Current Status and Future Prospects in Genomic Research and Breeding for Resistance to Xanthomonas citri pv. glycines in Soybean
Abstract
:1. Introduction
2. Bacterial Pustule and Its Causal Agent Xanthomonas citri pv. glycines
3. Distribution and Population Diversity of Xcg
4. Resistance Genes/QTLs for Bacterial Pustule of Soybean
5. Molecular Mechanisms Underlying Bacterial Pustule Formation in Soybean
6. Future Prospects in Genomic Research and Breeding for Improved Resistance to Bacterial Pustule
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lam, H.-M.; Xu, X.; Liu, X.; Chen, W.; Yang, G.; Wong, F.-L.; Li, M.-W.; He, W.; Qin, N.; Wang, B. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 2010, 42, 1053–1059. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Li, W.; Gu, Y.; Lai, Y.; Bi, Y.; He, C. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. J. Exp. Bot. 2018, 69, 5089–5104. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.; Feng, F.; Tian, Z. Toward a “green revolution” for soybean. Mol. Plant 2020, 13, 688–697. [Google Scholar] [CrossRef]
- Shiriki, D.; Igyor, M.A.; Gernah, D.I. Nutritional evaluation of complementary food formulations from maize, soybean and peanut fortified with Moringa oleifera leaf powder. Food Nutr. Sci. 2015, 6, 494. [Google Scholar]
- Singh, G.; Dukariya, G.; Kumar, A. Distribution, importance and diseases of soybean and common bean: A review. Biotechnol. J. Int. 2020, 24, 86–98. [Google Scholar] [CrossRef]
- Kumar, S. Diseases of soybean and their management. In Crop Diseases and Their Management; Apple Academic Press: New York, NY, USA, 2016; p. 295. [Google Scholar]
- Singh, G. The Soybean: Botany, Production and Uses; CABI: Wallingford, UK, 2010. [Google Scholar]
- Roth, M.G.; Webster, R.W.; Mueller, D.S.; Chilvers, M.I.; Faske, T.R.; Mathew, F.M.; Bradley, C.A.; Damicone, J.P.; Kabbage, M.; Smith, D.L. Integrated management of important soybean pathogens of the United States in changing climate. J. Integr. Pest Manag. 2020, 11, 17. [Google Scholar] [CrossRef]
- Bandara, A.Y.; Weerasooriya, D.K.; Bradley, C.A.; Allen, T.W.; Esker, P.D. Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS ONE 2020, 15, e0231141. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, W.; Wang, Y.; Gao, X.; Huang, D.; Kong, J.; Antwi-Boasiako, A.; Zheng, L.; Yan, W.; Chang, F. Identification of novel genomic regions for bacterial leaf pustule (BLP) resistance in soybean (Glycine max L.) via integrating linkage mapping and association analysis. Int. J. Mol. Sci. 2022, 23, 2113. [Google Scholar] [CrossRef]
- Wolf, B.F.A. Bacterial pustule of soybean. J. Agric. Res. 1924, 29, 57–68. [Google Scholar]
- Khare, U.; Khare, M.; Ansari, M. Bacterial pustule disease of soybean-present scenario and future strategies. Soybean Res. 2003, 1, 43–57. [Google Scholar]
- Kang, I.J.; Kim, K.S.; Beattie, G.A.; Yang, J.W.; Sohn, K.H.; Heu, S.; Hwang, I. Pan-genome analysis of effectors in Korean strains of the soybean pathogen Xanthomonas citri pv. glycines. Microorganisms 2021, 9, 2065. [Google Scholar] [CrossRef] [PubMed]
- Kladsuwan, L.; Athinuwat, D.; Prathuangwong, S. Diversity of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean and specific primer for detection. J. Agric. 2018, 34, 77–87. [Google Scholar]
- Heitkamp, E.C.; Lamppa, R.S.; Lambrecht, P.A.; Harveson, R.M.; Mathew, F.M.; Markell, S.G. First report of bacterial pustule on soybeans in North Dakota. Plant Health Prog. 2014, 15, 155–156. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, W.; Wu, H.; Zheng, L.; Zhao, T.; Gao, X. Identification of pathogen causing bacterial pustule spot of soybean and resistance evaluation of new soybean germplasm. Soybean Sci. 2015, 3, 463–469. [Google Scholar]
