Drought and Waterlogging Status and Dominant Meteorological Factors Affecting Maize (Zea mays L.) in Different Growth and Development Stages in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. Meteorological Data
2.2.2. Maize Phenological Data
2.3. Methods
2.3.1. Crop Water Surplus/Deficit Index
2.3.2. Effective Rainfall
2.3.3. Water Requirements in the Growth Stage
2.3.4. Establishment of Drought and Waterlogging Standard
2.3.5. Multiple Stepwise Linear Regression
3. Results
3.1. Effective Precipitation Trend in the Maize Growing Season
3.2. Average Daily Water Requirement in the Maize Growth Stages
3.3. Spatial Distribution of Water Requirements in the Maize Growth Stages
3.4. Spatial Distribution of Drought and Flood States in the Maize Growth Stages
3.5. Water Surplus/Deficit Index in Different Maize Growth Stages in Northeast China
3.6. Effect of the Dominant Meteorological Factors on the CWSDI
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akram, M.A.; Wahid, A.; Abrar, M.; Manan, A.; Naeem, S.; Zahid, M.A.; Gilani, M.M.; Paudyal, R.; Gong, H.Y.; Ran, J.Z.; et al. Comparative study of six maize (Zea mays L.) cultivars concerning cadmium uptake, partitioning and tolerance. Appl. Ecol. Environ. Res. 2021, 19, 2305–2331. [Google Scholar] [CrossRef]
- Rouf Shah, T.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Qin, F.-Y.; Jia, G.-S.; Yang, J.; Na, Y.-T.; Hou, M.-T. Narenmandula Spatiotemporal variability of precipitation during 1961–2014 across the Mongolian Plateau. J. Mt. Sci. 2018, 15, 992–1005. [Google Scholar] [CrossRef]
- Liang, L.; Li, L.; Liu, Q. Precipitation variability in Northeast China from 1961 to 2008. J. Hydrol. 2011, 404, 67–76. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Wang, W.; Zhang, T.; Zeng, X.; Xu, G.; Wu, G.; Kang, H. Spatiotemporal variability of drought in the northern part of northeast China. Hydrol. Process. 2018, 32, 1449–1460. [Google Scholar] [CrossRef]
- Hui, P.; Wei, F.; Xiao, Y.; Yang, J.; Xu, J.; Tang, J. Future projection of extreme precipitation within CORDEX East Asia phase II: Multi-model ensemble. Theor. Appl. Climatol. 2022, 150, 1271–1293. [Google Scholar] [CrossRef]
- Rahman, M.R.; Lateh, H. Meteorological drought in Bangladesh: Assessing, analysing and hazard mapping using SPI, GIS and monthly rainfall data. Environ. Earth Sci. 2016, 75, 1026. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Bi, W.; Zuo, S.; Li, L.; Li, W.; Sun, L. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) Under field conditions. Agric. Water Manag. 2019, 218, 250–258. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, W.; Wang, H.; Gao, Y.; Ma, S.; Qin, A.; Liu, Z.; Zhao, B.; Ning, D.; Zheng, H.; et al. Effects of waterlogging at different stages on growth and ear quality of waxy maize. Agric. Water Manag. 2022, 266, 107603. [Google Scholar] [CrossRef]
- Han, L.; Zhang, Q.; Zhang, Z.; Jia, J.; Wang, Y.; Huang, T.; Cheng, Y. Drought area, intensity and frequency changes in China under climate warming, 1961–2014. J. Arid. Environ. 2021, 193, 104596. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X.; Xie, Z.; Wu, P.; Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 2016, 6, 30571. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Liu, B.; Xue, Z.; Jiang, M.; Lu, X.; Zhang, Q. Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Sci. Total Environ. 2019, 666, 1169–1177. [Google Scholar] [CrossRef]
