Assessing the Efficacy of Living and Dead Cover Crop Mixtures for Weed Suppression in Sweet Corn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Field Operations
2.2. Cover Crop and Weed Biomass
2.3. Crop Development and Yield
2.4. Statistical Analysis
3. Results
3.1. Cover Crop and Weed Biomass
3.2. Crop Development and Yield
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rüegg, W.T.; Quadranti, M.; Zoschke, A. Herbicide research and development: Challenges and opportunities. Weed Res. 2007, 47, 271–275. [Google Scholar] [CrossRef]
- Sosnoskie, L.M.; Culpepper, A.S. Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) Increases Herbicide Use, Tillage, and Hand-Weeding in Georgia Cotton. Weed Sci. 2014, 62, 393–402. [Google Scholar] [CrossRef]
- Archer, D.W.; Jaradat, A.A.; Johnson, J.M.F.; Weyers, S.L.; Gesch, R.W.; Forcella, F.; Kludze, H.K. Crop productivity and economics during the transition to alternative cropping systems. Agron. J. 2007, 99, 1538–1547. [Google Scholar] [CrossRef]
- Taylor, J.E.; Charlton, D.; Yuńez-Naude, A. The End of Farm Labor Abundance. Appl. Econ. Perspect. Policy 2012, 34, 587–598. [Google Scholar] [CrossRef]
- Zahniser, S.; Taylor, J.E.; Hertz, T.; Charlton, D. Farm Labor Markets in the United States and Mexico Pose Challenges for U. S. Agriculture. USDA Econ. Res. Serv. 2018, 201, 1–40. [Google Scholar]
- Rana, J.; Paul, J. Consumer behavior and purchase intention for organic food: A review and research agenda. J. Retail. Consum. Serv. 2017, 38, 157–165. [Google Scholar] [CrossRef]
- Brainard, D.C.; Peachey, R.E.; Haramoto, E.R.; Luna, J.M.; Rangarajan, A. Weed Ecology and Nonchemical Management under Strip-Tillage: Implications for Northern U.S. Vegetable Cropping Systems. Weed Technol. 2013, 27, 218–230. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, C.; Doohan, D. Safety of Bicyclopyrone on Several Vegetable Crops and Efficacy of Weed Control. Weed Technol. 2018, 32, 498–505. [Google Scholar] [CrossRef]
- Kniss, A.R. Genetically Engineered Herbicide-Resistant Crops and Herbicide-Resistant Weed Evolution in the United States. Weed Sci. 2018, 66, 260–273. [Google Scholar] [CrossRef]
- Gast, R.E. Industry Views of Minor Crop Weed Control. Weed Technol. 2008, 22, 385–388. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shrestha, A.; Horwath, W.R.; Southard, R.J.; Madden, N.; Veenstra, J.; Munk, D.S. Tillage and cover cropping affect crop yields and soil carbon in the San Joaquin valley, California. Agron. J. 2015, 107, 588–596. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortenseny, D.M.; Ryany, M.R.; Shumway, D.L. Timing of Cover-Crop Management Effects on Weed Suppression in No-Till Planted Soybean using a Roller-Crimper. Weed Sci. 2011, 59, 380–389. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. Light Transmittance, Soil Temperature, and Soil Moisture under Residue of Hairy Vetch and Rye. Agron. J. 1993, 85, 673–680. [Google Scholar] [CrossRef]
- Ohno, T.; Doolan, K.; Zibilske, L.M.; Liebman, M.; Gallandt, E.R.; Berube, C. Phytotoxic effects of red clover amended soils on wild mustard seedling growth. Agric. Ecosyst. Environ. 2000, 78, 187–192. [Google Scholar] [CrossRef]
