Economic and Environmental Sustainability Assessment of an Innovative Organic Broccoli Production Pattern
Abstract
:1. Introduction
2. Materials and Methods
2.1. Innovative Organic Protocol
2.2. Life Cycle Assessment
2.2.1. Goal and Scope Definition
- The quantification of mass and energy inputs and outputs, considering the in-direct impact linked to the production of raw materials and the generation of energy sources;
- The assessment of environmental impacts in broccoli cultivation to highlight hot spots and suggest improvements.
2.2.2. Life Cycle Inventory
2.2.3. Impact Assessment
2.3. Economic Assessment Method
- GSP = gross saleable production
- VC = variable costs
- GSP is obtained by multiplying the yield of each cultivation method by the selling price of the product, whereas VC are the sum of costs incurred for materials used in the cultivation process, labour and the share of materials with total wear and tear [40]. Input prices derive from direct surveys of raw material suppliers, while product prices refer to average quotations (weighted average of quantities and prices over the entire production cycle) provided by horticultural operators in the area of interest for both conventional and organic crops.
3. Results
3.1. Environmental Impacts of Innovative Organic and Conventional Broccoli
3.2. Economic Results of Innovative Organic and Conventional Broccoli
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ballew, M.T.; Leiserowitz, A.; Roser-Renouf, C.; Rosenthal, S.A.; Kotcher, J.E.; Marlon, J.R.; Lyon, E.; Goldberg, M.H.; Maibach, E.W. Climate change in the american mind: Data, tools, and trends. Environment 2019, 61, 4–18. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights. 2019, (ST/ ESA/SER.A/423). Available online: https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf (accessed on 13 September 2022).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 13 September 2022).
- Communication from the Commission to the European Parliament; the European Council; the Council; the European Economic and Social Committee; the Committee of the Regions and the European Investment Bank. A Clean Planet. for All—A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; COM: Brussels, Belgium, 2018; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0773 (accessed on 18 September 2022).
- Wainwright, H.; Jordan, C.; Day, H. Environmental impact of production horticulture. In Horticulture: Plants for People and Places; Dixon, G.R., Aldous, D.E., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 1, pp. 503–522. [Google Scholar]
- Sturiale, L.; Scuderi, A.; Timpanaro, G.; Matarazzo, B. Sustainable use and conservation of the environmental resources of the etna park (unesco heritage): Evaluation model supporting sustainable local development strategies. Sustainability 2020, 12, 1453. [Google Scholar] [CrossRef] [Green Version]
- Clark, S. Organic Farming and Climate Change: The Need for Innovation. Sustainability 2020, 12, 7012. [Google Scholar] [CrossRef]
- Skoufogianni, E.; Solomou, A.; Molla, A.; Martinos, K. Organic Farming as an Essential Tool of the Multifunctional Agriculture. In Organic Farming: A Promising Way of Food Production; BoD: Singapore, 2016; Volume 4, p. 29. [Google Scholar]
- Dhiman, V. Organic Farming for Sustainable Environment: Review of Existed Policies and Suggestions for Improvement. IJRR 2020, 7, 2. [Google Scholar]
- Molotoks, A.; Smith, P.; Dawson, T.P. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021, 10, 261. [Google Scholar] [CrossRef]
- Gunady, M.G.; Biswas, W.; Solah, V.A.; James, A.P. Evaluating the global warming potential of the fresh produce supply chain for strawberries, romaine/ cos lettuces (Lactuca sativa), and button mushrooms (Agaricus bisporus) in Western Australia using life cycle assessment (LCA). J. Clean. Prod. 2012, 28, 81–87. [Google Scholar] [CrossRef]
- Niles, M.T.; Ahuja, R.; Barker, T.; Esquivel, J.; Gutterman, S.; Heller, M.C.; Mango, N.; Portner, D.; Raimond, R.; Tirado, C.; et al. Climate change mitigation beyond agriculture: A review of food system opportunities and implications. Renew. Agric. Food Syst. 2018, 33, 297–308. [Google Scholar] [CrossRef]
