Seed Protein and Oil QTL in a Prominent Glycine max Genetic Pedigree: Enhancing Stability for Marker Assisted Selection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Site and Procedure
2.2. Seed Quality Trait Detection
2.3. SNP Genotyping
2.4. Statistical Analyses and QTL Detection
3. Results
3.1. Seed Protein and Seed Oil Phenotypes
3.2. Seed Protein and Seed Oil QTL
4. Discussion
4.1. Seed Protein and Seed Oil Phenotypes
4.2. Seed Protein and Seed Oil QTL
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milczarek, A.; Osek, M. Effectiveness evaluation of use of various protein feeds for broiler chicken feeding. Ann. Anim. Sci. 2019, 19, 1063–1081. [Google Scholar] [CrossRef] [Green Version]
- Soystats. 2022. Available online: http://soystats.com/soybean-oil-u-s-vegetable-oils-consumption/ (accessed on 21 September 2022).
- Specht, J.E.; Chase, K.; Macrander, M.; Graef, G.L.; Chung, J.; Markwell, J.P.; Germann, M.; Orf, J.H.; Lark, K.G. Soybean response to water: A QTL analysis of drought tolerance. Crop Sci. 2001, 41, 493–509. [Google Scholar] [CrossRef]
- Diers, B.W.; Keim, P.; Fehr, W.R.; Shoemaker, R.C. RFLP analysis of soybean seed protein and oil content. Theor. Appl. Genet. 1992, 83, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Grant, D.; Nelson, R.T.; Cannon, S.B.; Shoemaker, R.C. SoyBase, the USDA-ARS Soybean Genetics and Genomics Database. 2010. Available online: http://www.soybase.org/ (accessed on 14 January 2022).
- Wang, J.; Mao, L.; Zeng, Z.; Yu, X.; Lian, J.; Feng, J.; Yang, W.; An, J.; Wu, H.; Zhang, M.; et al. Genetic mapping high protein content QTL from soybean ‘Nanxiadou 25′and candidate gene analysis. BMC Plant Biol. 2021, 21, 388. [Google Scholar] [CrossRef]
- Brummer, E.C.; Graef, G.L.; Orf, J.; Wilcox, J.R.; Shoemaker, R.C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci. 1997, 37, 370–378. [Google Scholar] [CrossRef]
- Orf, J.H.; Chase, K.; Jarvik, T.; Mansur, L.M.; Cregan, P.B.; Adler, F.R.; Lark, K.G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci. 1999, 39, 1642–1651. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Graef, G.L.; Procopiuk, A.M.; Diers, B.W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor. Appl. Genet. 2004, 108, 458–467. [Google Scholar] [CrossRef]
- Yesudas, C.R.; Bashir, R.; Geisler, M.B.; Lightfoot, D.A. Identification of germplasm with stacked QTL underlying seed traits in an inbred soybean population from cultivars Essex and Forrest. Mol. Breed. 2013, 31, 693–703. [Google Scholar] [CrossRef]
- Panthee, D.R.; Pantalone, V.R.; West, D.R.; Saxton, A.M.; Sams, C.E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci. 2005, 45, 2015–2022. [Google Scholar] [CrossRef]
- Pathan, S.M.; Vuong, T.; Clark, K.; Lee, J.D.; Shannon, J.G.; Roberts, C.A.; Ellersieck, M.R.; Burton, J.W.; Cregan, P.B.; Hyten, D.L.; et al. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci. 2013, 53, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Hyten, D.L.; Pantalone, V.R.; Sams, C.E.; Saxton, A.M.; Landau-Ellis, D.; Stefaniak, T.R.; Schmidt, M.E. Seed quality QTL in a prominent soybean population. Theor. Appl. Genet. 2004, 109, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Fasoula, V.A.; Harris, D.K.; Boerma, H.R. Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci. 2004, 44, 1218–1225. [Google Scholar] [CrossRef]
