Multi-Trait Selection Index for Superior Agronomic and Tuber Quality Traits in Bush Yam (Dioscorea praehensilis Benth.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Materials and Experimental Design
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Quantitative Traits Variation
3.2. Genotypic Coefficients, Phenotypic Coefficients, and Broad-Sense Heritability
3.3. Principal Component Analysis of Evaluated Quantitative
3.4. Phenotypic and Genotypic Correlation Coefficients of Quantitative Traits
3.5. Path Coefficient Analysis
3.6. Hierarchical Clustering
3.7. Factor Analysis and Selection-Based Multi-Trait Genotype–Ideotype Distance Index (MGIDI)
3.8. Selection of Genotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asiedu, R.; Sartie, A. Crops that feed the World 1. Yams. Food Secur. 2010, 2, 305–315. [Google Scholar] [CrossRef]
- Alabi, T.R.; Adebola, P.O.; Asfaw, A.; De Koeyer, D.; Lopez-Montes, A.; Asiedu, R. Spatial multivariate cluster analysis for defining target population of environments in West Africa for yam breeding. Int. J. Appl. Geospat. Res. 2019, 10, 1–30. [Google Scholar] [CrossRef]
- FAO FAOSTAT. Food and Agriculture Organization Cooperate Statistical Database. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 10 August 2021).
- Pitalounani, W.E.N.; Dourma, M.; Wala, K.; Woegan, Y.; Gbogbo, A.; Batawila, K.; Dansi, A.; Tozo, K.; Akpagana, K. Agrodiversity, peasant management, and importance of Dioscorea praehensilis Benth in the Subhumid Zone of Togo. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12455–12475. [Google Scholar] [CrossRef]
- Adewumi, A.S.; Asare, P.A.; Adu, M.O.; Taah, K.J.; Akaba, S.; Mondo, J.M.; Agre, P.A. Farmers’ perceptions on varietal diversity, trait preferences and diversity management of bush yam (Dioscorea praehensilis Benth.) in Ghana. Sci. Afr. 2021, 12, e00808. [Google Scholar] [CrossRef]
- Efisue, A. Genetic diversity Study of Dioscoreas Using Morphological Traits and Isozyme Markers Analyses. Niger. J. Biotechnol. 2016, 30, 7. [Google Scholar] [CrossRef]
- Norman, P.E.; Tongoona, P.; Shanahan, P.E. Diversity of the morphological traits of yam (Dioscorea spp.) genotypes from Sierra Leone. J. Appl. Biosci. 2011, 45, 3045–3058. [Google Scholar]
- Oben, J.A.; Egbe, A.E.; Chuyong, G.B.; Tabot, P.T. Diversity of Yam (Dioscorea spp) Populations in South Western Region of Cameroon. Amer. J. Life Sci. 2016, 4, 187–194. [Google Scholar] [CrossRef]
- Sheikh, N.; Kumar, Y. Morphological characterization of meghalayan Dioscorea spp. (yam), north east India. J. Agric. Sci. Technol. 2017, 19, 487–497. [Google Scholar]
- Agre, P.; Asibe, F.; Darkwa, K.; Edemodu, A.; Bauchet, G.; Asiedu, R.; Adebola, P.; Asfaw, A. Phenotypic and molecular assessment of genetic structure and diversity in a panel of winged yam (Dioscorea alata) clones and cultivars. Sci. Rep. 2019, 9, 18221. [Google Scholar] [CrossRef]
- Anokye, M.; Tetteh, J.P.; Otoo, E. Morphological Characterization of Some Water Yam (Dioscorea alata L.) Germplasm in Ghana. J. Agric. Sci. Technol. 2014, 4, 518–532. [Google Scholar]
- Girma, G.; Gedil, M.; Spillane, C. Morphological, SSR and ploidy analysis of water yam (Dioscorea alata L.) accessions for utilization of aerial tubers as planting materials. Genet. Resour. Crop Evol. 2017, 64, 291–305. [Google Scholar] [CrossRef]