- Smith, E.F. Bacterial leaf spot diseases. Science 1904, 19, 417–418. [Google Scholar]
- Zinsou, V.; Afouda, L.; Zoumarou-Wallis, N.; Pate-Bata, T.; Dossou, L.; Götz, M.; Winter, S. Occurrence and characterisation of Xanthomonas axonopodis pv. glycines, causing bacterial pustules on soybean in Guinea Savanna of Benin. Afr. Crop Sci. J. 2015, 23, 203–210. [Google Scholar]
- Capobiango da Fonseca, P.; Maria Barbosa, M.R.; Ferreira, D.d.O.; Badel, J.L.; Schuster, I.; Vieira, R.F.; Lopes da Silva, F. Genome-wide association study reveals molecular markers and genes potentially associated with soybean (Glycine max) resistance to Xanthomonas citri pv. glycines. Plant Breed. 2021, 141, 37–48. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, K.H.; Van, K.; Kim, M.Y.; Lee, S.-H. Fine mapping of a resistance gene to bacterial leaf pustule in soybean. Theor. Appl. Genet. 2010, 120, 1443–1450. [Google Scholar] [CrossRef]
- Kim, K.-S.; Kim, M.Y.; Lee, S.-H. Development of molecular markers for Xanthomonas axonopodis resistance in soybean. Korean J. Crop Sci. 2004, 49, 429–433. [Google Scholar]
- Narvel, J.; Jakkula, L.; Phillips, D.; Wang, T.; Lee, S.-H.; Boerma, H. Molecular mapping of Rxp conditioning reaction to bacterial pustule in soybean. J. Hered. 2001, 92, 267–270. [Google Scholar] [CrossRef]
- Seo, M.; Kang, S.-T.; Moon, J.-K.; Lee, S.; Kim, Y.-H.; Jeong, K.-H.; Yun, H.-T. Identification of quantitative trait loci associated with resistance to bacterial pustule (Xanthomonas axonopodis pv. glycines) in soybean. Korean J. Breed. Sci. 2009, 41, 456–462. [Google Scholar]
- Van, K.; Ha, B.-K.; Kim, M.Y.; Moon, J.K.; Paek, N.-C.; Heu, S.; Lee, S.-H. SSR mapping of genes conditioning soybean resistance to six isolates of Xanthomonas axonopodis pv. glycines. Genes Genom. 2004, 26, 47–54. [Google Scholar]
- Wang, Y.; Liu, M.; Ge, D.; Akhter Bhat, J.; Li, Y.; Kong, J.; Liu, K.; Zhao, T. Hydroperoxide lyase modulates defense response and confers lesion-mimic leaf phenotype in soybean (Glycine max (L.) Merr.). Plant J. 2020, 104, 1315–1333. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-X.; Lipka, A.E.; Domier, L.L.; Hartman, G.L. Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Phytopathology 2016, 106, 1139–1151. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, J.-H.; Kim, M.Y.; Heu, S.; Lee, S.-H. Genetic mapping of novel symptom in response to soybean bacterial leaf pustule in PI 96188. J. Crop Sci. Biotechnol. 2011, 14, 119–123. [Google Scholar] [CrossRef]
- Kim, K.H.; Kang, Y.J.; Shim, S.; Seo, M.-J.; Baek, S.-B.; Lee, J.-H.; Park, S.K.; Jun, T.H.; Moon, J.-K.; Lee, S.-H. Genome-wide RNA-seq analysis of differentially expressed transcription factor genes against bacterial leaf pustule in soybean. Plant Breed. Biotech. 2015, 3, 197–207. [Google Scholar] [CrossRef]
- Kang, I.J.; Kim, K.S.; Beattie, G.A.; Chung, H.; Heu, S.; Hwang, I. Characterization of Xanthomonas citri pv. glycines population genetics and virulence in a national survey of bacterial pustule disease in Korea. Plant Pathol. J. 2021, 37, 652–661. [Google Scholar] [CrossRef]
- Constantin, E.C.; Cleenwerck, I.; Maes, M.; Baeyen, S.; Van Malderghem, C.; De Vos, P.; Cottyn, B. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol. 2016, 65, 792–806. [Google Scholar] [CrossRef]
- Hedges, F. Bacterial pustule of soybean. Science 1922, 56, 111–112. [Google Scholar] [CrossRef]
- Nakano, K. Soybean leaf spot. J. Plant Prot. Tokyo 1919, 6, 217–221. [Google Scholar]
- Vauterin, L.; Hoste, B.; Kersters, K.; Swings, J. Reclassification of Xanthomonas. Int. J. Syst. Evol. Microbiol. 1995, 45, 472–489. [Google Scholar] [CrossRef] [Green Version]
