Rice Plants’ Resistance to Sheath Blight Infection Is Increased by the Synergistic Effects of Trichoderma Inoculation with SRI Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study and Crop Management
2.2. Fungal Cultures and Preparation of Inocula
2.3. Soil Preparation
2.4. Rice Plant Preparation and Inoculation with T. asperellum SL2
2.5. Inoculation with R. solani
2.6. Disease Evaluation
2.7. Measurement of Rice Growth and Physiological Components
2.8. Statistical Analysis
3. Results
3.1. Rice Growth Responses to R. solani Inoculation
3.2. Rice Plant Physiological Responses to R. solani Inoculation
3.3. Disease Evaluation Screening
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yellareddygari, S.K.R.; Reddy, M.S.; Kloepper, J.W.; Lawrence, K.S.; Fadamori, H. Rice sheath blight: A review of disease and pathogen management approaches. J. Plant Pathol. Microbiol. 2014, 5, 4. [Google Scholar]
- Singh, P.; Mazumdar, P.; Harikrishna, J.A.; Babu, S. Sheath blight of rice: A review and identification of priorities for future research. Planta 2019, 250, 1387–1407. [Google Scholar] [CrossRef] [Green Version]
- IRRI Rice Knowledge Bank. Sheath Blight. 2022. Available online: http://www.knowledgebank.irri.org/training/fact-sheets/pest-management/diseases/item/sheath-blight (accessed on 4 July 2022).
- Kumar, K.V.K.; Reddy, M.S.; Kloepper, J.W.; Lawrence, K.S.; Groth, D.E.; Miller, M.E. Sheath blight disease in rice (Oryza sativa L.): An overview. Biosci. Biotechnol. Res. Asia 2009, 6, 465–480. [Google Scholar]
- Hossain, M.K.; Tze, O.S.; Nadarajah, K.; Jena, K.; Rahman, M.A.B.; Ratnam, W. Identification and validation of sheath blight resistance in rice (Oryza sativa L.) cultivars against Rhizoctonia solani. Can. J. Plant Pathol. 2014, 36, 482–490. [Google Scholar] [CrossRef]
- Molla, K.A.; Karmakar, S.; Molla, J.; Bajaj, P.; Varshney, R.K.; Datta, S.K.; Datta, K. Understanding sheath blight resistance in rice: The road behind and the road ahead. Plant Biotechnol. J. 2020, 18, 895–915. [Google Scholar] [CrossRef] [PubMed]
- Vidhyasekaran, P.; Ponmalar, T.R.; Samiyappan, R.; Velazhahan, R.; Vimala, R.; Ramanathan, A.; Paranidharan, V.; Muthukrishnan, S. Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology 1997, 87, 1258–1263. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, S.; Wei, S.; Sun, W. Strategies to manage rice sheath blight: Lessons from interactions between rice and Rhizoctonia solani. Rice 2021, 14, 21. [Google Scholar] [CrossRef]
- Senapati, M.; Tiwari, A.; Sharma, N.; Chandra, P.; Bashyal, B.M.; Ellur, R.K.; Bhowmick, P.K.; Bollinedi, H.; Vinod, K.K.; Singh, A.K.; et al. Rhizoctonia solani Kühn pathophysiology: Status and prospects of sheath blight disease management in rice. Front. Plant Sci. 2022, 13, 881116. [Google Scholar] [CrossRef]
- Prasad, B.; Eizenga, G.C. Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Dis. 2008, 92, 1503–1509. [Google Scholar] [CrossRef] [Green Version]
- Doni, F.; Suhaimi, N.S.M.; Irawan, B.; Mohamed, Z.; Mispan, M.S. Associations of Pantoea with rice plants: As friends or foes? Agriculture 2021, 11, 1278. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.; Khadka, R.; Doni, F.; Uphoff, N. Benefits to plant health and productivity from enhancing plant microbial symbionts. Front. Plant Sci. 2021, 11, 610065. [Google Scholar] [CrossRef] [PubMed]