- Barnes, J.P.; Putnam, A.R. Evidence for Allelopathy by Residues and Aqueous Extracts of Rye (Secale cereale). Weed Sci. 1986, 34, 384–390. [Google Scholar] [CrossRef]
- Creamer, N.G.; Bennett, M.A.; Stinner, B.R.; Cardina, J.; Regnier, E.E. Mechanisms of weed suppression in cover crop-based production systems. HortScience 1996, 31, 410–413. [Google Scholar] [CrossRef]
- Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J. Ecological weed management by cover cropping: Effects on weed growth in autumn and weed establishment in spring. Weed Res. 2008, 48, 492–502. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C.L. The quantitative relationship between weed emergence and the physical properties of mulches. Weed Sci. 2000, 48, 385–392. [Google Scholar] [CrossRef]
- Florence, A.M.; Higley, L.G.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Cover crop mixture diversity, biomass productivity, weed suppression, and stability. PLoS ONE 2019, 14, e0206195. [Google Scholar] [CrossRef]
- Mennan, H.; Jabran, K.; Zandstra, B.H.; Pala, F. Non-chemical weed management in vegetables by using cover crops: A review. Agronomy 2020, 10, 257. [Google Scholar] [CrossRef]
- Wade, T.; Claassen, R.; Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region. United States Dep. Agric. Econ. Res. Serv. 2015, EIB-147, 40. [Google Scholar]
- Hoyt, G.D. Tillage and Cover Residue Affects on Vegetable Yields. HortTechnology 1999, 9, 351–358. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Coffman, C.; Mangum, R. Potenital long-term benefits of no-tillage and organic cropping systems for grain production and soil improvement. Agron. J. 2007, 99, 1297–1305. [Google Scholar]
- Hartwig, N.L.; Ammon, H.U. 50th Anniversary—Invited Article Cover crops and living mulches. Weed Sci. 2002, 1745, 688–699. [Google Scholar] [CrossRef]
- Luna, J.M.; Staben, M.L. Strip tillage for sweet corn production: Yield and economic return. HortScience 2002, 37, 1040–1044. [Google Scholar] [CrossRef]
- Lowry, C.J.; Brainard, D.C. Strip intercropping of rye-vetch mixtures: Effects on weed growth and competition in strip-tilled sweet corn. Weed Sci. 2019, 67, 114–125. [Google Scholar] [CrossRef]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O.; Herman, J.C. How a Corn Plant Develops, Special Report No. 48; Iowa State University: Ames, IA, USA, 1993. [Google Scholar]
- Varvel, G.E.; Schepers, J.S.; Francis, D.D. Ability for In-Season Correction of Nitrogen Deficiency in Corn Using Chlorophyll Meters. Soil Sci. Soc. Am. J. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squared Means. R Package Version 1.8.4-1. 2023. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 26 January 2023).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Buchanan, A.L.; Hooks, C.R.R. Influence of winter cover crop mulch on arthropods in a reduced tillage Cucurbit system. Environ. Entomol. 2018, 47, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, J.R.; Beste, C.E.; Potts, W.E. Response of Weeds to Tillage and Cover Crop Residue. Weed Sci. 1991, 39, 195–199. [Google Scholar] [CrossRef]
- Wesson, G.; Wareing, P.F. The role of light in the germination of naturally occurring populations of buried weed seeds. J. Exp. Bot. 1969, 20, 402–413. [Google Scholar] [CrossRef]