- Thowthampitak, J.; Shaffer, B.T.; Prathuangwong, S.; Loper, J.E. Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean. phytopathology 2008, 98, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Fett, W.F.; Dunn, M.F.; Maher, G.T.; Maleeff, B.E. Bacteriocins and temperate phage of Xanthomonas campestris pv. glycines. Curr. Microbiol. 1987, 16, 137–144. [Google Scholar] [CrossRef]
- Hwang, I.; Lim, S.; Shaw, P. Cloning and characterization of pathogenicity genes from Xanthomonas campestris pv. glycines. J. Bacteriol. 1992, 174, 1923–1931. [Google Scholar] [CrossRef]
- Jones, S.B.; Fett, W. Fate of Xanthomonas campestris infiltrated into soybean leaves: An ultrastructural study. Phytopathology 1985, 75, 733–741. [Google Scholar] [CrossRef]
- Oh, C.; Heu, S.; Park, Y.-C. Sensitive and pathovar-specific detection of Xanthormonas campestris pv. glycines by DNA hybridization and polymerase chain reaction analysis. Plant Pathol. J. 1999, 15, 57–61. [Google Scholar]
- Lee, Y.-H.; Kim, N.-G.; Yoon, Y.-N.; Lim, S.-T.; Kim, H.-T.; Yun, H.-T.; Baek, I.-Y.; Lee, Y.-K. Multiplex PCR assay for the simultaneous detection of major pathogenic bacteria in soybean. Korean J. Crop Sci. 2013, 58, 142–148. [Google Scholar] [CrossRef]
- Khaeruni, A.; Suwanto, A.; Tjahjono, B.; Sinaga, M.S. Rapid detection of bacterial pustule disease on soybean employing PCR technique with specific primers. Hayati 2007, 14, 76. [Google Scholar] [CrossRef]
- Watanabe, T.; Sawada, H. Detection and absolute quantification of Xanthomonas axonopodis pv. glycines from soybeans by real-time PCR. Jpn. J. Phytopathol. 2013, 79, 83–91. [Google Scholar]
- Hwang, I.; Lim, S. Pathogenic variability in isolates of Xanthomonas campestris pv. glycines. Plant Pathol. J. 1998, 14, 19–22. [Google Scholar]
- Barak, J.D.; Vancheva, T.; Lefeuvre, P.; Jones, J.B.; Timilsina, S.; Minsavage, G.V.; Vallad, G.E.; Koebnik, R. Whole-genome sequences of Xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front. Plant Sci. 2016, 7, 1805. [Google Scholar] [CrossRef]
- Groth, D.; Braun, E. Survival, seed transmission and epiphytic development of Xanthomonas campestris pv. glycines in the north-central United States. Plant Dis. 1989, 73, 326–330. [Google Scholar]
- Kim, H.-S.; Park, H.-J.; Heu, S.; Jung, J. Possible association of indole-3-acetic acid production by Xanthomonas axonopodis pv. glycines with development of pustule disease in soybean. J. Appl. Biol. Chem. 2001, 44, 173–176. [Google Scholar]
- Hartman, G.; Rupe, J.; Sikora, J.; Domier, L.; Davis, A.; Steffey, L. Compendium of Soybean Diseases; American Phytopathological Society: Saint Paul, MN, USA, 2015; pp. 19–20. [Google Scholar]
- Boch, J.; Bonas, U. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annu. Rev. Phytopathol. 2010, 48, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.B.; Fett, W.F. Bacterial pustule disease of soybean: Microscopy of pustule development in a susceptible cultivar. Phytopathology 1987, 77, 266–274. [Google Scholar] [CrossRef]
- Phipps, P.; Koenning, S.; Rideout, S.L.; Stromberg, E.L.; Bush, E.A. Common Diseases of Soybean in the Mid-Atlantic Region; Virginia Cooperative Extension: Blacksburg, VA, USA, 2010; p. 10. [Google Scholar]
- Wrather, J.; Anderson, T.; Arsyad, D.; Tan, Y.; Ploper, L.D.; Porta-Puglia, A.; Ram, H.; Yorinori, J. Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Can. J. Plant Pathol. 2001, 23, 115–121. [Google Scholar] [CrossRef]
- Suryadi, Y.; Suhendar, M.; Akhdiya, A.; Manzila, I. Evaluation of soybean germplasm for its resistance to several foliar pathogens in Indonesia. Int. J. Agric. Technol. 2012, 8, 751–763. [Google Scholar]