- Patel, A.; Desai, K.D.; Ahlawat, T. Characterization of greater yam (Dioscorea alata L.) genotypes by using morphological markers. Int. J. Chem. Stud. 2019, 7, 4961–4967. [Google Scholar]
- Darkwa, K.; Agre, P.; Olasanmi, B.; Iseki, K.; Matsumoto, R.; Powell, A.; Bauchet, G.; De Koeyer, D.; Muranaka, S.; Adebola, P.; et al. Comparative assessment of genetic diversity matrices and clustering methods in white Guinea yam (Dioscorea rotundata) based on morphological and molecular markers. Sci. Rep. 2020, 10, 13191. [Google Scholar] [CrossRef]
- Silva, L.R.G.; Mezette, T.F.; Nascimento, W.F.; Silva, E.F.; Veasey, E.A. Spatially structured morphological and molecular diversity among Dioscorea cayenensis and D. rotundata yam accessions. Plant Genet. Resour. Character. Utiliz. 2017, 15, 296–309. [Google Scholar] [CrossRef]
- Kouam, E.B.; Avana-Tientcheu, M.L.; Lekeumo, V.D.; Akitio, H.M.; Khasa, D.P.; Pasquet, R.S. Agro-ecological distribution of the phenotypic diversity of aerial yam (Dioscorea bulbifera L.) in Cameroon using multivariate analysis: Prospect for germplasm conservation and improvement. Open Agric. 2018, 3, 190–206. [Google Scholar] [CrossRef]
- Beyerlein, P.; Pereira, H.D.S. Morphological diversity and identification key for landraces of the Amerindian yam in central Amazon. Pesqui. Agropecu. Bras. 2018, 53, 405–418. [Google Scholar] [CrossRef]
- Donald, C.M. The breeding of crop ideotypes. Euphytica 1968, 17, 385–403. [Google Scholar] [CrossRef]
- Olivoto, T.; Nardino, M. MGIDI: A novel multi-trait index for genotype selection in plant breeding. Bioinformatics 2021, 37, 1383–1389. [Google Scholar] [CrossRef]
- Hazel, L.N. The genetic basis for constructing selection indexes. Genetics 1943, 28, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.A. Discriminant function for plant selection. Ann. Eugen. 1936, 7, 240–250. [Google Scholar] [CrossRef]
- Norman, P.E.; Agre, P.A.; Asiedu, R.; Asfaw, A. Multiple-Traits Selection in White Guinea Yam (Dioscorea rotundata) Genotypes. Plants 2022, 11, 3003. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Asfaw, A. Standard Operating Protocol for Yam Variety Performance Evaluation Trial; IITA: Ibadan, Nigeria, 2016; p. 27. [Google Scholar] [CrossRef]
- Campbell, C.L.; Madden, L.V. Introduction to Plant Disease Epidemiology; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available online: https://github.com/taiyun/corrplot (accessed on 1 August 2021).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Package ‘Factoextra’: Extract and Visualize the Results of Multivariate Data Analyses; R Packages; CRAN: Rome, Italy, 2020. [Google Scholar]
- Galili, T. Dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 2015, 31, 3718–3720. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef]
- Shabanimofrad, M.; Rafii, M.Y.; Megat Wahab, P.E.; Biabani, A.R.; Latif, M.A. Phenotypic, genotypic and genetic divergence found in 48 newly collected Malaysian accessions of Jatropha curcas L. Ind. Crops and Prod. 2013, 42, 543–551. [Google Scholar] [CrossRef]