- Yang, X.; Sun, J.; Gao, J.; Qiao, S.; Zhang, B.; Bao, H.; Feng, X.; Wang, S. Effects of Climate Change on Cultivation Patterns and Climate Suitability of Spring Maize in Inner Mongolia. Sustainability 2021, 13, 8072. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Gu, J.; Shi, W.; Zhao, H.; Sun, C.; You, S. Mapping of Phenological Traits in Northeast China Maize (Zea mays L.). Agronomy 2022, 12, 2585. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, X.; Zhang, J.; Li, K.; Wang, R.; Rong, G.; Liu, X.; Tong, Z. Joint analysis of drought and heat events during maize (Zea mays L.) growth periods using copula and cloud models: A case study of Songliao Plain. Agric. Water Manag. 2022, 259, 107238. [Google Scholar] [CrossRef]
- Luo, W.; Chen, M.; Kang, Y.; Li, W.; Li, D.; Cui, Y.; Khan, S.; Luo, Y. Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall. Agric. Water Manag. 2022, 260, 107285. [Google Scholar] [CrossRef]
- Han, X.; Zhou, Q.; Zhang, B.; Che, Z.; Wei, Z.; Qiu, R.; Chen, H.; Li, Y.; Du, T. Real-time methods for short and medium-term evapotranspiration forecasting using dynamic crop coefficient and historical threshold. J. Hydrol. 2022, 606, 127414. [Google Scholar] [CrossRef]
- Hou, X.; Fan, J.; Zhang, F.; Hu, W.; Yan, F.; Xiao, C.; Li, Y.; Cheng, H. Determining water use and crop coefficients of drip-irrigated cotton in south Xinjiang of China under various irrigation amounts. Ind. Crops Prod. 2022, 176, 114376. [Google Scholar] [CrossRef]
- Jafari, M.; Kamali, H.; Keshavarz, A.; Momeni, A. Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate. Agric. Water Manag. 2021, 248, 106769. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, T. Comparison of spatial interpolation methods based on ArcGIS. J. Phys. Conf. Ser. 2021, 1961, 012050. [Google Scholar] [CrossRef]
- Nwokoro, C.C.; Kreye, C.; Necpalova, M.; Adeyemi, O.; Barthel, M.; Pypers, P.; Hauser, S.; Six, J. Cassava-maize intercropping systems in southern Nigeria: Radiation use efficiency, soil moisture dynamics, and yields of component crops. Field Crops Res. 2022, 283, 108550. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.-H.; Chen, H.-S.; Teng, F.-D.; Wang, X.-J.; Wang, J.; Zhao, C.-Y. Changing contribution rate of heavy rainfall to the rainy season precipitation in Northeast China and its possible causes. Atmos. Res. 2017, 197, 437–445. [Google Scholar] [CrossRef]
- Bevacqua, A.G.; Chaffe, P.L.; Chagas, V.B.; AghaKouchak, A. Spatial and temporal patterns of propagation from meteorological to hydrological droughts in Brazil. J. Hydrol. 2021, 603, 126902. [Google Scholar] [CrossRef]
- Watson, A.; Miller, J.; Künne, A.; Kralisch, S. Using soil-moisture drought indices to evaluate key indicators of agricultural drought in semi-arid Mediterranean Southern Africa. Sci. Total. Environ. 2022, 812, 152464. [Google Scholar] [CrossRef]
- Nabati, J.; Nezami, A.; Neamatollahi, E.; Akbari, M. GIS-based agro-ecological zoning for crop suitability using fuzzy inference system in semi-arid regions. Ecol. Indic. 2020, 117, 106646. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Yang, S.; Cao, D.; Prodhan, F.A.; Sharma, T.P.P. A new composite index for global soil plant atmosphere continuum drought monitoring combing remote-sensing based terrestrial water storage and vapor pressure deficit anomalies. J. Hydrol. 2022, 615, 128622. [Google Scholar] [CrossRef]
- Kamalanandhini, M.; Annadurai, R. Assessment of five meteorological indices for monitoring the drought condition in Chengalpattu District, Tamilnadu, India. Mater. Today Proc. 2021, 46, 3699–3703. [Google Scholar] [CrossRef]