- Zou, J.; Zhang, Z.; Yu, S.; Kang, Q.; Shi, Y.; Wang, J.; Zhu, R.; Ma, C.; Chen, L.; Wang, J. Responses of soybean genes in the substituted segments of segment substitution lines following a Xanthomonas infection. Front. Plant Sci. 2020, 11, 972. [Google Scholar] [CrossRef]
- Stovold, G.; Smith, H. The prevalence and severity of diseases in the coastal soybean crop of New South Wales. Aust. J. Exp. Agric. 1991, 31, 545–550. [Google Scholar] [CrossRef]
- Lee, S. Occurrence and characterization of major plant bacterial diseases in Korea. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 1999. [Google Scholar]
- Athinuwat, D.; Prathuangwong, S.; Cursino, L.; Burr, T. Xanthomonas axonopodis pv. glycines soybean cultivar virulence specificity is determined by avrBs3 homolog avrXg1. Phytopathology 2009, 99, 996–1004. [Google Scholar]
- Park, H.-J.; Han, S.-W.; Oh, C.-S.; Lee, S.-D.; Ra, D.-S.; Lee, S.-H.; Heu, S.-G. Avirulence gene diversity of Xanthomonas axonopodis pv. glycines isolated in Korea. J. Microbiol. Biotechnol. 2008, 18, 1500–1509. [Google Scholar] [PubMed]
- Kaewnum, S.; Prathuangwong, S.; Burr, T. Aggressiveness of Xanthomonas axonopodis pv. glycines isolates to soybean and hypersensitivity responses by other plants. Plant Pathol. 2005, 54, 409–415. [Google Scholar]
- Hartwig, E.; Lehman, S. Inheritance of resistance to the bacterial pustule disease in soybeans. Agron. J. 1951, 43, 226–229. [Google Scholar] [CrossRef]
- Chamberlain, D. Reaction of resistant and susceptible soybeans to Xanthomonas phaseoli var. sojensis. Plant Dis. Rep. 1962, 46, 707–709. [Google Scholar]
- Sharma, A.; Nair, P.; Pawar, S. Identification of soybean strains resistant to Xanthomonas campestris pv. glycines. Euphytica 1993, 67, 95–99. [Google Scholar] [CrossRef]
- Manjaya, J.; Pawar, S. New genes for resistance to Xanthomonas campestris pv. glycines in soybean [Glycine max (L.) Merr.] and their inheritance. Euphytica 1999, 106, 205–208. [Google Scholar]
- Zhang, W.; Li, Y.; Wang, C.; Sun, J.; Kang, Y.; Lin, Q.; Guo, Q. Resistance identification of soybean to bacterial rashes and QTL mapping of disease resistance. Mol. Plant Breed. 2018, 16, 5978–5986. [Google Scholar]
- Buttner, D.; He, S.Y. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 2009, 150, 1656–1664. [Google Scholar] [CrossRef]
- Puhar, A.; Sansonetti, P.J. Type III secretion system. Curr. Biol. 2014, 24, R784–R791. [Google Scholar] [CrossRef]
- Alfano, J.R.; Charkowski, A.O.; Deng, W.-L.; Badel, J.L.; Petnicki-Ocwieja, T.; Van Dijk, K.; Collmer, A. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 2000, 97, 4856–4861. [Google Scholar]
- Kim, J.-G.; Park, B.K.; Yoo, C.-H.; Jeon, E.; Oh, J.; Hwang, I. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J. Bacteriol. 2003, 185, 3155–3166. [Google Scholar] [PubMed]
- Schwartz, A.R.; Potnis, N.; Timilsina, S.; Wilson, M.; Patané, J.; Martins, J., Jr.; Minsavage, G.V.; Dahlbeck, D.; Akhunova, A.; Almeida, N. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 2015, 6, 535. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, Y.; Liu, M.; Wei, W.; Yi, C.; Peng, J. Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors. J. Mol. Biol. 2020, 432, 1035–1047. [Google Scholar] [CrossRef]
- Kladsuwan, L.; Athinuwat, D.; Bogdanove, A.J.; Prathuangwong, S. AvrBs3-like genes and TAL effectors specific to race structure in Xanthomonas axonopodis pv. glycines. Thai J. Agric. Sci. 2017, 50, 121–145. [Google Scholar]
- Hu, Y.; Zhang, J.L.; Jia, H.G.; Sosso, D.; Li, T.; Frommer, W.B.; Yang, B.; White, F.F.; Wang, N.A.; Jones, J.B. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc. Natl. Acad. Sci. USA 2014, 111, 521–529. [Google Scholar] [CrossRef]