- Zhang, H.; Goettel, W.; Song, Q.; Jiang, H.; Hu, Z.; Wang, M.L.; An, Y.-Q.C. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet. 2020, 16, e1009114. [Google Scholar] [CrossRef]
- Smith, T.J.; Camper, H.M. Registration of Essex soybean (reg. no. 97). Crop Sci. 1973, 13, 495. [Google Scholar] [CrossRef]
- Bernard, R.L.; Cremeens, C.R. Registration of Williams 82 soybean. Crop Sci. 1988, 28, 1027–1028. [Google Scholar] [CrossRef]
- Brim, C.A. A modified pedigree method of selection in soybeans 1. Crop Sci. 1966, 6, 220. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Sneller, C.H.; Mozzoni, L.A.; Rupe, J.C. Registration of ‘Osage’soybean. J. Plant Regist. 2007, 1, 89–92. [Google Scholar] [CrossRef]
- Pantalone, V.R.; Allen, F.L.; Landau-Ellis, D. Registration of ‘5002T’soybean. Crop Sci. 2004, 44, 1483–1485. [Google Scholar] [CrossRef]
- Pantalone, V.; Smallwood, C.; Fallen, B. Development of ‘Ellis’ soybean with high soymeal protein, resistance to stem canker, southern root knot nematode, and frogeye leaf spot. J. Plant Regist. 2017, 11, 250–255. [Google Scholar] [CrossRef]
- Hyten, D.L.; Song, Q.; Choi, I.Y.; Yoon, M.S.; Specht, J.E.; Matukumalli, L.K.; Nelson, R.L.; Shoemaker, R.C.; Young, N.D.; Cregan, P.B. High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor. Appl. Genet. 2008, 116, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Jenkins, J.; Jia, G.; Hyten, D.L.; Pantalone, V.; Jackson, S.; Schmutz, J.; Cregan, P.B. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genom. 2016, 17, 33. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Hyten, D.L.; Jia, G.; Quigley, C.V.; Fickus, E.W.; Nelson, R.L.; Cregan, P.B. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 2013, 8, e54985. [Google Scholar] [CrossRef] [Green Version]
- Nyquist, W.E.; Baker, R.J. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 1991, 10, 235–322. [Google Scholar] [CrossRef]
- Broman, K.W.; Sen, S. A Guide to QTL Mapping with R/qtl; Springer: New York, NY, USA, 2009. [Google Scholar]
- Broman, K.W. Review of statistical methods for QTL mapping in experimental crosses. Lab Anim. 2001, 30, 44–52. [Google Scholar]
- Chung, J.; Babka, H.L.; Graef, G.L.; Staswick, P.E.; Lee, D.J.; Cregan, P.B.; Shoemaker, R.C.; Specht, J.E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci. 2003, 43, 1053–1067. [Google Scholar] [CrossRef] [Green Version]
- Cregan, P.B.; Jarvik, T.Y.; Bush, A.L.; Shoemaker, R.C.; Lark, K.G.; Kahler, A.L.; Kaya, N.; VanToai, T.T.; Lohnes, D.G.; Chung, J.; et al. An integrated genetic linkage map of the soybean genome. Crop Sci. 1999, 39, 1464–1490. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.J.; Marek, L.F.; Shoemaker, R.C.; Lark, K.G.; Concibido, V.C.; Delannay, X.; Specht, J.E.; Cregan, P.B. A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 2004, 109, 122–128. [Google Scholar] [CrossRef]
- Ralston, A.; Shaw, K. Environment controls gene expression: Sex determination and the onset of genetic disorders. Nat. Educ. 2008, 1, 203. [Google Scholar]
- Eskandari, M.; Cober, E.R.; Rajcan, I. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor. Appl. Genet. 2013, 126, 1677–1687. [Google Scholar] [CrossRef]