- Froud-Williams, R.J.; Chancellor, R.J.; Drennan, D.S.H. The Effects of Seed Burial and Soil Disturbance on Emergence and Survival of Arable Weeds in Relation to Minimal Cultivation. J. Appl. Ecol. 1984, 21, 629. [Google Scholar] [CrossRef]
- Mohler, C.L. Effects of Tillage and Mulch on Weed Biomass and Sweet Corn Yield. Weed Technol. 1991, 5, 545–552. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Erbach, D.C. Improving stand establishment in no-till with residue-clearing planter attachments. Trans. Am. Soc. Agric. Eng. 1998, 41, 301–306. [Google Scholar]
- Garcia, A.G.; Guerra, L.C.; Hoogenboom, G. Impact of planting date and hybrid on early growth of sweet corn. Agron. J. 2009, 101, 193–200. [Google Scholar] [CrossRef]
- Bullock, D.G.; Anderson, D.S. Evaluation of the Minolta SPAD-502 chlorophyll meter for nitrogen management in corn. J. Plant Nutr. 1998, 21, 741–755. [Google Scholar] [CrossRef]
- Kurtz, T.; Melsted, S.W.; Bray, R.H. The Importance of Nitrogen and Water in Reducing Competition Between Intercrops and Corn 1. Agron. J. 1952, 44, 13–17. [Google Scholar] [CrossRef]
- Hardman, W.C.; Catchot, A.L.; Gore, J.; Henry, W.B.; Cook, D.R. The Impact of Brown Stink Bug (Hemiptera: Pentatomidae) Damage during the Seedling Stage on Field Corn Growth and Yield. J. Econ. Entomol. 2021, 114, 1607–1612. [Google Scholar] [CrossRef]
Field Operation | Year 1 | Year 2 | Year 3 |
---|---|---|---|
Planted cover crops | 14 Sept 2018 | 5 Sept 2019 | 16 Sept 2020 |
Terminated cover crops | 23 May 2019 | 25 May 2020 | 28 May 2021 |
Planted + fertilized sweet corn | 23 May 2019 | 25 May 2020 | 1 June 2021 |
Herbicide applied | 25 May 2019 | 27 May 2020 | 2 June 2021 |
Fertilizer side dressed | 2 July 2019 | 24 June 2020 | 1 July 2021 |
Common Name | Species Name | Treatment 1 | |||||||
---|---|---|---|---|---|---|---|---|---|
CT (+) | CT (−) | NT (+) | NT (−) | LMFR (+) | LMFR (−) | LMRye (+) | LMRye (−) | ||
2019 | |||||||||
Crabgrass, large | Digitaria sanguinalis (L.) Scop | 32.4 | 3.2 | 73.1 | 93.0 | - | 55.6 | 50 | 62.5 |
Dandelion, common | Taraxacum officinale Weber | - | - | 9.0 | - | - | - | - | - |
Goosegrass | Eleusine indica (L.) Gaertn. | 10.8 | 71.8 | 14.9 | 5.8 | 98.5 | 11.1 | - | 12.5 |
Nutsedge, yellow | Cyperus esculentus L. | 48.6 | 24.7 | - | - | - | 33.3 | - | 25.0 |
Plantain, narrowleaf | Plantago lanceolata L. | - | - | - | - | - | - | 50 | - |
2020 | |||||||||
Carpetweed | Mollugo verticillata L. | - | - | 6.2 | - | - | - | - | - |
Crabgrass, large | Digitaria sanguinalis (L.) Scop | - | 14.5 | 25.1 | 79.7 | 5.4 | 31.9 | - | - |
Evening-primrose, cutleaf | Oenothera lanciniata Hill | - | - | - | 5.4 | - | - | - | - |
Goosegrass | Eleusine indica (L.) Gaertn. | - | 30.3 | - | 7.0 | 82.4 | 11.4 | 16.2 | - |
Lambsquarters, common | Chenopodium album L. | 43.5 | 30.0 | - | - | - | - | - | - |
Morningglory, ivyleaf | Ipomea hederacea Jacq. | 51.0 | 10.6 | 16.1 | - | - | - | 59.5 | - |
Nightshade, eastern-black | Solanum ptychanthum Dun. | - | 6.0 | - | - | - | - | - | - |
Nutsedge, yellow | Cyperus esculentus L. | - | - | 49.3 | - | - | 54.1 | - | 100.0 |
Pigweed, redroot | Amaranthus, retroflexus L. | - | 6.1 | - | - | - | - | - | - |
2021 | |||||||||