- Prathuangwong, S.; Amnuaykit, K. Studies on tolerance and rate-reducing bacterial pustule of soybean cultivars/lines. Agric. Nat. Resour. 1987, 21, 408–426. [Google Scholar]
- Hong, S.-J.; Kim, Y.-K.; Shim, C.-K.; Kim, M.-J.; Park, J.-H.; Han, E.-J.; Jee, H.-J. Effect of cultivars, sowing date and cropping system on the development of soybean bacterial pustule in the field. Korean J. Org. Agric. 2014, 22, 773–787. [Google Scholar] [CrossRef]
- Hu, K.X.; Shi, X.C.; Xu, D.; Laborda, P.; Wu, G.C.; Liu, F.Q.; Laborda, P.; Wang, S.Y. Antibacterial mechanism of biochanin A and its efficacy for the control of Xanthomonas axonopodis pv. glycines in soybean. Pest Manag. Sci. 2021, 77, 1668–1673. [Google Scholar] [CrossRef]
- Kakembo, D.; Lee, Y.H. Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants. Biol. Control 2019, 134, 72–81. [Google Scholar] [CrossRef]
- Kim, N.; Lee, I.; Yun, H.-T.; Yoo, Y.-H.; Seo, M.-J.; Lee, S.K.; Lee, S.; Kang, I.-J. Evaluation of soybean genotypes for resistance to newly differentiated Korean strains of Xanthomonas citri pv. glycines. Korean J. Breed. Sci. 2022, 54, 203–210. [Google Scholar] [CrossRef]
- Patil, G.; Vuong, T.D.; Kale, S.; Valliyodan, B.; Deshmukh, R.; Zhu, C.; Wu, X.; Bai, Y.; Yungbluth, D.; Lu, F.; et al. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol. J. 2018, 16, 1939–1953. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Peng, M.; Wang, Z.; Bi, Y.; Liu, M.; Wang, L.; Di, S.; Liu, J.; Fan, C.; Yang, G. The evaluation of agronomic traits of wild soybean accessions (Glycine soja Sieb. and Zucc.) in Heilongjiang province, China. Agronomy 2021, 11, 586. [Google Scholar] [CrossRef]
- Lee, S.; Mian, M.R.; Sneller, C.H.; Wang, H.; Dorrance, A.E.; McHale, L.K. Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor. Appl. Genet. 2014, 127, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Mian, R.; McHale, L.K.; Sneller, C.H.; Dorrance, A.E. Identification of quantitative trait loci conditioning partial resistance to Phytophthora sojae in soybean PI 407861A. Crop Sci. 2013, 53, 1022–1031. [Google Scholar] [CrossRef]
- Lee, S.; Mian, M.R.; McHale, L.K.; Wang, H.; Wijeratne, A.J.; Sneller, C.H.; Dorrance, A.E. Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theor. Appl. Genet. 2013, 126, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Diers, B.W.; Specht, J.; Rainey, K.M.; Cregan, P.; Song, Q.; Ramasubramanian, V.; Graef, G.; Nelson, R.; Schapaugh, W.; Wang, D.; et al. Genetic architecture of soybean yield and agronomic traits. G3 Genes Genomes Genet. 2018, 8, 3367–3375. [Google Scholar] [CrossRef] [PubMed]
- Lerch-Olson, E.R.; Dorrance, A.E.; Robertson, A.E. Resistance of the SoyNAM parents to seed and root rot caused by four Pythium species. Plant Dis. 2020, 104, 2489–2497. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Perry, G.; Rajcan, I.; Eskandari, M. SoyMAGIC: An unprecedented platform for genetic studies and breeding activities in soybean. Front. Plant Sci. 2022, 13, 945471. [Google Scholar] [CrossRef]
- Jeong, N.; Kim, K.-S.; Jeong, S.; Kim, J.-Y.; Park, S.-K.; Lee, J.S.; Jeong, S.-C.; Kang, S.-T.; Ha, B.-K.; Kim, D.-Y. Korean soybean core collection: Genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 2019, 14, e0224074. [Google Scholar] [CrossRef]
- Mundt, C.C. Durable resistance: A key to sustainable management of pathogens and pests. Infect. Genet. Evol. 2014, 27, 446–455. [Google Scholar] [CrossRef]
- Kou, Y.; Wang, S. Broad-spectrum and durability: Understanding of quantitative disease resistance. Curr. Opin. Plant Biol. 2010, 13, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156–1160. [Google Scholar] [CrossRef]