- Timpanaro, G.; Scuderi, A.; Foti, V.T. A network for the conservation of agrobiodiversity of local ecotypes. Acta Hortic. 2016, 1142, 163–170. [Google Scholar] [CrossRef]
- Scuderi, A.; Cammarata, M.; Branca, F.; Timpanaro, G. Agricultural production trends towards carbon neutrality in response to the EU 2030 Green Deal: Economic and environmental analysis in horticulture. Agric. Econ. 2021, 67, 435–444. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Gallego-Elvira, B.; Martínez-Alvarez, V.; Maestre-Valero, J.F. Life cycle assessment of fruit and vegetable production in the Region of Murcia (south-east Spain) and evaluation of impact mitigation practices. J. Clean. Prod. 2020, 265, 121656. [Google Scholar] [CrossRef]
- Reale, F.; Cinelli, M.; Sala, S. Towards a research agenda for the use of LCA in the impact assessment of policies. Int. J. LCA 2017, 22, 1477–1481. [Google Scholar] [CrossRef] [Green Version]
- Goedkoop, M.; Martinez, E.V.; de Beer, I. LCA as the Tool to Measure Progress towards the Sustainable Development Goals. In Proceedings of the 8th Life Cycle Management Conference, Luxembourg, 6 September 2017; LIST: Luxembourg, 2017. [Google Scholar]
- ISO 14040:2006; Environmental Management e Life Cycle Assessment: Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Boulard, T.; Raeppel, C.; Brun, R.; Lecompte, F.; Hayer, F.; Carmassi, G.; Gaillard, G. Environmental impact of greenhouse tomato production in France. ASD 2011, 31, 757–777. [Google Scholar] [CrossRef] [Green Version]
- Persiani, A.; Diacono, M.; Monteforte, A.; Montemurro, F. Agronomic performance, energy analysis, and carbon balance comparing different fertilization strategies in horticulture under Mediterranean conditions. ESPR 2019, 26, 19250. [Google Scholar] [CrossRef] [PubMed]
- Fusi, A.; Castellani, V.; Bacenetti, J.; Cocetta, G.; Fiala, M.; Guidetti, R. The environmental impact of the production of fresh cut salad: A case study in Italy. Int. J. LCA 2016, 21, 162–175. [Google Scholar] [CrossRef]
- Stoessel, F.; Juraske, R.; Pfister, S.; Hellweg, S. Life cycle inventory and carbon and water foodprint of fruits and vegetables: Application to a Swiss retailer. Environ. Sci. Technol. 2012, 46, 3253–3262. [Google Scholar] [CrossRef] [PubMed]
- Abeliotis, K.; Detsis, V.; Pappia, C. Life cycle assessment of bean production in the Prespa National Park, Greece. J. Clean. Prod. 2013, 41, 89–96. [Google Scholar] [CrossRef]
- Foteinis, S.; Chatzisymeon, E. Life cycle assessment of organic versus conventional agriculture. A case study of lettuce cultivation in Greece. J. Clean. Prod. 2016, 112, 2462–2471. [Google Scholar] [CrossRef]
- Ciancaleoni, S.; Chiarenza, G.L.; Raggi, L.; Branca, F.; Negri, V. Diversity characterisation of broccoli (Brassica oleracea L. var. italica Plenck) landraces for their on-farm (in situ) safeguard and use in breeding programs. Genet. Resour. Crop Evol. 2014, 61, 451–464. [Google Scholar] [CrossRef]
- Istat. Coltivazioni: Superfici e Produzioni-Dati in Complesso-Prov. 2020. Available online: http://dati.istat.it/ (accessed on 1 October 2022).
- Branca, F. What do bean, broccoli and tomatoes have in common? Europeanseed 2019, 6, 10–11. Available online: https://bresov.eu/home/_intro/ES_Issue1_Feb2019_BRESOV.pdf (accessed on 1 October 2022).
- Turrini, A.; Avio, L.; Giovannetti, M.; Agnolucci, M. Functional complementarity of arbuscular mycorrhizal Fungi and associated microbiota: The challenge of translational research. Front. Plant Sci. 2018, 9, 1407. [Google Scholar] [CrossRef] [PubMed]
- Olowe, O.M.; Olawuyi, O.J.; Sobowale, A.A.; Odebode, A.C. Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L.(Maize). Curr. Plant Biol. 2018, 15, 30–37. [Google Scholar] [CrossRef]
- Gava, O.; Bartolini, F.; Venturi, F.; Brunori, G.; Zinnai, G.; Pardossi, A. A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability. Sustainability 2019, 11, 71. [Google Scholar] [CrossRef] [Green Version]
- RIVM. ReCiPe. In A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016; pp. 1–194. Available online: https://rivm.openrepository.com/handle/10029/620793 (accessed on 6 October 2022).