- Zamioudis, C.; Pieters, C.M.J. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 2012, 25, 139–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doni, F.; Mispan, M.S.; Suhaimi, N.S.M.; Ishak, N.; Uphoff, N. Roles of microbes in supporting sustainable rice production using the system of rice intensification. Appl. Microbiol. Biotechnol. 2019, 103, 5131–5142. [Google Scholar] [CrossRef]
- Masson, A.S.; Vermeire, M.L.; Leng, V.; Simonin, M.; Tivet, F.; Thi, H.N.; Brunel, C.; Suong, M.; Kuok, F.; Bellafiore, S.; et al. Enrichment in biodiversity and maturation of the soil food web under conservation agriculture is associated with suppression of rice-parasitic nematodes. Agric. Ecosyst. Environ. 2022, 331, 107913. [Google Scholar] [CrossRef]
- Uphoff, N. Systems thinking on intensification and sustainability: Systems boundaries, processes and dimensions. Curr. Opin. Environ. Sustain. 2014, 8, 89–100. [Google Scholar] [CrossRef]
- Thakur, A.K.; Uphoff, N.; Stoop, W.A. Scientific underpinnings of the System of Rice Intensification (SRI): What is known so far? Adv. Agron. 2016, 135, 147–179. [Google Scholar]
- Uphoff, N.; Dazzo, F.B. Making rice production more environmentally-friendly. Environments 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Padmavathi, C.; Kumar, R.M.; Rao, L.V.; Surekha, K.; Prasad, M.S.; Babu, V.R.; Pasalu, I.C. Influence of SRI method of rice cultivation on insect pest incidence and arthropod diversity. Oryza Int. J. Rice 2009, 46, 227–230. [Google Scholar]
- Norela, S.; Anizan, I.; Ismail, B.S.; Maimon, A. Diversity of pest and non-pest insects in an organic paddy field cultivated under the System of Rice Intensification (SRI): A case study in Lubok China, Melaka, Malaysia. J. Food Agric. Environ. 2013, 11, 2861–2865. [Google Scholar]
- Rabibah, R.; Salmah, Y.; Maimon, A. Insect species composition under SRI management in Tanjung Karang, Selangor, Malaysia. Malays. Appl. Biol. 2015, 44, 59–66. [Google Scholar]
- Randriamiharisoa, R.; Barison, J.; Uphoff, N. Soil biological contributions to the System of Rice Intensification. In Biological Approaches to Sustainable Soil Systems; Uphoff, N., Ball, A.S., Fernandes, E., Herren, H., Husson, O., Laing, M., Palm, C., Pretty, J., Sanchez, P., Thies, J., et al., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 409–424. [Google Scholar]
- Uphoff, N.; Anas, I.; Rupela, O.P.; Thakur, A.K.; Thiyagarajan, T.M. Learning about positive plant-microbial interactions from the system of rice intensification (SRI). Asp. Appl. Biol. 2009, 98, 29–54. [Google Scholar]
- Zhao, L.M.; Wu, L.H.; Li, Y.S.; Sarkar, A.; Zhu, D.F.; Uphoff, N. Comparisons of yield, water use efficiency, and soil microbial biomass as affected by the System of Rice Intensification. Commun. Soil Sci. Plant Anal. 2010, 41, 1–12. [Google Scholar] [CrossRef]
- Anas, I.; Rupela, O.P.; Thiyagarajan, T.M.; Uphoff, N. A review of studies on SRI effects on beneficial organisms in rice soil rhizospheres. Paddy Water Environ. 2011, 9, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Uphoff, N. The System of Rice Intensification (SRI) as a system of agricultural innovation. J. Tanah Lingkung. 2007, 10, 27–40. [Google Scholar]
- Dung, N.T. SRI Application in Rice Production in Northern Ecological Areas of Vietnam. Report of National IPM Program to Ministry of Agriculture and Rural Development, Hanoi. 2007. Available online: https://sri.cals.cornell.edu/countries/vietnam/vndungipmrpt06.pdf (accessed on 25 September 2022).