Carpetweed | Mollugo verticillata L. | 35.7 | 33.8 | - | - | 35.7 | 5.4 | - | 7.1 |
Crabgrass, large | Digitaria sanguinalis (L.) Scop | 40.4 | 21.4 | - | 88.2 | 37.9 | 2.6 | 100.0 | 9.7 |
Evening-primrose, cutleaf | Oenothera lanciniata Hill | - | - | 95.2 | 7.0 | - | 53.0 | - | 77.9 |
Goosegrass | Eleusine indica (L.) Gaertn. | - | 16.9 | - | - | - | - | - | - |
Lambsquarters, common | Chenopodium album L. | 16.8 | 13.7 | - | - | - | - | - | - |
Marestail | Conzya canadensis L. | - | - | - | - | - | 38.3 | - | - |
Morningglory, ivyleaf | Ipomea hederacea Jacq. | - | - | - | - | 5.8 | - | - | - |
Sida, prickly | Sida spinosa L. | - | 7.8 | - | - | 17.1 | - | - | 5.3 |
Treatment 1 | Final Stand Count | Chlorophyll Content | Extended Leaf Height | Stage | Total Yield |
---|---|---|---|---|---|
(Plants Row−1) | (SPAD Units) | (cm) | (Expanded Leaves) | (1000 Ears ha−1) | |
CT (+) | 31.38 ± 1.15 | 51.68 ± 0.83 | 120.18 ± 5.42 | 11.35 ± 0.33 | 36.33 ± 5.89 |
CT (−) | 31.56 ± 1.40 | 51.05 ± 0.83 | 121.86 ± 4.93 | 11.30 ± 0.39 | 31.35 ± 5.94 |
NT (+) | 27.60 ± 1.30 | 52.26 ± 0.64 | 108.01 ± 4.99 | 11.00 ± 0.29 | 30.27 ± 12.11 |
NT (−) | 24.75 ± 1.56 | 51.67 ± 0.74 | 110.08 ± 4.58 | 11.00 ± 0.29 | 28.79 ± 4.13 |
LMFR (+) | 32.38 ± 0.93 | 48.96 ± 1.04 | 120.08 ± 3.47 | 11.00 ± 0.26 | 40.77 ± 16.05 |
LMFR (−) | 30.00 ± 1.19 | 49.01 ± 0.79 | 105.22 ± 4.33 | 10.75 ± 0.40 | 37.14 ± 2.21 |
LMRye (+) | 27.75 ± 1.37 | 48.21 ± 1.24 | 133.18 ± 13.45 | 10.07 ± 0.45 | 33.73 ± 2.89 |
LMRye (−) | 26.93 ± 1.15 | 46.51 ± 1.96 | 131.40 ± 13.16 | 9.60 ± 0.27 | 34.98 ± 3.06 |
2021 | |||||
CT (+) | 33.38 ± 0.96 | 54.60 ± 1.31 a | 102.60 ± 3.57 a | 8.45 ± 0.25 a | 38.62 ± 1.54 a |
CT (−) | 33.38 ± 0.49 | 51.28 ± 0.97 ab | 110.25 ± 3.60 a | 9.30 ± 0.27 a | 39.70 ± 3.04 a |
NT (+) | 33.25 ± 0.73 | 49.04 ± 1.06 ab | 102.47 ± 3.51 a | 8.60 ± 0.20 a | 34.18 ± 3.06 a |
NT (−) | 32.31 ± 0.72 | 45.51 ± 1.37 ab | 84.71 ± 4.57 b | 7.45 ± 0.28 b | 21.39 ± 3.97 bcd |
LMFR (+) | 33.75 ± 0.66 | 49.01 ± 0.86 ab | 98.27 ± 4.62 a | 8.45 ± 0.33 a | 34.18 ± 3.76 ac |
LMFR (−) | 34.31 ± 0.70 | 45.75 ± 1.54 b | 78.12 ± 4.40 b | 7.15 ± 0.22 b | 18.03 ± 4.62 bd |
LMRye (+) | 32.43 ± 0.93 | 49.77 ± 1.37 ab | 90.74 ± 4.29 a | 7.85 ± 0.30 a | 25.03 ± 3.57 abc |
LMRye (−) | 31.38 ± 1.05 | 44.78 ± 1.54 b | 68.21 ± 3.29 b | 6.00 ± 0.22 b | 8.75 ± 2.30 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurchak, V.L.; Leslie, A.W.; Hooks, C.R.R. Assessing the Efficacy of Living and Dead Cover Crop Mixtures for Weed Suppression in Sweet Corn. Agronomy 2023, 13, 688. https://doi.org/10.3390/agronomy13030688
Yurchak VL, Leslie AW, Hooks CRR. Assessing the Efficacy of Living and Dead Cover Crop Mixtures for Weed Suppression in Sweet Corn. Agronomy. 2023; 13(3):688. https://doi.org/10.3390/agronomy13030688
Chicago/Turabian StyleYurchak, Veronica L., Alan W. Leslie, and Cerruti R. R. Hooks. 2023. "Assessing the Efficacy of Living and Dead Cover Crop Mixtures for Weed Suppression in Sweet Corn" Agronomy 13, no. 3: 688. https://doi.org/10.3390/agronomy13030688
APA StyleYurchak, V. L., Leslie, A. W., & Hooks, C. R. R. (2023). Assessing the Efficacy of Living and Dead Cover Crop Mixtures for Weed Suppression in Sweet Corn. Agronomy, 13(3), 688. https://doi.org/10.3390/agronomy13030688