- Bernardi, B.; Falcone, G.; Stillitano, T.; Benalia, S.; Bacenetti, J.; De Luca, A.I. Harvesting system sustainability in Mediterranean olive cultivation: Other principal cultivar. Sci. Total Environ. 2020, 766, 142508. [Google Scholar] [CrossRef]
- Timpanaro, G.; Branca, F.; Cammarata, M.; Falcone, G.; Scuderi, A. Life Cycle Assessment to Highlight the Environmental Burdens of Early Potato Production. Agronomy 2021, 11, 879. [Google Scholar] [CrossRef]
- Nemecek, T.; Kägi, T. Life Cycle Inventories of Agricultural Production Systems. In Final Report Ecoinvent v2.0 No15 Swiss Centre for Life Cycle Inventories Dübendorf CH; Ecoinvent: Zurich, Switzerland, 2007; pp. 1–360. Available online: https://db.ecoinvent.org/reports/15_Agriculture.pdf (accessed on 6 October 2022).
- Falcone, G.; Stillitano, T.; Montemurro, F.; De Luca, A.I.; Gulisano, G.; Strano, A. Environmental and economic assessment of sustainability in Mediterranean wheat production. Agron 2019, 17, 60–76. [Google Scholar]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.A.J.; De Schryver, A.; Struijs, J.; Van Zelm, R. ReCiPe 2008. In A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level, 1st ed.; Version 1.08; Report I: Characterisation; RIVM Report; RIVM: Bilthoven, The Netherlands, 2013; Available online: https://www.rivm.nl/sites/default/files/2018–11/ReCiPe%202008_A%20lcia%20method%20which%20comprises%20harmonised%20category%20indicators%20at%20the%20midpoint%20and%20the%20endpoint%20level_First%20edition%20Characterisation.pdf (accessed on 6 October 2022).
- Scuderi, A.; D’Amico, M. Evolution of Development Models of Italian Organic Citrus. Proc. XIIth Intl. Citrus Congr. Acta Hort. ISHS 2015, 1065, 1877–1888. [Google Scholar]
- Scuderi, A.; Foti, V.T.; Timpanaro, G.; Sturiale, L. Economic and environmental analysis of organic early potatoes. Acta Hortic. ISHS 2016, 1142, 193–200. [Google Scholar] [CrossRef]
- Timpanaro, G.; Bellia, C.; Foti, V.T.; Scuderi, A. Consumer behaviour of purchasing biofortified food products. Sustainability 2020, 12, 6297. [Google Scholar] [CrossRef]
- Giampieri, F.; Mazzoni, M.; Cianciosi, D.; Alvarez-Suarez, J.M.; Regolo, L.; Sánchez-González, C.; Capocasa, F.; Xiao, J.; Mezzetti, B.; Battino, M. Organic vs conventional plant-based foods: A review. Food Chem. 2022, 383, 132352. [Google Scholar] [CrossRef]
- Meemken, E.-M.; Qaim, M. Organic agriculture, food security, and the environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef] [Green Version]
- Schader, C.; Stolze, M.; Gattinger, A. Environmental performance of organic farming. In Green Technologies in Food Production and Processing; Springer: Boston, MA, USA, 2012; pp. 183–210. [Google Scholar]
- Treu, H.; Nordborg, M.; Cederberg, C.; Heuer, T.; Claupein, E.; Hoffmann, H.; Berndes, G. Carbon footprints and land use of conventional and organic diets in Germany. J. Clean. Prod. 2017, 161, 127–142. [Google Scholar] [CrossRef]
- Pudak, J.; Bokan, N. Organic Agriculture-Indicator of Social Values. Sociol. I Prost. 2011, 49, 137–163. [Google Scholar]