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, N.S.; Doni, F.; Mispan, M.S.; Saiman, M.Z.; Yusuf, Y.M.; Oke, M.A.; Suhaimi, N.S.M. Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy 2021, 11, 2559. [Google Scholar] [CrossRef]
- Neumann, B.; Laing, M. Trichoderma: An ally in the quest for soil system sustainability. In Biological Approaches to Sustainable Soil Systems; Uphoff, N., Ball, A.S., Fernandes, E., Herren, H., Husson, O., Laing, M., Palm, C., Pretty, J., Sanchez, P., Thies, J., et al., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 491–500. [Google Scholar]
- Druzhinina, I.S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B.A.; Kenerley, C.M.; Monte, E.; Mukherjee, P.K.; Zeilinger, S.; Grigoriev, I.V.; Kubicek, C.P. Trichoderma: The genomics of opportunistic success. Nat. Rev. Microbiol. 2011, 9, 749–759. [Google Scholar] [CrossRef] [PubMed]
- López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Harman, G.E.; Doni, F.; Khadka, R.B.; Uphoff, N. Endophytic strains of Trichoderma increase plants’ photosynthetic capability. J. Appl. Microbiol. 2021, 130, 529–546. [Google Scholar] [CrossRef]
- Abdullah, N.S.; Doni, F.; Ooi, C.K.; Mispan, M.S.; Saiman, M.Z.; Mohd Yusuf, Y.; Mohd Suhaimi, N.S. The diversity of rhizospheric bacterial communities associated with Trichoderma-treated rice fields. Lett. Appl. Microbiol. 2022, 75, 1645–1650. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; del-Val, E.; Larsen, J. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiol. Ecol. 2016, 92, fiw036. [Google Scholar] [CrossRef] [Green Version]
- Doni, F.; Anizan, I.; Che Radziah, C.M.Z.; Wan Mohtar, W.Y. Physiological and growth response of rice (Oryza sativa L.) plants to Trichoderma spp. inoculants. AMB Express 2014, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Doni, F.; Zain, C.R.C.M.; Isahak, A.; Fathurrahman, F.; Sulaiman, N.; Uphoff, N.; Yusoff, W.M.W. Relationships observed between Trichoderma inoculation and characteristics of rice grown under System of Rice Intensification (SRI) vs. conventional methods of cultivation. Symbiosis 2017, 72, 45–59. [Google Scholar] [CrossRef]
- Doni, F.; Zain, C.R.; Isahak, A.; Fathurrahman, F.; Anhar, A.; Mohamad, W.N.; Yusoff, W.M.W.; Uphoff, N. A simple, efficient, and farmer-friendly Trichoderma-based biofertilizer evaluated with the SRI rice management system. Org. Agric. 2018, 8, 207–223. [Google Scholar] [CrossRef]
- Uphoff, N. Report on Visit to China, August–September 2004, for Review of System of Rice Intensification (SRI) Activities and Progress; Cornell International Institute for Food, Agriculture and Development: Ithaca, NY, USA, 2004; Available online: https://sri.ciifad.cornell.edu/countries/china/chNTUtrep0804.pdf (accessed on 26 September 2022).