- Olivoto, T.; Nardino, M. MGIDI: Toward an effective multivariate selection in biological experiments. Bioinformatics 2021, 37, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Olivoto, T.; Lúcio, A.D. Metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Rocha, J.R.D.A.S.D.C.; Machado, J.C.; Carneiro, P.C.S. Multi-trait index based on factor analysis and ideotype-design: Proposal and application on elephant grass breeding for bioenergy. GCB Bioenergy 2018, 10, 52–60. [Google Scholar] [CrossRef]
- Adeigbe, O.O.; Ilori, C.O.; Adewale, B.D. Phenotypic Diversity and Ploidy Level of Some Dioscorea dumetorum Genotypes. IOSR J. Agric. Vet. Sci. 2015, 8, 47–52. [Google Scholar] [CrossRef]
- Siadjeu, C.; Toukam, G.M.S.; Bell, J.M.; Nkwate, S. Genetic diversity of sweet yam Dioscorea dumetorum (Kunth) Pax revealed by morphological traits in two agro-ecological zones of Cameroon. Afr. J. Biotechnol. 2015, 14, 781–793. [Google Scholar] [CrossRef]
- Saroj, R.; Soumya, S.L.; Singh, S.; Sankar, S.M.; Chaudhary, R. Unravelling the relationship between seed yield and yield-related traits in a diversity panel of Brassica juncea using multi-traits mixed model. Front. Plant Sci. 2021, 12, 651936. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, R.; Ishikawa, H.; Asfaw, A.; Asiedu, R. Low soil nutrient tolerance and mineral fertilizer response in White Guinea Yam (Dioscorea rotundata) genotypes. Front. Plant Sci. 2021, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Norman, P.E.; Tongoona, P.B.; Danquah, A.; Danquah, E.Y.; Agre, P.A.; Agbona, A.; Asiedu, R.; Asfaw, A. Genetic parameter estimation and selection in advanced breeding population of white Guinea yam. J. Crop Improv. 2021, 35, 790–815. [Google Scholar] [CrossRef]
- Asfaw, A.; Aderonmu, D.S.; Darkwa, K.; De Koeyer, D.; Agre, P.; Abe, A.; Olasanmi, B.; Adebola, P.; Asiedu, R. Genetic parameters, prediction, and selection in a white Guinea yam early-generation breeding population using pedigree information. Crop Sci. 2021, 61, 1038–1051. [Google Scholar] [CrossRef]
- Padhan, B.; Mukherjee, A.K.; Mohanty, S.K.; Lenka, S.K.; Panda, D. Genetic variability and inter species relationship between wild and cultivated yams (Dioscorea spp.) from Koraput, India based on molecular and morphological markers. Physiol. Mol. Biol. Plants 2019, 25, 1225–1233. [Google Scholar] [CrossRef]
- Agre, P.; Norman, P.E.; Asiedu, R.; Asfaw, A. Identification of Quantitative Trait Nucleotides and Candidate Genes for Tuber Yield and Mosaic Virus Tolerance in an Elite Population of White Guinea Yam (Dioscorea rotundata) Using Genome-Wide Association Scan. BMC Plant Biol. 2021, 21, 552. [Google Scholar] [CrossRef] [PubMed]
- Sartie, A.; Franco, J.; Asiedu, R. Phenotypic analysis of tuber yield- and maturity-related traits in white yam (Dioscorea rotundata). Afr. J. Biotechnol. 2012, 11, 3964–3975. [Google Scholar] [CrossRef]
- Maranna, S.; Nataraj, V.; Kumawat, G.; Chandra, S.; Rajesh, V.; Ramteke, R.; Patel, R.M.; Ratnaparkhe, M.B.; Husain, S.M.; Gupta, S.; et al. Breeding for higher yield, early maturity, wider adaptability and waterlogging tolerance in soybean (Glycine max L.): A case study. Sci. Rep. 2021, 11, 22853. [Google Scholar] [CrossRef]
