Construction and Test of Baler Feed Rate Detection Model Based on Power Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dynamics Analysis of Pickup Platform
- (1)
- Torque analysis of picker shaft
- (2)
- Torque analysis of screw conveyor shaft
- (3)
- Power analysis of pickup platform
2.2. Field Test Method
2.2.1. Test Equipment and Materials
2.2.2. Test Methods
2.3. Signal Processing Method
3. Results and Discussion
3.1. Signal Analysis and Processing Results
3.2. Construction Results of Feed-Rate Detection Model
3.3. Field Verification Test Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Ji, X.; Deng, K.; Zhu, J.; Li, C.; Jian, Y.; Peng, H. Analysis of Regional Distribution Patterns and Full Utilization Potential of Crop Straw Resources. Trans. Chin. Soc. Agric. Eng. 2020, 36, 221–228. [Google Scholar] [CrossRef]
- Liu, S.; Li, D.; Huang, J.; Ma, C.; Wang, H.; Yu, Z.; Qu, X.; Zhang, L.; Han, T.; Du, J.; et al. Temporal and Spatial Distribution Characteristics of Rice Stalk Resources and its Potential of Synthetic Fertilizers Substitution Returning to Farmland in China from 1988 to 2018. Trans. Chin. Soc. Agric. Eng. 2021, 37, 151–161. [Google Scholar] [CrossRef]
- Cong, H.; Meng, H.; Yu, J.; Ye, B.; Yao, Z.; Feng, J.; Yu, B.; Qin, C.; Huo, L.; Yuan, Y.; et al. Analysis of Long-term Mechanism for Development of Straw Industry in Northeast China under Guidance of “Green-concept”. Trans. Chin. Soc. Agric. Eng. 2021, 37, 314–321. [Google Scholar] [CrossRef]
- Huo, L.; Yao, Z.; Zhao, L.; Luo, J.; Zhang, P. Contribution and Potential of Comprehensive Utilization of Straw in GHG Emission Reduction and Carbon Sequestration. Trans. Chin. Soc. Agric. Mach. 2022, 53, 349–359. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, H.; An, X.; Yin, Y.; Jin, C.; Zhang, A. Prediction Model of Wheat Straw Moisture Content Based on SPA-SSA-BP. Trans. Chin. Soc. Agric. Mach. 2022, 53, 231–238, 245. [Google Scholar] [CrossRef]
- Liu, C.; He, Z.; Lu, X. Optimization Analysis of Carbon Emission Reduction from Crop Straw Collection and Transportation under the Sustainable Development goals. Trans. Chin. Soc. Agric. Eng. 2022, 38, 239–248. [Google Scholar] [CrossRef]
- Zhang, A.; Meng, Z.; Chen, L.; Wu, G.; Cong, Y.; An, X. Design and Experiment of Dynamic Weighing System for Small Square Baler. Trans. Chin. Soc. Agric. Mach. 2020, 51, 170–175. [Google Scholar] [CrossRef]
- Liu, H.; Meng, Z.; Zhang, A.; Cong, Y.; An, X.; Fu, W.; Wu, G.; Yin, Y.; Jin, C. On-Line Detection Method and Device for Moisture Content Measurement of Bales in a Square Baler. Agriculture 2022, 12, 1183. [Google Scholar] [CrossRef]
- Wang, W.; Gong, Y.; Bai, X.; Tan, R.; Huang, W. Investigation on Operating Speed Regulation System of Mobile Straw Granulator. Trans. Chin. Soc. Agric. Mach. 2021, 52, 186–195. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Lv, Q.; Li, L. Design of Feeding Control System for Self-propelled Round Baler. J. Chin. Agric. Mech. 2021, 42, 13–18, 25. [Google Scholar] [CrossRef]
- Jim, K. Computer control for the combine. Agric. Eng. 1983, 64, 7–9. [Google Scholar]
- Liang, X.; Chen, Z.; Zhang, X.; Wei, L.; Li, W.; Che, Y. Design and Experiment of On-line Monitoring System for Feed Quantity of Combine Harvester. Trans. Chin. Soc. Agric. Mach. 2013, 44 (Suppl. S2), 1–6. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Xu, L.; Tang, Z.; Xu, Z.; Wang, K. Design and Experiment on Adjusting Mechanism of Concave Clearance of Combine Harvester Cylinder. Trans. Chin. Soc. Agric. Mach. 2018, 49, 68–75. [Google Scholar] [CrossRef]
- Luo, S.; Jie, Z. Application of Wireless Dada Acquisition and Virtual Instrument Techniques to Measurement of Combine Feed Quantity. J. Henan Univ. Sci. Technol. Nat. Sci. 2010, 31, 72–75+111–112. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, J.; Liu, L. Study on Wheat Harvester Crop Density Detection During Maturity Based on the Improved Algorithms. J. Agric. Mech. Res. 2015, 37, 49–52. [Google Scholar] [CrossRef]
- John, S.; Michael, P.M.; Gary, W.K. Combine feed rate sensors. Trans. ASAE 1985, 28, 2–5. [Google Scholar] [CrossRef]
- Jie, Z.; Chen, J.; Liu, H. Research on Fuzzy Control of Random Feed Quantity of GPS Combine. Trans. Chin. Soc. Agric. Mach. 2006, 37, 55–58. [Google Scholar]