- Langner, T.; Kamoun, S.; Belhaj, K. CRISPR crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 2018, 56, 479–512. [Google Scholar] [CrossRef] [Green Version]
- Yin, K.; Qiu, J.-L. Genome editing for plant disease resistance: Applications and perspectives. Philos. Trans. R. Soc. B 2019, 374, 20180322. [Google Scholar] [CrossRef]
- Karmakar, A.; Taufiqa, S.; Baig, M.J.; Molla, K.A. Increasing disease resistance in host plants through genome editing. Proc. Indian Natl. Sci. Acad. 2022, 88, 417–429. [Google Scholar] [CrossRef]
- Jiang, H.; Bu, F.; Tian, L.; Sun, Q.; Bao, D.; Zhao, X.; Han, Y. RNA-Seq-based identification of potential resistance mechanism against the soybean cyst nematode (Heterodera glycines) HG Type 0 in soybean (Glycine max) cv. Dongnong L-204. Crop Pasture Sci. 2020, 71, 539–551. [Google Scholar] [CrossRef]
- Jiang, H.; Tian, L.; Bu, F.; Sun, Q.; Zhao, X.; Han, Y. RNA-seq-based identification of potential resistance genes against the soybean cyst nematode (Heterodera glycines) HG Type 1.2. 3.5. 7 in ‘Dongnong L-10’. Physiol. Mol. Plant Pathol. 2021, 114, 101627. [Google Scholar] [CrossRef]
- McCabe, C.E.; Cianzio, S.R.; O’Rourke, J.A.; Graham, M.A. Leveraging RNA-Seq to characterize resistance to Brown stem rot and the Rbs3 locus in soybean. Mol. Plant-Microbe Interact. 2018, 31, 1083–1094. [Google Scholar] [CrossRef]
- Kang, Y.J.; Kim, K.H.; Shim, S.; Yoon, M.Y.; Sun, S.; Kim, M.Y.; Van, K.; Lee, S.-H. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 2012, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kang, Y.J.; Kim, D.H.; Yoon, M.Y.; Moon, J.-K.; Kim, M.Y.; Van, K.; Lee, S.-H. RNA-seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and-susceptible alleles. DNA Res. 2011, 18, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Fercha, A.; Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Stampachiacchiere, S.; Zenezini Chiozzi, R.; Laganà, A. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics 2016, 16, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Sakata, K.; Komatsu, S. Proteomic analysis of soybean hypocotyl during recovery after flooding stress. J. Proteom. 2015, 121, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Liu, Y.; Huang, Z.; Duan, H.; Tong, J.; He, X.; Gu, W.; Ma, H.; Xiao, L. Comparative proteomic analysis of seedling leaves of cold-tolerant and-sensitive spring soybean cultivars. Mol. Biol. Rep. 2015, 42, 581–601. [Google Scholar] [CrossRef]
- Fiehn, O.; Kopka, J.; Dörmann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000, 18, 1157–1161. [Google Scholar] [CrossRef]
- Feng, Z.; Ding, C.; Li, W.; Wang, D.; Cui, D. Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chem. 2020, 310, 125914. [Google Scholar] [CrossRef]
- Pavan Kumar, B.K.; Kanakala, S.; Malathi, V.; Gopal, P.; Usha, R. Transcriptomic and proteomic analysis of yellow mosaic diseased soybean. J. Plant Biochem. Biotechnol. 2017, 26, 224–234. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, Y.; Li, X.; Zhao, J.; Guo, N.; Xing, H. Metabolomics analysis of soybean hypocotyls in response to Phytophthora sojae infection. Front. Plant Sci. 2018, 9, 1530. [Google Scholar] [CrossRef] [Green Version]
Reference | Source of Resistance | Infection Type | Xcg Strain | Chr. (LG) a | Position 1 (bp) b | Position 2 (BP) b | Flanking Marker 1 | Flanking Marker 2 | PVE (%) c | |
---|---|---|---|---|---|---|---|---|---|---|
1 | Narvel et al. 2001 [22] | Young | Natural | - | 17 (D2) | 6,475,946 | 7,542,029 | Satt014 | Satt372 | - |
Coaker 237 | Natural | - | 17 (D2) | 5,891,979 | 7,542,029 | Satt135 | Satt372 | - | ||