- Kalaivani, N.; Omar, N.S.; Rosli, M.M.; Shin Tze, O. Molecular characterization and screening for sheath blight resistance using Malaysian isolates of Rhizoctonia solani. BioMed Res. Int. 2014, 2014, 434257. [Google Scholar]
- Doni, F. Trichoderma asperellum SL2 for Improving Growth, Gene Expression Pattern, Physiological Traits, Yield and Disease Resistance of Rice Plants under System of Rice Intensification (SRI) Management System. Ph.D. Thesis, The National University of Malaysia, Bangi, Malaysia, 2018. [Google Scholar]
- Ramli, A.; Omar, O.; Abdullah, S.; Bakar, A.R.; Harun, M. MRQ 74: A new aromatic rice variety. Bul. Teknol. Tanam. 2008, 8, 15–20. [Google Scholar]
- Park, D.S.; Sayler, R.J.; Hong, Y.G.; Nam, M.H.; Yang, Y.N. A method for inoculation and evaluation of rice sheath blight disease. Plant Dis. 2008, 92, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daryaei, A.; Jones, E.E.; Glare, T.R.; Falloon, R.E. pH and water activity in culture media affect biological control activity of Trichoderma atroviride against Rhizoctonia solani. Biol. Control 2013, 92, 24–30. [Google Scholar] [CrossRef]
- Kim, H.; Lee, Y.H. The rice microbiome: A model platform for crop holobiome. Phytobiomes J. 2020, 4, 5–18. [Google Scholar]
- Lin, X.Q.; Zhu, D.F.; Lin, X.J. Effects of water management and organic fertilization with SRI crop practices on hybrid rice performance and rhizosphere dynamics. Paddy Water Environ. 2011, 9, 53–59. [Google Scholar] [CrossRef]
- Watanarojanaporn, N.; Boonkerd, N.; Tittabutr, P.; Longtonglang, A.; Young, J.P.; Teaumroong, N. Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure. Microbes Environ. 2013, 28, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Pasuquin, E.; Lafarge, T.; Tubana, B. Transplanting young seedlings in irrigated rice fields: Early and high tiller production enhanced grain yield. Field Crops Res. 2008, 105, 141–155. [Google Scholar] [CrossRef]
- Thakur, A.K.; Uphoff, N.; Antony, E. An assessment of physiological effects of System of Rice Intensification (SRI) practices compared with recommended rice cultivation practices in India. Exp. Agric. 2010, 46, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.K.; Rath, S.; Roychowdhury, S.; Uphoff, N. Comparative performance of rice with system of rice intensification (SRI) and conventional management using different plant spacings. J. Agron. Crop Sci. 2010, 196, 146–159. [Google Scholar] [CrossRef]
- Harman, G.E. Multifunctional fungal plant symbionts: New tools to enhance plant growth and productivity. New Phytol. 2011, 189, 647–649. [Google Scholar] [CrossRef]
- Zhao, L.M.; Wu, L.H.; Li, Y.S.; Lu, X.H.; Zhu, D.F.; Uphoff, N. Influence of the System of Rice Intensification on rice yield and on nitrogen and water use efficiency with different N application rates. Exp. Agric. 2009, 45, 275–286. [Google Scholar] [CrossRef]
- Thakur, A.K.; Rath, S.; Mandal, K.G. Differential responses of system of rice intensification (SRI) and conventional flooded-rice management methods to nitrogen fertilizer. Plant Soil 2013, 370, 59–71. [Google Scholar] [CrossRef]
- Khadka, R.B.; Uphoff, N. Effects of Trichoderma seedling treatment with System of Rice Intensification management and with conventional management of transplanted rice. PeerJ 2019, 7, e5877. [Google Scholar] [CrossRef] [Green Version]