- Ali, Z.; Hussain, I.; Grzegorczyk, M.A.; Ni, G.; Faisal, M.; Qamar, S.; Shoukry, A.M.; Sharkawy, M.A.W.; Gani, S.; Al-Deek, F.F. Bayesian network based procedure for regional drought monitoring: The Seasonally Combinative Regional Drought Indicator. J. Environ. Manag. 2020, 276, 111296. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Zhang, C.; Guo, H.; Hou, Y. Historical and future Palmer Drought Severity Index with improved hydrological modeling. J. Hydrol. 2022, 610, 127941. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, P.; Jin, J.; Wu, C.; Cui, Y.; Zhang, Y.; Tong, F. Drought identification based on Palmer drought severity index and return period analysis of drought characteristics in Huaibei Plain China. Environ. Res. 2022, 212, 113163. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Yan, X.; Hou, H.; Liu, P.; Cai, T.; Zhang, P.; Jia, Z.; Ren, X.; Chen, X. Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region. Agric. Water Manag. 2020, 240, 106289. [Google Scholar] [CrossRef]
- Harris, D. Development and Testing of “On-Farm” Seed Priming. Adv. Agron. 2006, 90, 129–178. [Google Scholar]
- Huang, M.; Wang, J.; Wang, B.; Liu, D.L.; Feng, P.; Yu, Q.; Pan, X.; Waters, C. Assessing maize potential to mitigate the adverse effects of future rising temperature and heat stress in China. Agric. For. Meteorol. 2021, 311, 108673. [Google Scholar] [CrossRef]
- Das, S.; Krishnan, P.; Nayak, M.; Ramakrishnan, B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ. Exp. Bot. 2014, 101, 36–46. [Google Scholar] [CrossRef]
- Silva, P.C.; Sánchez, A.C.; Opazo, M.A.; Mardones, L.A.; Acevedo, E.A. Grain yield, anthesis-silking interval, and phenotypic plasticity in response to changing environments: Evaluation in temperate maize hybrids. Field Crops Res. 2022, 285, 108583. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, D.; Panda, S.K. Assessment of spatiotemporal trend of precipitation indices and meteorological drought characteristics in the Mahi River basin, India. J. Hydrol. 2022, 605, 127314. [Google Scholar] [CrossRef]
- Chen, J.; Luo, W.; Zeng, G.; Wang, Y.; Lyu, Y.; Cai, X.; Zhang, L.; Cheng, A.; Zhang, X.; Wang, S. Response of surface evaporation and subsurface leakage to precipitation for simulated epikarst with different rock–soil structures. J. Hydrol. 2022, 610, 127850. [Google Scholar] [CrossRef]
- Wang, X.; Cui, G.; Wu, F.; Li, C. Analysis of temporal-spatial precipitation variations during the crop growth period in the Lancang River basin, southwestern China. Ecol. Eng. 2015, 76, 47–56. [Google Scholar] [CrossRef]
- Chu, X.-L.; Lu, Z.; Wei, D.; Lei, G.-P. Effects of land use/cover change (LUCC) on the spatiotemporal variability of precipitation and temperature in the Songnen Plain, China. J. Integr. Agric. 2022, 21, 235–248. [Google Scholar] [CrossRef]
- Cai, W.; Gu, X.; Du, Y.; Chang, T.; Lu, S.; Zheng, X.; Bai, D.; Song, H.; Sun, S.; Cai, H. Effects of mulching on water saving, yield increase and emission reduction for maize in China. Agric. Water Manag. 2022, 274, 107954. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Wang, J.; Liu, Y.; Gao, Y.; Zhang, X.; Chen, G.; Huang, F.; Ahmad, S.; Zhang, P.; et al. Suitable fertilization depth can improve the water productivity and maize yield by regulating development of the root system. Agric. Water Manag. 2022, 271, 107784. [Google Scholar] [CrossRef]
- Leuthold, S.J.; Salmerón, M.; Wendroth, O.; Poffenbarger, H. Cover crops decrease maize yield variability in sloping landscapes through increased water during reproductive stages. Field Crops Res. 2021, 265, 108111. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, Y.; Uwimpaye, F.; Yan, Z.; Li, L.; Liu, X.; Shao, L. Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize. Agric. Water Manag. 2021, 245, 106628. [Google Scholar] [CrossRef]
- Ward, P.J.; de Ruiter, M.C.; Mård, J.; Schröter, K.; Van Loon, A.; Veldkamp, T.; von Uexkull, N.; Wanders, N.; AghaKouchak, A.; Arnbjerg-Nielsen, K.; et al. The need to integrate flood and drought disaster risk reduction strategies. Water Secur. 2020, 11, 100070. [Google Scholar] [CrossRef]