2 | Van et al. 2004 [24] | Danbaekkong | Artificial | SDL2178 | 4 (C1) | 43,305,171 | - | Satt294 | - | 7 |
LMG7403 | 5 (A1) | 29,529,125 | - | Satt155 | - | 13 | ||||
8ra, Mixed | 10 (O) | 46,657,863 | - | Satt243 | - | 11–15 | ||||
Mixed | 10 (O) | - | - | Satt259 | - | 19 | ||||
LMG7403 | 13 (F) | 15,306,234 | - | Satt269 | - | 8 | ||||
6 strains, Mixed | 17 (D2) | 7,542,029 | - | Satt372 | - | 9–43 | ||||
OCS-G | 19 (L) | - | - | Satt143 | - | 6 | ||||
LMG7403 | 19 (L) | 40,637,071 | - | Satt156 | - | 11 | ||||
3 | Kim et al. 2004 [21] | SS2-2 | Artificial | 8ra | 17 (D2) | 7,542,029 | - | Satt372 | McctEact 97 | 10–15 |
4 | Seo et al. 2009 [23] | Shinpaldalkong | Artificial | 8ra | 4 (C1) | 16,738,759 | - | Satt190 | - | 9 |
9 (K) | * 5,753,983 | - | Satt137 | - | 6 | |||||
14 (B2) | 38,859,467 | - | Satt556 | - | 7 | |||||
17 (D2) | 5,891,979 | - | Satt135 | - | 11–21 | |||||
20 (I) | 27,664,504 | - | Satt496 | - | 3 | |||||
5 | Kim et al. 2010 [20] | Danbaekkong | Artificial | 8ra | 17 (D2) | 7,005,804 | 7,038,893 | SNUSNP17_12 | SNUSSR17_9 | - |
6 | Kim et al. 2011 [27] | PI 96188 | Artificial | 8ra | 10 (O) | 48,199,089 | - | Sat_108 | - | - |
7 | Zhang et al. 2018 [62] | Dongnong594 | Artificial | Xagneau001 | 2 (D1b) | - | - | Mark1046791 | Mark1018851 | - |
17 (D2) | - | - | Mark1406417 | Mark1409648 | - | |||||
19 (L) | - | - | Mark926558 | Mark961660 | - | |||||
8 | Zhao et al. 2022 [10] | Meng8206 | Artificial | C5 | 5 (A1) | * 1 | * 1,169,356 | - | - | 7 |
17 (D2) | * 5,158,677 | * 5,994,063 | - | - | 22 | |||||
17 (D2) | * 6,777,393 | * 6,883,854 | - | - | 74 | |||||
17 (D2) | * 6,293,843 | * 6,883,854 | - | - | 35 |
Reference | Plant Material | No. of SNPs | Infection Type | Xcg Strain | Chr. (LG) a | Position (bp) b | SNP ID | Allele | −Log10P | PVE (%) c | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Chang et al. 2016 [26] | Germplasm | 37,659 | Natural | - | 1 (D1a) | 53,136,582 | ss715580342 | T/G | 7.1 | - |
(n = 3173) | 11(B1) | 26,963,752 | ss715609404 | A/G | 6.9 | - | |||||
17 (D2) | 7,042,685 | ss715628133 | G/A | 6.6 | - | ||||||
Capobiango da Fonseca et al. 2021 [19] | Germplasm | 3807 | Artificial | 2440P | 3 (N) | 34,416,830 | ss715585454 | G/T | 3.1 | 13 | |
2 | (n = 118) | 3 (N) | 34,612,476 | ss715585486 | G/A | 3.2 | 14 | ||||
3 (N) | 36,042,575 | ss715585676 | A/G | 3.3 | 14 | ||||||
3 (N) | 44,055,029 | ss715586464 | C/T | 3.5 | 15 | ||||||
3 (N) | 44,213,517 | ss715586487 | C/T | 3.6 | 16 | ||||||
5 (A1) | 2,357,871 | ss715592433 | A/G | 3.3 | 14 | ||||||
8 (A2) | 43,619,289 | ss715602088 | A/G | 3.6 | 15 | ||||||
10 (O) | 2,445,007 | ss715605954 | A/G | 3.3 | 14 | ||||||
13 (F) | 28,859,734 | ss715614710 | A/G | 3.2 | 14 | ||||||
13 (F) | 30,875,555 | ss715615049 | G/T | 3.3 | 14 | ||||||
13 (F) | 34,087,365 | ss715615474 | C/A | 3.2 | 14 | ||||||
Artificial | 2447 | 6 (C2) | 9,453,068 | ss715595677 | T/C | 23.0 | 94 | ||||
15 (E) | 5,116,201 | ss715622817 | T/C | 23.0 | 94 | ||||||
15 (E) | 5,381,724 | ss715622835 | C/T | 23.0 | 94 | ||||||
15 (E) | 5,457,236 | ss715622838 | G/A | 23.0 | 94 | ||||||
17 (D2) | 7,015,860 | ss715628131 | C/T | 24.0 | 94 | ||||||
3 | Zhao et al. 2022 [10] | Germplasm | 61,166 | Both | C5 | 5 (A1) | * 7,667,820 | Gm05_7667820 | G/A | 4.1–4.2 | 3.3–3.4 |
(n = 476) | Both | 5 (A1) | * 7668047 | Gm05_7668047 | - | 4.1–4.2 | 3.3–3.4 | ||||
Artificial | 9 (K) | * 36,501,019 | Gm09_36501019 | - | 4.2–4.7 | 3.5–3.9 | |||||
Both | 17 (D2) | * 5,628,119 | Gm17_5628119 | T/C | 4.5–4.6 | 3.7–3.9 | |||||
Both | 17 (D2) | * 5628133 | Gm17_5628133 | - | 4.5–4.6 | 3.7–3.9 | |||||
Both | 17 (D2) | * 7603802 | Gm17_7603802 | T/C | 4.1–8.7 | 3.4–7.9 | |||||
Artificial | 17 (D2) | * 7603992 | Gm17_7603992 | - | 4.1–6.9 | 3.4–6.0 | |||||