- Patil, S.; Reidsma, P.; Shah, P.; Purushothaman, S.; Wolf, J. Comparing conventional and organic agriculture in Karnataka, India: Where and when can organic farming be sustainable? Land Use Policy 2014, 37, 40–51. [Google Scholar] [CrossRef]
- Jaime, M.M.; Coria, J.; Liu, X. Interactions between CAP Agricultural and Agri-Environmental Subsidies and Their Effects on the Uptake of Organic Farming. Am. J. Agric. Econ. 2016, 98, 1114–1145. [Google Scholar] [CrossRef] [Green Version]
- Scuderi, A.; Bellia, C.; Foti, V.T.; Sturiale, L.; Timpanaro, G. Evaluation of consumers’ purchasing process for organic food products. AIMS Agric. Food Sci. 2019, 4, 251–265. [Google Scholar]
- Bara´nski, M.; ´Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. BJN 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Lairon, D. Nutritional quality and safety of organic food. A review. ASD 2010, 30, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Hanserud, O.S.; Cherubini, F.; Øgaard, A.F.; Brattebø, H.; Müller, D.B. Choice of mineral fertilizer substitution principle strongly influences LCA environmental benefits of nutrient cycling in the agri-food system. Sci. Total Environ. 2018, 615, 219–227. [Google Scholar] [CrossRef]
Input | Unit | Innovative Organic Broccoli | Conventional Broccoli |
---|---|---|---|
Plants | n./ha | 41,000 | 20,833 |
Fertiliser NP (18–46) | kg/ha | - | 400 |
Fertiliser NH4NO3 | kg/ha | - | 100 |
Organic fertiliser (pallet manure) | kg/ha | 3500 | - |
Herbicides (Oxifluorfen) | kg/ha | - | 0.12 |
Pesticide (Spinosad) | kg/ha | - | 0.12 |
Organic pesticides: Copper Bacillus Thuringensis | kg/ha kg/ha | 1 2 | - - |
Organic compounds: mycorrhizal fungi and microorganisms | kg/ha | 3.3 | - |
Diesel | L/ha | 10.5 | 34.5 |
Water | m3/ha | 2493 | 9000 |
Impact Category | Unit | IOB | CB |
---|---|---|---|
Global warming | kg CO2 eq | 2187.77 | 8304.40 |
Stratospheric ozone depletion | kg CFC11 eq | 0.00 | 0.13 |
Ionizing radiation | kBq Co-60 eq | 54.03 | 249.92 |
Ozone formation, human health | kg NOx eq | 2.82 | 16.85 |
Fine particulate matter formation | kg PM2.5 eq | 1.99 | 13.67 |
Ozone formation, terrestrial ecosystems | kg NOx eq | 2.88 | 17.12 |
Terrestrial acidification | kg SO2 eq | 3.89 | 44.44 |
Freshwater eutrophication | kg P eq | 0.34 | 2.19 |
Marine eutrophication | kg N eq | 0.03 | 0.19 |
Terrestrial ecotoxicity | kg 1,4-DCB | 6946.09 | 40,197.32 |
Freshwater ecotoxicity | kg 1,4-DCB | 179.79 | 916.96 |
Marine ecotoxicity | kg 1,4-DCB | 226.05 | 1160.19 |
Human carcinogenic toxicity | kg 1,4-DCB | 37.02 | 199.92 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 1784.33 | 10,838.79 |
Land use | m2a crop eq | 366.22 | 280.45 |
Mineral resource scarcity | kg Cu eq | 7.02 | 65.33 |
Fossil resource scarcity | kg oil eq | 637.43 | 1599.60 |
Water consumption | m3 | 2527.91 | 9973.59 |
Impact Category | Unit | IOB | CB |
---|---|---|---|
Global warming | kg CO2 eq | 0.10672 | 0.39867 |
Stratospheric ozone depletion | kg CFC11 eq | 0.00000 | 0.00001 |
Ionizing radiation | kBq Co-60 eq | 0.00264 | 0.01200 |
Ozone formation, human health | kg NOx eq | 0.00014 | 0.00081 |
Fine particulate matter formation | kg PM2.5 eq | 0.00010 | 0.00066 |
Ozone formation, terrestrial ecosystems | kg NOx eq | 0.00014 | 0.00082 |