- Kabelka, E.A.; Diers, B.W.; Fehr, W.R.; LeRoy, A.R.; Baianu, I.C.; You, T.; Neece, D.J.; Nelson, R.L. Putative alleles for increased yield from soybean plant introductions. Crop Sci. 2004, 44, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.M.; Wu, Q.; Han, X.; Sun, Y.N.; Du, X.Y.; Liu, C.Y.; Jiang, H.W.; Hu, G.H.; Chen, Q.S. Soybean oil content QTL mapping and integrating with Meta-analysis method for mining genes. Euphytica 2011, 179, 499–514. [Google Scholar] [CrossRef]
- Carrera, C.; Martínez, M.J.; Dardanelli, J.; Balzarini, M. Environmental variation and correlation of seed components in nontransgenic soybeans: Protein, oil, unsaturated fatty acids, tocopherols, and isoflavones. Crop Sci. 2011, 51, 800–809. [Google Scholar] [CrossRef]
- Bolon, Y.T.; Joseph, B.; Cannon, S.B.; Graham, M.A.; Diers, B.W.; Farmer, A.D.; May, G.D.; Muehlbauer, G.J.; Specht, J.E.; Tu, Z.J.; et al. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol. 2010, 10, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardo, R. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 2008, 48, 1649–1664. [Google Scholar] [CrossRef] [Green Version]
Parent Means | Check Means | ||||
---|---|---|---|---|---|
Trait | Essex | Williams 82 | Ellis | 5002T | Osage |
Protein g kg−1 † | 393.8 | 386.5 | 366.8 | 363.4 | 394.2 |
Oil g kg−1 † | 217.1 | 226.2 | 213.8 | 225.4 | 209.8 |
Yield kg ha−1 | 3088.3 | 2593.6 | 3805.8 | 3622.6 | 3983.1 |
Trait | Min | Mean | Max | LSD0.05 | h2 (%) |
---|---|---|---|---|---|
(g kg−1 seed) | |||||
Protein † | 331.6 | 382.2 | 461.2 | 24.1 | 87.4 |
Oil † | 193.1 | 224.8 | 248.5 | 13.3 | 87.2 |
Yield (kg ha−1) | 1872.7 | 3095.4 | 5553.3 | 1348.2 | 52.0 |
Trait | Protein † | Oil † |
---|---|---|
Oil † | −0.69 * | |
Yield (kg ha−1) | −0.15 * | 0.15 * |
Location | Trait | QTL Name | Chr † | MLG ‡ | Molecular Marker | Loc § (cM) | LOD ¶ | Confidence Interval of QTL Position | R2 | Effect # |
---|---|---|---|---|---|---|---|---|---|---|
(%) | g kg−1 | |||||||||
Knoxville, TN | Protein | Seed protein 36-1 | Gm 6 | C2 | ss715594522 | 57.2 | 4.5 | 53.0–61.7 | 7.3 | 0.5(W) |
Knoxville, TN | Protein | cqSeed protein 017 | Gm 7 | M | ss715596286 | 50.0 | 3.2 | 37.1–75.0 | 7.2 | 0.4 (E) |
Knoxville, TN | Protein | Seed protein 36-2 | Gm 13 | F | ss715613833 | 199.9 | 3.1 | 198.0–204.5 | 7.6 | 0.5 (E) |
Knoxville, TN | Protein | Seed protein 36-3 | Gm 14 | B2 | ss715618240 | 45.2 | 4.1 | 42.9–46.6 | 9.0 | 0.5 (W) |
Knoxville, TN | Oil | Seed Oil 39-1 | Gm 6 | C2 | ss715594520 | 55.0 | 4.4 | 52.0–58.0 | 7.1 | 0.4 (E) |
Knoxville, TN | Oil | Seed Oil 39-2 | Gm 14 | B2 | ss715618453 | 45.5 | 4.8 | 42.0–51.0 | 8.6 | 0.4 (E) |
Location | Trait | QTL Name | Chr † | MLG ‡ | Molecular Marker | Loc § (cM) | LOD ¶ | Confidence Interval of QTL Position | R2 (%) | Effect # g kg−1 |
---|---|---|---|---|---|---|---|---|---|---|
Springfield, TN | Protein | Seed protein 36-4 | Gm 2 | D1b | ss715580974 | 24.0 | 4.2 | 12.0–36.0 | 4.4 | 2.4 (E) |
Knoxville, TN | Protein | Seed protein 36-5 | Gm 6 | C2 | ss715594522 | 57.2 | 6.3 | 52.0–61.7 | 7.7 | 3.9 (W) |
Springfield, TN | Protein | Seed protein 36-6 | Gm 6 | C2 | ss715594522 | 57.2 | 6.3 | 51.0–60.3 | 7.6 | 3.8 (W) |