- Meier, C.; Marchioro, V.S.; Meira, D.; Olivoto, T.; Klein, L.A. Genetic parameters and multiple-trait selection in wheat genotypes. Pesq. Agropecu. Trop. 2021, 51, e67996. [Google Scholar] [CrossRef]
- Uddin, M.S.; Billah, M.; Afroz, R.; Rahman, S.; Jahan, N.; Hossain, M.G.; Bagum, S.A.; Uddin, M.S.; Khaldun, A.B.M.; Azam, M.G.; et al. Evaluation of 130 Eggplant (Solanum melongena L.) Genotypes for Future Breeding Program Based on Qualitative and Quantitative Traits, and Various Genetic Parameters. Horticulturae 2021, 7, 376. [Google Scholar] [CrossRef]
Source | Df | TWPL | NTP | TBL | TBW | SDMP | NIFB | SINL | YMV | DMC | TBOXI | TBHard |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gen | 161 | 4.07 *** | 2.36 *** | 340.90 *** | 265.53 *** | 2.70 *** | 4.73 *** | 33.81 *** | 3815.80 *** | 44.43 *** | 267.87 *** | 5.17 *** |
Season | 1 | 4.13 ns | 0.13 ns | 4694.20 * | 5.85 ns | 5.10 ns | 0.40 ns | 56.65 ns | 5.50 ns | 34.45 ns | 534.22 ns | 2.59 * |
Gen*Season | 161 | 0.42 ns | 0.57 ns | 46.20 ns | 0.37 ns | 0.43 ns | 0.24 ns | 1.63 ns | 0.10 ns | 3.59 ns | 21.20 ns | 0.15 *** |
Residual | 321 | 0.75 | 0.77 | 7.67 | 3.82 | 0.81 | 1.07 | 3.08 | 0.59 | 2.49 | 6.44 | 0.26 |
Mean | 1.75 | 1.85 | 39.04 | 29.08 | 3.42 | 2.93 | 15.50 | 149.44 | 34.01 | −13.34 | 50.86 | |
Min | 0.11 | 1.00 | 12.00 | 11.00 | 1.37 | 1.50 | 7.70 | 135.00 | 17.84 | −46.71 | 48.43 | |
Max | 10.00 | 9.00 | 97.00 | 63.00 | 7.50 | 12.00 | 41.50 | 320.00 | 50.49 | 7.77 | 55.26 | |
CV (%) | 70.23 | 55.66 | 30.28 | 29.82 | 33.84 | 50.19 | 24.51 | 20.74 | 12.12 | 76.70 | 2.39 | |
GCV (%) | 52.79 | 35.99 | 21.44 | 27.67 | 19.93 | 32.81 | 16.48 | 20.72 | 9.01 | 56.48 | 2.30 | |
H2 | 0.57 | 0.42 | 0.50 | 0.87 | 0.35 | 0.46 | 0.45 | 0.99 | 0.57 | 0.55 | 0.92 | |
PCV (%) | 70.23 | 55.74 | 30.32 | 29.74 | 33.24 | 48.19 | 24.52 | 20.79 | 11.97 | 76.32 | 2.40 |
Variables | PC1 | PC2 | PC3 |
---|---|---|---|
Tuber weight per plant | 0.866 | −0.059 | −0.037 |
Number of tuber per plant | 0.735 | 0.183 | −0.025 |
Tuber length | 0.852 | −0.064 | −0.008 |
Tuber width | 0.676 | −0.04 | −0.063 |
Stem diameter per plant | −0.02 | −0.641 | −0.538 |
Number of internode to first branch | −0.099 | −0.187 | −0.619 |
Shoot internode | 0.05 | −0.606 | −0.482 |
Yam mosaic virus disease | −0.072 | 0.454 | −0.182 |
Dry matter content | 0.162 | 0.597 | −0.277 |
Tuber oxidation | 0.081 | −0.438 | 0.582 |
Tuber hardiness | −0.066 | 0.458 | −0.547 |
Eigenvalues | 2.530 | 1.820 | 1.660 |
Variance (%) | 22.990 | 16.550 | 15.080 |
Cumulative. variance (%) | 22.990 | 39.540 | 54.620 |
Variables | Cluster 1—Red (51) | Cluster 2—Green (69) | Cluster 3—Blue (42) | |||
---|---|---|---|---|---|---|
Mean ± SD | Range | Mean ± SD | Range | Mean ± SD | Range | |
TWPL | 0.96 ± 0.55 b | 0.23–2.52 | 2.04 ± 0.99 a | 1.00–6.18 | 2.23 ± 0.91 a | 1.04–6.20 |
NTP | 1.28 ± 0.38 c | 1.00–2.75 | 2.24 ± 0.78 a | 1.00–5.00 | 1.89 ± 0.69 b | 1.00–3.25 |
TBL | 30.52 ± 7.65 b | 12.50–42.00 | 42.09 ± 7.66 a | 28.00–73.50 | 44.36 ± 6.33 a | 34.50–60.50 |
TBW | 23.06 ± 7.59 b | 11.56–49.69 | 32.08 ± 7.23 a | 19.69–53.38 | 31.46 ± 6.37 a | 20.56–51.13 |
SDMP | 3.48 ± 0.87 a | 2.01–6.02 | 3.33 ± 0.79 a | 1.37–5.20 | 3.48 ± 0.82 a | 2.19–5.29 |
NIFB | 3.28 ± 1.48 a | 1.50–7.25 | 2.75 ± 0.83 b | 1.50–6.00 | 2.80 ± 0.77 b | 1.50–5.50 |