Both | 17 (D2) | * 7604008 | Gm17_7604008 | - | 5.0–6.8 | 4.2–5.9 | |||||
Both | 17 (D2) | * 7712768 | Gm17_7712768 | - | 4.1–8.2 | 3.3–7.3 | |||||
Both | 17 (D2) | * 7721556 | Gm17_7721556 | - | 5.0–8.3 | 4.2–7.5 | |||||
Both | 17 (D2) | * 7736150 | Gm17_7736150 | - | 4.3–6.7 | 3.6–5.8 | |||||
Both | 17 (D2) | * 7754016 | Gm17_7754016 | - | 4.1–8.1 | 3.3–7.3 | |||||
Both | 17 (D2) | * 7754048 | Gm17_7754048 | - | 3.3–8.1 | 3.3–7.3 |
Reference | Chr. (LG) a | Gene ID | Position b | Functional Annotation | |
---|---|---|---|---|---|
1 | Kim et al. 2010 [20] | 17 (D2) | Glyma.17g090100 | 7,020,522…7,022,065 | Membrane protein At2g36330; Arabidopsis thaliana |
17 (D2) | Glyma.17g090200 | 7,028,352…7,034,934 | Zinc finger (C3HC4-type RING finger) family protein; Arabidopsis thaliana | ||
2 | Chang et al. 2016 [26] | 1 (D1a) | Glyma.01g197600 | 53,149,380…53,153,676 | LRR-RLK resistance gene |
1 (D1a) | Glyma.01g197800 | 53,170,021…53,173,875 | LRR-RLK resistance gene | ||
11 (B1) | Glyma.11g196800 | 27,106,029…27,107,951 | LRR-RLK gene | ||
17 (D2) | Glyma.17g090400 | 7,040,797…7,042,768 | RLK gene | ||
3 | Zhang et al. 2018 [62] | 2 (D1b) | Glyma.02g108700 | 10,404,064…10,404,874 | Calcium-binding EF-hand family protein |
2 (D1b) | Glyma.02g110500 | 10,655,319…10,660,151 | NB-ARC domain-containing disease resistance protein | ||
2 (D1b) | Glyma.02g112300 | 10,900,201…10,902,765 | NB-ARC domain-containing disease resistance protein | ||
2 (D1b) | Glyma.02g120800 | 11,926,840…11,931,251 | Leucine-rich repeat receptor-like protein kinase family protein | ||
17 (D2) | Glyma.17g204600 | 33,223,552…33,226,195 | Receptor-like protein 12 | ||
17 (D2) | Glyma.17g204300 | 33,083,927…33,090,560 | Enhancer of polycomb-like transcription factor protein | ||
19 (L) | Glyma.19g074900 | 27,195,325…27,202,148 | LRR protein kinase family protein | ||
4 | Capobiango da Fonseca et al. 2021 [19] | 3 (N) | - | - | Benzyl alcohol O-benzoyl transferase-like (LOC100793892) |
15 (E) | - | - | Protein MAIN-LIKE 1-like (LOC102667247) | ||
5 | Wang et al. 2020 [25] | 12 (H) | Glyma.12g191400 | 35,295,823…35,301,648 | Defective hydroperoxide lyase (HPL) gene |
6 | Zhao et al. 2022 [10] | 5 (A1) | Glyma.05g040500 | 3,625,982…3,628,389 | LBD domain-containing transcription factor |
17 (D2) | Glyma.17g086300 | 6,660,761…6,663,277 | Lateral organ boundaries (LOB) domain-containing protein 25 | ||
17 (D2) | Glyma.17g090100 | 7,020,522…7,022,065 | CASP-like protein 4A3 | ||
17 (D2) | Glyma.17g090200 | 7,028,352…7,034,934 | E3 ubiquitin-protein ligase SIS3-like | ||
17 (D2) | Glyma.17g090400 | 7,040,797…7,042,768 | Uncharacterized |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Kang, I.-J.; Lee, S. Current Status and Future Prospects in Genomic Research and Breeding for Resistance to Xanthomonas citri pv. glycines in Soybean. Agronomy 2023, 13, 490. https://doi.org/10.3390/agronomy13020490
Zhao R, Kang I-J, Lee S. Current Status and Future Prospects in Genomic Research and Breeding for Resistance to Xanthomonas citri pv. glycines in Soybean. Agronomy. 2023; 13(2):490. https://doi.org/10.3390/agronomy13020490
Chicago/Turabian StyleZhao, Ruihua, In-Jeong Kang, and Sungwoo Lee. 2023. "Current Status and Future Prospects in Genomic Research and Breeding for Resistance to Xanthomonas citri pv. glycines in Soybean" Agronomy 13, no. 2: 490. https://doi.org/10.3390/agronomy13020490
APA StyleZhao, R., Kang, I.-J., & Lee, S. (2023). Current Status and Future Prospects in Genomic Research and Breeding for Resistance to Xanthomonas citri pv. glycines in Soybean. Agronomy, 13(2), 490. https://doi.org/10.3390/agronomy13020490