Milan, TN | Protein | Seed protein 36-7 | Gm 6 | C2 | ss715594878 | 65.5 | 3.9 | 52.0–83.0 | 6 | 2.9 (W) |
Knoxville, TN | Protein | Seed protein 36-8 | Gm 7 | M | ss715595751 | 43.7 | 4.2 | 32.0–66.4 | 6.2 | 2.9 (E) |
Springfield, TN | Protein | Seed protein 36-9 | Gm 7 | M | ss715596286 | 43.3 | 3.1 | 39.2–74.0 | 3.8 | 2.3 (E) |
Milan, TN | Protein | Seed protein 36-10 | Gm 7 | M | ss715596697 | 66.3 | 3.5 | 36.0–75.4 | 5.7 | 2.6 (E) |
Knoxville, TN | Protein | Seed protein 36-11 | Gm 9 | K | ss715604036 | 63.0 | 5.9 | 56.5–67.0 | 7.3 | 3.2 (W) |
Springfield, TN | Protein | Seed protein 36-12 | Gm 9 | K | ss715604010 | 61.1 | 6.5 | 56.6–65.6 | 8.8 | 3.5 (W) |
Milan, TN | Protein | Seed protein 36-13 | Gm 9 | K | ss715604094 | 64.0 | 4.0 | 58.0–67.0 | 6.9 | 2.9 (W) |
Knoxville, TN | Protein | Seed protein 36-14 | Gm 13 | F | ss715615967 | 183.0 | 9.8 | 176.0–187.0 | 11.7 | 4.0 (E) |
Springfield, TN | Protein | Seed protein 36-15 | Gm 13 | F | ss715615780 | 183.0 | 8.7 | 180.8–187.7 | 11.8 | 4.1 (E) |
Milan, TN | Protein | Seed protein 36-16 | Gm 13 | F | ss715615967 | 189.0 | 4.9 | 181.8–192.0 | 7.4 | 3.0 (E) |
Milan, TN | Oil | Seed oil 39-3 | Gm 9 | K | ss715603388 | 6.1 | 3.6 | 0.0–13.5 | 4.1 | 1.2 (W) |
Milan, TN | Oil | Seed oil 39-4 | Gm 10 | O | ss715605716 | 3.0 | 4.1 | 0.0–20.0 | 6.4 | 1.5 (W) |
Milan, TN | Oil | Seed oil 39-5 | Gm 11 | B1 | ss715610688 | 21.2 | 3.7 | 10.0–23.9 | 4.9 | 1.3 (E) |
Milan, TN | Oil | Seed oil 39-6 | Gm 13 | F | ss715614053 | 0.8 | 3.2 | 0.0–160.3 | 3.8 | 1.1 (E) |
Milan, TN | Oil | Seed oil 39-7 | Gm 18 | G | ss715629885 | 5.3 | 3.3 | 0.0–67.0 | 4.1 | 1.2 (W) |
Milan, TN | Oil | Seed oil 39-8 | Gm 19 | L | ss715635181 | 196.6 | 14.1 | 194.8–199.8 | 6.3 | 1.5 (W) |
Springfield, TN | Oil | Seed oil 39-9 | Gm 6 | C2 | ss715593906 | 54.0 | 3.7 | 51.0–60.0 | 8.3 | 2.4 (E) |
Springfield, TN | Oil | Seed oil 39-10 | Gm 19 | L | ss715635181 | 196.6 | 12.7 | 194.8–201.6 | 7.8 | 3.0 (W) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, J.; Saxton, A.M.; Beyl, C.A.; Kopsell, D.A.; Cregan, P.B.; Hyten, D.L.; Cuvaca, I.; Pantalone, V.R. Seed Protein and Oil QTL in a Prominent Glycine max Genetic Pedigree: Enhancing Stability for Marker Assisted Selection. Agronomy 2023, 13, 567. https://doi.org/10.3390/agronomy13020567
Fields J, Saxton AM, Beyl CA, Kopsell DA, Cregan PB, Hyten DL, Cuvaca I, Pantalone VR. Seed Protein and Oil QTL in a Prominent Glycine max Genetic Pedigree: Enhancing Stability for Marker Assisted Selection. Agronomy. 2023; 13(2):567. https://doi.org/10.3390/agronomy13020567
Chicago/Turabian StyleFields, Jeneen, Arnold M. Saxton, Caula A. Beyl, Dean A. Kopsell, Perry B. Cregan, David L. Hyten, Ivan Cuvaca, and Vincent R. Pantalone. 2023. "Seed Protein and Oil QTL in a Prominent Glycine max Genetic Pedigree: Enhancing Stability for Marker Assisted Selection" Agronomy 13, no. 2: 567. https://doi.org/10.3390/agronomy13020567
APA StyleFields, J., Saxton, A. M., Beyl, C. A., Kopsell, D. A., Cregan, P. B., Hyten, D. L., Cuvaca, I., & Pantalone, V. R. (2023). Seed Protein and Oil QTL in a Prominent Glycine max Genetic Pedigree: Enhancing Stability for Marker Assisted Selection. Agronomy, 13(2), 567. https://doi.org/10.3390/agronomy13020567