- Gomez Gil, J.; Lopez Lopez, L.J.; Navas Gracia, L.M. The Spatial Low-pass Filtering as an Alternative to Interpolation Methods in the Generation of Combine Harvester Yield Maps. Appl. Eng. Agric. 2011, 27, 1087–1097. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, R.; Zhang, M.; Li, M.; Zhang, Z.; Li, H. Design of Feed Rate Monitoring System and Estimation Method for Yield Distribution Information on Combine Harvester. In Computers and Electronics in Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; Volume 201, p. 107322. [Google Scholar] [CrossRef]
- Li, P.; Cui, J.; Feng, W.; Zhang, X.; Zhang, T.; Li, Y. Design and Test of Real-time Monitoring System for Feeding Quantity of Small Combine. J. Agric. Mech. Res. 2022, 44, 240–246. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, R.; Ou, H.; Zhang, Z.; Zhang, M.; Li, H. Analysis and Comparison of Feed Rate Detection Methods of Combine Harvester Based on Power Detection. Trans. Chin. Soc. Agric. Mach. 2020, 51, 118–123. [Google Scholar] [CrossRef]
- Huynh, V.M.; Powell, T.; Siddall, J.N. Threshing and Separating Process-a Mathematical Model. Trans. ASAE 1982, 20, 65–73. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, D. Research on the Power Consumption Model of Threshing Cylinder. J. Agric. Mech. Res. 2012, 34, 44–47. [Google Scholar] [CrossRef]
- Lu, W.; Deng, Z.; Zhang, D.; Gao, H.; You, H. Combine Feed Rate Modeling Research. J. Agric. Mech. Res. 2013, 35, 129–132. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, G. Study on the Change of Crop Straw Resources in China. Mod. Agric. 2018, 09, 13–15. [Google Scholar]
- Wang, X. Spatial and Temporal Distribution of Crop Residue Resource in the East, Central-South, and Southwest Regions of China. Doctoral Dissertation, China Agricultural University, Beijing, China, 2014. [Google Scholar]
- Wei, M.; Wang, X.; Xie, G. Field Residue of Field Crops and its Temporal Distribution among Thirty-one Provinces of China. J. China Agric. Univ. 2012, 17, 32–44. [Google Scholar]
- Wang, X.; Xue, S.; Xie, G. Value-taking for Residue factor as a Parameter to Assess the Field Residue of Field Crops. J. China Agric. Univ. 2012, 17, 1–8. [Google Scholar]
- Zhang, A.; Meng, Z.; Chen, L.; Wang, P.; Liu, H.; An, X. Signal Analysis and Processing of Dynamic Weighing System for Small Square Baler. Trans. Chin. Soc. Agric. Mach. 2020, 51 (Suppl. S2), 243–248, 260. [Google Scholar] [CrossRef]
- Yu, X. Application of Fast Fourier Transform in Signal Processing. Inf. Rec. Mater. 2021, 22, 184–186. [Google Scholar] [CrossRef]
- Wu, J. Fast Fourier Spectrometer Signal Acquisition Technology Based on ZYNQ. Master’s Thesis, University of China Academy of Sciences, Shanghai, China, 2021. [Google Scholar]
- Wang, C. Research on Fast Fourier Transform Algorithm Based on Eisenstein. Master’s Thesis, University of Science and Technology of China, Hefei, China, 2021. [Google Scholar]
Parameters | Value |
---|---|
Range of torque | ±500 |
Range of rotational speed | 10,000 RPM |
Error of measurement | <0.1% |
Voltage | DC24 V |
Test | ||||||
---|---|---|---|---|---|---|
1 | 3.17 | 30.4 | 6.23 | 292.7 | 0.1909 | 1.34 |
2 | 4.24 | 32.28 | 8.66 | 393.3 | 0.3566 | 1.90 |
3 | 7.13 | 20.29 | 7.23 | 375 | 0.2839 | 2.01 |
4 | 5.57 | 30.61 | 11.97 | 345.8 | 0.4334 | 2.37 |
5 | 6.46 | 28.57 | 12.05 | 342.1 | 0.4317 | 2.56 |
6 | 5.78 | 32.81 | 15.6 | 365.5 | 0.5970 | 2.64 |
7 | 7.07 | 31.06 | 16.85 | 338.9 | 0.5980 | 3.05 |
8 | 8.41 | 29.63 | 17.95 | 391 | 0.7349 | 3.46 |
9 | 9.35 | 30.18 | 26.77 | 347.4 | 0.9738 | 3.92 |
10 | 10.64 | 32.02 | 33.79 | 384.3 | 1.3597 | 4.73 |
11 | 10.53 | 32.93 | 29.05 | 386.2 | 1.1748 | 4.81 |
12 | 10.48 | 36.13 | 40.38 | 379.9 | 1.6063 | 5.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Gao, N.; Meng, Z.; Zhang, A.; Wen, C.; Li, H.; Zhang, J. Construction and Test of Baler Feed Rate Detection Model Based on Power Monitoring. Agronomy 2023, 13, 425. https://doi.org/10.3390/agronomy13020425
Liu H, Gao N, Meng Z, Zhang A, Wen C, Li H, Zhang J. Construction and Test of Baler Feed Rate Detection Model Based on Power Monitoring. Agronomy. 2023; 13(2):425. https://doi.org/10.3390/agronomy13020425
Chicago/Turabian StyleLiu, Huaiyu, Ning Gao, Zhijun Meng, Anqi Zhang, Changkai Wen, Hanqing Li, and Jing Zhang. 2023. "Construction and Test of Baler Feed Rate Detection Model Based on Power Monitoring" Agronomy 13, no. 2: 425. https://doi.org/10.3390/agronomy13020425
APA StyleLiu, H., Gao, N., Meng, Z., Zhang, A., Wen, C., Li, H., & Zhang, J. (2023). Construction and Test of Baler Feed Rate Detection Model Based on Power Monitoring. Agronomy, 13(2), 425. https://doi.org/10.3390/agronomy13020425