Growth Stage | SW-VE | VE-V3 | V3-V7 | V7-JT | JT-VT | VT-FR | FR-R1 | R1-R6 |
---|---|---|---|---|---|---|---|---|
Duration (days) | 16 d | 7 d | 14 d | 20 d | 20 d | 3 d | 2 d | 58 d |
Growth Stage | SW-VE | VE-V3 | V3-V7 | V7-JT | JT-VT | VT-FR | FR-R1 | R1-R6 |
---|---|---|---|---|---|---|---|---|
Crop coefficient | 0.3 | 0.3 | 0.3 | 0.75 | 1.2 | 1.2 | 1.2 | 0.6 |
Level | CWSDI in Different Growth Stages (%) | |||||||
---|---|---|---|---|---|---|---|---|
SW-VE | VE-V3 | V3-V7 | V7-JT | JT-VT | VT-FR | FR-R1 | R1-R6 | |
Normal | (−45,45] | (−50,50] | (−50,50] | (−50,50] | (−35,35] | (−35,35] | (−35,35] | (−50,50] |
Light drought | (−60,−45] | (−65,−50] | (−65,−50] | (−65,−50] | (−50,−35] | (−45,−35] | (−45,−35] | (−60,−50] |
Moderate drought | (−70,−60] | (−75,65] | (−75,65] | (−75,65] | (−60,−50] | (−55,−45] | (−55,−45] | (−70,60] |
Heavy drought | (−80,−70] | (−85,−75] | (−85,−75] | (−85,−75] | (−70,−60] | (−65,−55] | (−65,−55] | (−80,−70] |
Extreme drought | (−∞,−80] | (−∞,−85] | (−∞,−85] | (−∞,−85] | (−∞,−70] | (−∞,−65] | (−∞,−65] | (−∞,−80] |
Light flood | (45,60] | (50,65] | (50,65] | (50,65] | (35,50] | (35,45] | (35,45] | (50,60] |
Moderate flood | (60,70] | (65,75] | (65,75] | (65,75] | (50,60] | (45.55] | (45.55] | (60,70] |
Heavy flood | (70,80] | (75,85] | (75,85] | (75,85] | (60,70] | (55,65] | (55,65] | (70,80] |
Extreme flood | (80,∞] | (85,∞] | (85,∞] | (85,∞] | (70,∞] | (65,∞] | (65,∞] | (80,∞] |
Developmental Stages | Model Variables | Unstandardized Coefficient | Standardized Coefficient | Sig. |
---|---|---|---|---|
SW-VE | MC PRE SSD Tmax Tmin WV | −1.318 0.327 0.165 −0.075 0.045 −0.081 | 0.681 0.528 −0.485 0.333 −0.143 | 0.001 0.000 0.000 0.000 0.002 0.024 |
VE-V3 | MC PRE WV | −1.023 0.299 −0.101 | 0.564 −0.138 | 0.000 0.000 0.025 |
V3-V7 | MC PRE RHU WV | −1.733 0.357 1.188 −0.141 | 0.567 0.166 −0.139 | 0.000 0.000 0.008 0.014 |
V7-JT | MC PRE RHU WV | −1.473 0.135 0.648 −0.048 | 0.646 0.219 −0.111 | 0.000 0.000 0.000 0.020 |
JT-VT | MC PRE RHU WV Tmin | −1.819 0.160 0.697 −0.076 0.016 | 0.703 0.154 −0.132 0.108 | 0.000 0.000 0.001 0.003 0.009 |
VT-FR | MC PRE Tmin WV | −2.202 0.159 0.085 −0.265 | 0.703 0.223 −0.179 | 0.000 0.000 0.000 0.000 |
FR-R1 | MC PRE WV Tmin | −1.573 0.136 −0.332 0.067 | 0.608 −0.218 0.178 | 0.000 0.000 0.000 0.001 |
R1-R6 | MC PRE WV | −1.278 0.408 −0.151 | 0.921 −0.093 | 0.000 0.000 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, X.; Gu, J.; Shi, W.; Zhao, H.; Sun, C.; You, S. Drought and Waterlogging Status and Dominant Meteorological Factors Affecting Maize (Zea mays L.) in Different Growth and Development Stages in Northeast China. Agronomy 2023, 13, 374. https://doi.org/10.3390/agronomy13020374
Wang X, Li X, Gu J, Shi W, Zhao H, Sun C, You S. Drought and Waterlogging Status and Dominant Meteorological Factors Affecting Maize (Zea mays L.) in Different Growth and Development Stages in Northeast China. Agronomy. 2023; 13(2):374. https://doi.org/10.3390/agronomy13020374
Chicago/Turabian StyleWang, Xiaowei, Xiaoyu Li, Jiatong Gu, Wenqi Shi, Haigen Zhao, Chen Sun, and Songcai You. 2023. "Drought and Waterlogging Status and Dominant Meteorological Factors Affecting Maize (Zea mays L.) in Different Growth and Development Stages in Northeast China" Agronomy 13, no. 2: 374. https://doi.org/10.3390/agronomy13020374
APA StyleWang, X., Li, X., Gu, J., Shi, W., Zhao, H., Sun, C., & You, S. (2023). Drought and Waterlogging Status and Dominant Meteorological Factors Affecting Maize (Zea mays L.) in Different Growth and Development Stages in Northeast China. Agronomy, 13(2), 374. https://doi.org/10.3390/agronomy13020374