- Adak, A.; Prasanna, R.; Babu, S.; Bidyarani, N.; Verma, S.; Pal, M.; Shivay, Y.S.; Nain, L. Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J. Plant Nutr. 2016, 39, 1216–1232. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasanna, R.; Mandi, S.; Kanchan, A.; Simranjit, K.; Nayak, S.; Baral, K.; Sirohi, M.P.; Nain, L. Cyanobacterial inoculation enhances nutrient use efficiency and grain quality of basmati rice in the system of rice intensification. ACS Agric. Sci. Technol. 2022, 2, 742–753. [Google Scholar] [CrossRef]
- Yedidia, I.; Benhamou, N.; Kapulnik, Y.; Chet, I. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 2000, 38, 863–873. [Google Scholar] [CrossRef]
- Howell, C.R.; Hanson, L.E.; Stipanovic, R.D.; Puckhaber, L.S. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 2000, 90, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Shoresh, M.; Harman, G.E. The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach. Plant Physiol. 2008, 147, 2147–2163. [Google Scholar] [CrossRef] [Green Version]
- Shoresh, M.; Harman, G.E. The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signal. Behav. 2008, 3, 737–739. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.H.; Zhang, J.; Shao, X.H.; Wang, S.S.; Miao, Q.S.; Mao, X.Y.; Zhai, Y.M.; She, D.L. Development and evaluation of Trichoderma asperellum preparation for control of sheath blight of rice (Oryza sativa L.). Biocontrol Sci. Technol. 2015, 25, 316–328. [Google Scholar] [CrossRef]
- Qualhato, T.F.; Lopes, F.A.C.; Steindorff, A.S.; Brandao, R.S.; Jesuino, R.S.A.; Ulhoa, C.J. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: Evaluation of antagonism and hydrolytic enzyme production. Biotechnol. Lett. 2013, 35, 1461–1468. [Google Scholar] [CrossRef]
- Motlagh, M.R.S.; Jahangiri, B.; Kulus, D.; Tymoszuk, A.; Kaviani, B. Endophytic fungi as potential biocontrol agents against Rhizoctonia solani JG Kühn, the causal agent of rice sheath blight disease. Biology 2022, 11, 1282. [Google Scholar] [CrossRef]
- Zhang, X.; Harvey, P.R.; Stummer, B.E.; Warren, R.A.; Zhang, G.; Guo, K.; Li, J.; Yang, H. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium. Funct. Integr. Genom. 2015, 15, 599–610. [Google Scholar] [CrossRef]
- Kotasthane, A.; Agrawal, T.; Kushwah, R.; Rahatkar, O.V. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd, and bitter gourd. Eur. J. Plant Pathol. 2015, 141, 523–543. [Google Scholar] [CrossRef]
- Vinale, F.; Strakowska, J.; Mazzei, P.; Piccolo, A.; Marra, R.; Lombardi, N.; Manganiello, G.; Pascale, A.; Woo, S.L.; Lorito, M. Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Nat. Prod. Res. 2016, 30, 2575–2581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidayati, N.; Triadiati, T.; Anas, I. Rooting system of rice cultivated under system of rice intensification (SRI) method which improving rice yield. Hayati J. Biosci. 2018, 25, 63. [Google Scholar] [CrossRef]
Treatments | Label | Rice Crop Management | Trichoderma Inoculation | Rhizoctania Inoculation |
---|---|---|---|---|
1 | SRI+T+RS | SRI | + | + |
2 | CONV+T+RS | Conventional | + | + |
3 | SRI+RS | SRI | − | + |
4 | CONV+RS | Conventional | − | + |
5 | SRI only | SRI | − | − |
6 | CONV only | Conventional | − | − |
Practices | SRI Treatment * | Conventional Treatment |
---|---|---|
Seedling transplant age | 5-day-old seedlings | 20-day-old seedlings |