SINL | 16.22 ± 3.55 a | 11.24–27.97 | 15.03 ± 2.05 b | 10.77–20.04 | 15.45 ±3.15 ab | 10.30–22.70 |
YMV | 146.52 ± 24.77 b | 137.00–272.00 | 141.57 ± 15.92 b | 137.00–227.00 | 165.93 ± 47.01 a | 137.00–317.00 |
DMC | 33.71 ± 4.13 ab | 22.44–44.69 | 34.76 ± 3.21 a | 27.54–44.75 | 33.16 ± 2.05 b | 28.61–38.67 |
TBOXI | −10.17 ± 7.86 a | −32.88–3.59 | −11.63 ± 7.08 a | −32.40–0.82 | −20.01 ± 6.89 b | (−35.69)–(−4.33) |
TBHard | 50.64 ± 1.03 b | 48.49–52.87 | 50.18 ± 0.65 c | 48.57–52.26 | 52.22 ± 0.89 a | 50.41–53.57 |
Variables | FA1 | FA2 | FA3 | Communality | Uniqueness | Goal | PSG (%) | Sense |
---|---|---|---|---|---|---|---|---|
TWPL | 0.87 | −0.05 | −0.04 | 0.76 | 0.25 | 100 | 0.65 | increase |
NTP | 0.74 | 0.13 | 0.12 | 0.57 | 0.43 | 100 | 0.18 | increase |
TBL | 0.85 | −0.08 | −0.02 | 0.73 | 0.27 | 100 | 3.42 | increase |
TBW | 0.68 | −0.02 | −0.05 | 0.46 | 0.54 | 100 | 5.56 | increase |
SDMP | 0.00 | −0.13 | −0.83 | 0.70 | 0.30 | 100 | 0.29 | increase |
NIFB | −0.07 | 0.27 | −0.59 | 0.43 | 0.57 | 100 | 0.34 | increase |
SINL | 0.07 | −0.15 | −0.76 | 0.60 | 0.40 | 100 | 1.30 | increase |
YMV | −0.06 | 0.47 | 0.16 | 0.25 | 0.76 | 0 | 1.92 | decrease |
DMC | 0.18 | 0.63 | 0.19 | 0.50 | 0.54 | 100 | 0.30 | increase |
TBOXI | 0.05 | −0.72 | 0.16 | 0.54 | 0.46 | 100 | 1.97 | decrease |
TBHard | −0.04 | 0.71 | −0.12 | 0.51 | 0.49 | 100 | −0.20 | decrease |
Average | 0.55 | 0.46 |
VAR | FA1 | FA2 | FA3 | Communality | Uniqueness |
---|---|---|---|---|---|
TWPL | −0.09 | 0.72 | 0.05 | 0.53 | 0.47 |
NTP | −0.31 | 0.79 | 0 | 0.73 | 0.27 |
TBL | −0.07 | 0.78 | −0.12 | 0.62 | 0.38 |
TBW | 0.08 | −0.11 | 0.7 | 0.51 | 0.49 |
SDMP | 0.47 | −0.26 | −0.68 | 0.75 | 0.25 |
NIFB | −0.3 | −0.6 | −0.58 | 0.78 | 0.22 |
SINL | 0.67 | −0.2 | 0.04 | 0.49 | 0.51 |
DMC | −0.85 | 0.19 | −0.21 | 0.8 | 0.2 |
TBOXI | 0.35 | 0.48 | −0.54 | 0.64 | 0.36 |
TBHard | −0.74 | −0.09 | 0.17 | 0.59 | 0.41 |
YMV | −0.56 | 0.01 | 0.37 | 0.45 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adewumi, A.S.; Asare, P.A.; Adejumobi, I.I.; Adu, M.O.; Taah, K.J.; Adewale, S.; Mondo, J.M.; Agre, P.A. Multi-Trait Selection Index for Superior Agronomic and Tuber Quality Traits in Bush Yam (Dioscorea praehensilis Benth.). Agronomy 2023, 13, 682. https://doi.org/10.3390/agronomy13030682
Adewumi AS, Asare PA, Adejumobi II, Adu MO, Taah KJ, Adewale S, Mondo JM, Agre PA. Multi-Trait Selection Index for Superior Agronomic and Tuber Quality Traits in Bush Yam (Dioscorea praehensilis Benth.). Agronomy. 2023; 13(3):682. https://doi.org/10.3390/agronomy13030682
Chicago/Turabian StyleAdewumi, Adeyinka S., Paul A. Asare, Idris I. Adejumobi, Michael O. Adu, Kingsley J. Taah, Samuel Adewale, Jean M. Mondo, and Paterne A. Agre. 2023. "Multi-Trait Selection Index for Superior Agronomic and Tuber Quality Traits in Bush Yam (Dioscorea praehensilis Benth.)" Agronomy 13, no. 3: 682. https://doi.org/10.3390/agronomy13030682
APA StyleAdewumi, A. S., Asare, P. A., Adejumobi, I. I., Adu, M. O., Taah, K. J., Adewale, S., Mondo, J. M., & Agre, P. A. (2023). Multi-Trait Selection Index for Superior Agronomic and Tuber Quality Traits in Bush Yam (Dioscorea praehensilis Benth.). Agronomy, 13(3), 682. https://doi.org/10.3390/agronomy13030682