37.5 ± 4.2 ab | 5.6 ± 1.3 | 8.2 ± 1 ab | 14 ± 1.6 | |
85UAN | 10.9 ± 2.9 bc | 14.1 ± 2.4 c | 25.3 ± 4 de | 5.7 ± 1.5 | 9.1 ± 0.8 a | 14.8 ± 2.0 | |
85UAN + I | 11.7 ± 2.3 bc | 12.2 ± 2 c | 24.0 ± 3.6 e | 6.8 ± 1.6 | 9.4 ± 0.8 a | 16.3 ± 1.5 | |
85UAN + A | 11.7 ± 3.1 bc | 16.4 ± 2.9 c | 28.2 ± 4.2 cde | 6.0 ± 1.4 | 8.3 ± 0.9 ab | 14.3 ± 1.1 | |
100UAN | 12.4 ± 3 ab | 17.7 ± 2.3 bc | 30.1 ± 3.8 bcd | 6.5 ± 1.8 | 10 ± 0.9 a | 16.5 ± 1.7 | |
100UAN + I | 14.6 ± 3.4 a | 16.8 ± 2.4 c | 31.4 ± 5.2 a-d | 6.5 ± 1.7 | 8.8 ± 0.7 a | 15.4 ± 1.8 | |
Sampling | |||||||
2 WAE | 29.9 ± 1.1 a | 17.4 ± 1.2 b | 46.8 ± 1.9 a | 16.7 ± 0.4 a | 4.7 ± 0.2 d | 21.6 ± 0.7 a | |
4 WAE | 8.3 ± 0.5 b | 32.1 ± 1.8a | 40.3 ± 2.1 b | 3.5 ± 0.3 b | 13 ± 0.3 a | 16.6 ± 0.5 b | |
6 WAE | 4.1 ± 0.4 c | 15.5 ± 1.3 b | 19.8 ± 1.6 c | 1.8 ± 0.8 c | 10.4 ± 0.5 b | 12.2 ± 1.2 c | |
8 WAE | 2.6 ± 0.1 d | 6.56 ± 0.8 c | 9.2 ± 0.8 d | 1.3 ± 0.1 c | 6.6 ± 0.4 c | 7.97 ± 1.2 d |
Source of Variation | df | SPAD | GY (t ha−1) | GM (%) | GP (%) |
---|---|---|---|---|---|
Rep | 3 | 0.35 | 0.015 | 0.78 | 0.19 |
Treatment | 3 | 0.86 | 0.49 | 0.19 | 0.54 |
100UAN + I | 52 ± 1.0 | 8.53 ± 0.51 | 5.0 ± 0.04 | 10.0 ± 0.2 | |
100UAN | 53 ± 0.9 | 8.51 ± 0.36 | 5.3 ± 0.09 | 10.0 ± 0.4 | |
60/40UAN + I | 53 ± 0.5 | 9.01 ± 0.22 | 5.1 ± 0.07 | 9.4 ± 0.2 | |
60/40UAN | 53 ± 0.8 | 8.77 ± 0.49 | 5.1 ± 0.10 | 9.8 ± 0.5 |
Source of Variation | df | NH4+-N | NO3−-N | TMN | NH4+-N | NO3−-N | TMN |
---|---|---|---|---|---|---|---|
(mg kg−1 soil) | (mg kg−1 soil) | ||||||
0–30 cm | 30–60 cm | ||||||
Rep | 3 | 0.92 | 0.60 | 0.51 | 0.81 | 0.16 | 0.17 |
Treatment | 3 | 0.70 | 0.14 | 0.18 | 0.49 | 0.05 | 0.05 |
Sampling | 2 | <0.01 | <0.01 | <0.01 | 0.002 | <0.01 | <0.01 |
Sampling×Treatment | 6 | 0.73 | 0.19 | 0.64 | 0.54 | 0.23 | 0.24 |
Treatment | |||||||
100UAN + I | 3.6 ± 0.4 | 4.4 ± 1.1 | 8.1 ± 1.4 | 2 ± 0.3 | 6.8 ± 1.4 ab | 8.9 ± 1.5 ab | |
100UAN | 3.2 ± 0.3 | 5.2 ± 1.3 | 8.4 ± 1.5 | 1.7 ± 0.1 | 7.6 ± 2.5 a | 10.1 ± 2.6 a | |
60/40UAN + I | 3.2 ± 0.4 | 3.3 ± 0.5 | 6.5 ± 0.9 | 2 ± 0.2 | 4.3 ± 1 b | 6.3 ± 1 b | |
60/40UAN | 3.5 ± 0.4 | 4 ± 0.7 | 7.6 ± 1.1 | 1.8 ± 0.2 | 6.1 ± 1.6 ab | 8 ± 1.7 ab | |
Sampling | |||||||
Before the second split application | 4.6 ± 0.3 a | 8.3 ± 0.9 a | 13 ± 1 a | 2.1 ± 0.2 a | 12.9 ± 1.6 a | 14.4 ± 1.6 a | |
4 WAT | 3.8 ± 0.3 a | 2.5 ± 0.1 b | 6.3 ± 0.4 b | 2.2 ± 0.2 a | 3.8 ± 0.8 b | 6.1 ± 0.9 b | |
8 WAT | 1.8 ± 0.3 b | 2.1 ± 0.1 b | 4 ± 0.2 c | 1.3 ± 0.1 b | 2.8 ± 0.6 b | 4.2 ± 0.6 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torabian, S.; Farhangi-Abriz, S.; Qin, R.; Noulas, C.; Wang, G. Performance of Nitrogen Fertilization and Nitrification Inhibitors in the Irrigated Wheat Fields. Agronomy 2023, 13, 366. https://doi.org/10.3390/agronomy13020366
Torabian S, Farhangi-Abriz S, Qin R, Noulas C, Wang G. Performance of Nitrogen Fertilization and Nitrification Inhibitors in the Irrigated Wheat Fields. Agronomy. 2023; 13(2):366. https://doi.org/10.3390/agronomy13020366
Chicago/Turabian StyleTorabian, Shahram, Salar Farhangi-Abriz, Ruijun Qin, Christos Noulas, and Guojie Wang. 2023. "Performance of Nitrogen Fertilization and Nitrification Inhibitors in the Irrigated Wheat Fields" Agronomy 13, no. 2: 366. https://doi.org/10.3390/agronomy13020366
APA StyleTorabian, S., Farhangi-Abriz, S., Qin, R., Noulas, C., & Wang, G. (2023). Performance of Nitrogen Fertilization and Nitrification Inhibitors in the Irrigated Wheat Fields. Agronomy, 13(2), 366. https://doi.org/10.3390/agronomy13020366