Weed control | Soil was plowed manually using a rake (a 30 cm long wood handle attached to a 5 cm × 5 cm square wooden block) at intervals of 10, 20, 30, and 40 days after transplanting, thereby eliminating weeds as well as enhancing the soil’s aeration | Hand weeding at 10, 20, 30, and 40 days after transplanting |
Water management | Non-flooded, slightly aerobic soil conditions but enough soil humidity to sustain plant growth. This enables better aeration and growth of Trichoderma. Before weeding, 2 cm water height from soil surface was applied, and after weeding, the water was drained out immediately from the pots | A 5–6 cm water level was maintained on the pots |
Nutrient management | 2.5 g of sterilized compost (total nitrogen (N) 16.2%; phosphorus (P) 6.7%; potassium (K) 11.4%) was applied per plastic pot 10 days after transplanting. This is equivalent to an application rate of ~5 tons ha−1 | 425 mg urea, 325 mg P2O5 (phosphorus pentoxide), and 300 mg K2O (potassium oxide) were applied per plastic pot 10 days after transplanting |
Treatments | Plant Height (cm) | Tiller Number | Root Fresh Weight (g) | Canopy Fresh Weight (g) | Root Dry Weight (g) | Canopy Dry Weight (g) |
---|---|---|---|---|---|---|
SRI+T+RS | 71.71 a | 6.57 a | 40.05 a | 20.90 ab | 20.48 a | 6.73 b |
CONV+T+RS | 68.12 a | 5.28 bc | 30.38 b | 20.02 bc | 16.63 b | 4.73 c |
SRI+RS | 55.71 b | 5.28 bc | 22.61 c | 16.98 d | 13.91 c | 4.33 c |
CONV+RS | 48.22 c | 4.85 c | 12.74 d | 11.84 e | 7.78 d | 2.45 d |
SRI only | 70.92 a | 6.14 ab | 42.35 a | 21.95 a | 20.50 a | 9.07 a |
CONV only | 69.48 a | 6.57 a | 30.59 b | 19.13 c | 17.08 b | 6.65 b |
Treatments | Photosynthetic Rate (µmol m−2s−1) | Stomatal Conductance (mmol m−2s−1) | Internal Carbon Dioxide Concentration (ppm) | Transpiration Rate (mmol m−2s−1) |
---|---|---|---|---|
SRI+T+RS | 7.08 c | 564.50 c | 356.54 d | 6.41 d |
CONV+T+RS | 6.14 d | 351.67 d | 383.18 c | 7.27 c |
SRI+RS | 2.36 e | 131.56 e | 443.19 b | 0.89 f |
CONV+RS | 1.66 f | 85.08 f | 490.72 a | 1.25 e |
SRI only | 9.20 a | 935.92 a | 291.52 e | 8.26 b |
CONV only | 8.19 b | 850.88 b | 354.27 d | 8.96 a |
Treatments | Lesion Length (cm) | Total Lesion Length (cm) | Susceptibility Index (%) |
---|---|---|---|
SRI+T+RS | 0.31 d | 17.42 d | 20.7 c |
CONV+T+RS | 1.31 c | 22.27 c | 30.6 b |
SRI+RS | 3.21 b | 42.88 b | 57.8 a |
CONV+RS | 6.12 a | 56.84 a | 63.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doni, F.; Isahak, A.; Fathurrahman, F.; Yusoff, W.M.W. Rice Plants’ Resistance to Sheath Blight Infection Is Increased by the Synergistic Effects of Trichoderma Inoculation with SRI Management. Agronomy 2023, 13, 711. https://doi.org/10.3390/agronomy13030711
Doni F, Isahak A, Fathurrahman F, Yusoff WMW. Rice Plants’ Resistance to Sheath Blight Infection Is Increased by the Synergistic Effects of Trichoderma Inoculation with SRI Management. Agronomy. 2023; 13(3):711. https://doi.org/10.3390/agronomy13030711
Chicago/Turabian StyleDoni, Febri, Anizan Isahak, F. Fathurrahman, and Wan Mohtar Wan Yusoff. 2023. "Rice Plants’ Resistance to Sheath Blight Infection Is Increased by the Synergistic Effects of Trichoderma Inoculation with SRI Management" Agronomy 13, no. 3: 711. https://doi.org/10.3390/agronomy13030711
APA StyleDoni, F., Isahak, A., Fathurrahman, F., & Yusoff, W. M. W. (2023). Rice Plants’ Resistance to Sheath Blight Infection Is Increased by the Synergistic Effects of Trichoderma Inoculation with SRI Management. Agronomy, 13(3), 711. https://doi.org/10.3390/agronomy13030711