Terrestrial acidification | kg SO2 eq | 0.00019 | 0.00213 |
Freshwater eutrophication | kg P eq | 0.00002 | 0.00010 |
Marine eutrophication | kg N eq | 0.00000 | 0.00001 |
Terrestrial ecotoxicity | kg 1,4-DCB | 0.33883 | 1.92978 |
Freshwater ecotoxicity | kg 1,4-DCB | 0.00877 | 0.04402 |
Marine ecotoxicity | kg 1,4-DCB | 0.01103 | 0.05570 |
Human carcinogenic toxicity | kg 1,4-DCB | 0.00181 | 0.00960 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 0.08704 | 0.52035 |
Land use | m2a crop eq | 0.01786 | 0.01346 |
Mineral resource scarcity | kg Cu eq | 0.00034 | 0.00314 |
Fossil resource scarcity | kg oil eq | 0.03109 | 0.07679 |
Water consumption | m3 | 0.12331 | 0.47881 |
Activities | IOB (a) | CB (b) | Variations (a–b) | |||
---|---|---|---|---|---|---|
h/ha | % | h/ha | % | h/ha | % | |
Tillage | 1.5 | 0.25 | 3.5 | 0.94 | −2 | −0.9 |
Transplanting | 40 | 6.76 | 20 | 5.35 | 20 | 9.2 |
Fertilisation | 2 | 0.34 | 8 | 2.14 | −6 | −2.8 |
Weeding | 112 | 18.93 | 26 | 6.96 | 86 | 39.4 |
Pesticide treatments | 18 | 3.04 | 6 | 1.61 | 12 | 5.5 |
Irrigation | 18 | 3.04 | 30 | 8.03 | −12 | −5.5 |
Harvesting | 400 | 67.62 | 280 | 74.97 | 120 | 55 |
Total | 591.5 | 100 | 373.5 | 100 | 218 | 100 |
Indications | IOB (a) | CB (b) | Variation (a-b) | |
---|---|---|---|---|
EUR/ha | EUR/ha | EUR/ha | % | |
Materials | 3922.40 | 3118.93 | 803.47 | 20 |
Water | 575.00 | 2083.00 | −1508.00 | −262 |
Plant | 1107.00 | 562.49 | 544.51 | 49 |
Fertilisers | 1820.00 | 418.00 | 1402.00 | 77 |
Pesticides | 420.40 | 55.44 | 364.96 | 87 |
Others | 196.12 | 155.95 | 40.17 | 20 |
Labour and services | 4971.75 | 3606.75 | 1365.00 | 27 |
Cultivation-related operations | 4735.00 | 3435.00 | 1300.00 | 27 |
Outsourcing service | 236.75 | 171.75 | 65.00 | 27 |
Quotas and other attributes | 416.84 | 233.18 | 183.66 | 44 |
Total average costs | 8894.15 | 6958.86 | 1935.29 | 22 |
Indication | IOB (a) | CB (b) | Variation (a–b) |
---|---|---|---|
Yield (t/ha) | 20.50 | 20.83 | −0.33 |
Gross production value (EUR/ha) | 10,250.00 | 10,415.00 | −165.00 |
Variable costs (EUR/ha) | 8894.15 | 6958.86 | 1935.29 |
Gross income (EUR/ha) | 1355.85 | 3456.14 | −2100.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scuderi, A.; Timpanaro, G.; Branca, F.; Cammarata, M. Economic and Environmental Sustainability Assessment of an Innovative Organic Broccoli Production Pattern. Agronomy 2023, 13, 624. https://doi.org/10.3390/agronomy13030624
Scuderi A, Timpanaro G, Branca F, Cammarata M. Economic and Environmental Sustainability Assessment of an Innovative Organic Broccoli Production Pattern. Agronomy. 2023; 13(3):624. https://doi.org/10.3390/agronomy13030624
Chicago/Turabian StyleScuderi, Alessandro, Giuseppe Timpanaro, Ferdinando Branca, and Mariarita Cammarata. 2023. "Economic and Environmental Sustainability Assessment of an Innovative Organic Broccoli Production Pattern" Agronomy 13, no. 3: 624. https://doi.org/10.3390/agronomy13030624
APA StyleScuderi, A., Timpanaro, G., Branca, F., & Cammarata, M. (2023). Economic and Environmental Sustainability Assessment of an Innovative Organic Broccoli Production Pattern. Agronomy, 13(3), 624. https://doi.org/10.3390/agronomy13030624