Aquaculture Sludge as Co-Substrate for Sustainable Olive Mill Solid Waste Pre-Treatment by Anthracophyllum discolor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Mill Solid Waste and Aquaculture Sludge
2.2. Fungal Strain and Inoculum Preparation
2.3. Assessment of Aquaculture Sludge Effect
2.3.1. Pre-Treatment Olive Mill Solid Waste and Aquaculture Sludge at Different C/N Ratio
2.3.2. MnP Activity Assessment in Pre-Treatment at the Same TS Concentration
2.4. Enzyme Activity Assessment
3. Results and Discussion
3.1. Characterization of Olive Mill Solid Waste and Aquaculture Sludge
3.2. Assessment of Aquaculture Sludge Effect
3.2.1. Assessment of Total Soluble Phenol and Lignin Removal
3.2.2. Enzyme Activity Assessment
3.2.3. Assessment of MnP Activity at Same TS Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentil, J.A. Biocatalytic Potential of Basidiomycetes: Relevance, Challenges and Research Interventions in Industrial Processes. Sci. Afr. 2021, 11, e00717. [Google Scholar] [CrossRef]
- Elalami, D.; Monlau, F.; Carrere, H.; Abdelouahdi, K.; Oukarroum, A.; Zeroual, Y.; Barakat, A. Effect of Coupling Alkaline Pretreatment and Sewage Sludge Co-Digestion on Methane Production and Fertilizer Potential of Digestate. Sci. Total Environ. 2020, 743, 140670. [Google Scholar] [CrossRef] [PubMed]
- Espadas-Aldana, G.; Vialle, C.; Belaud, J.P.; Vaca-Garcia, C.; Sablayrolles, C. Analysis and Trends for Life Cycle Assessment of Olive Oil Production. Sustain. Prod. Consum. 2019, 19, 216–230. [Google Scholar] [CrossRef] [Green Version]
- Sounni, F.; Elgnaoui, Y.; El Bari, H.; Merzouki, M.; Benlemlih, M. Effect of Mixture Ratio and Organic Loading Rate during Anaerobic Co-Digestion of Olive Mill Wastewater and Agro-Industrial Wastes. Biomass Convers. Biorefinery 2021, 13, 1223–1229. [Google Scholar] [CrossRef]
- Messineo, A.; Maniscalco, M.P.; Volpe, R. Biomethane Recovery from Olive Mill Residues through Anaerobic Digestion: A Review of the State of the Art Technology. Sci. Total Environ. 2020, 703, 135508. [Google Scholar] [CrossRef]
- Al-Mallahi, J.; Furuichi, T.; Ishii, K. Appropriate Conditions for Applying NaOH-Pretreated Two-Phase Olive Milling Waste for Codigestion with Food Waste to Enhance Biogas Production. Waste Manag. 2016, 48, 430–439. [Google Scholar] [CrossRef]
- Negro, M.J.; Manzanares, P.; Ruiz, E.; Castro, E.; Ballesteros, M. The Biorefinery Concept for the Industrial Valorization of Residues from Olive Oil Industry; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128053140. [Google Scholar]
- Serrano, A.; Fermoso, F.G.; Rodríguez-Gutierrez, G.; Fernandez-Bolaños, J.; Borja, R. Biomethanization of Olive Mill Solid Waste after Phenols Recovery through Low-Temperature Thermal Pre-Treatment. Waste Manag. 2017, 61, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Caroca, E.; Serrano, A.; Borja, R.; Jiménez, A.; Carvajal, A.; Braga, A.F.M.; Rodriguez-Gutierrez, G.; Fermoso, F.G. Influence of Phenols and Furans Released during Thermal Pretreatment of Olive Mill Solid Waste on Its Anaerobic Digestion. Waste Manag. 2021, 120, 202–208. [Google Scholar] [CrossRef]
- Zerva, A.; Zervakis, G.I.; Christakopoulos, P.; Topakas, E. Degradation of Olive Mill Wastewater by the Induced Extracellular Ligninolytic Enzymes of Two Wood-Rot Fungi. J. Environ. Manag. 2017, 203, 791–798. [Google Scholar] [CrossRef]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of Chemical Pretreatment for Bioconversion of Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Rubilar, O.; Tortella, G.; Cea, M.; Acevedo, F.; Bustamante, M.; Gianfreda, L.; Diez, M.C. Bioremediation of a Chilean Andisol Contaminated with Pentachlorophenol (PCP) by Solid Substrate Cultures of White-Rot Fungi. Biodegradation 2011, 22, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S. Enhanced Biodegradation of Antibiotic Combinations via the Sequential Treatment of the Sludge Resulting from Pharmaceutical Wastewater Treatment Using White-Rot Fungi Trametes Versicolor and Bjerkandera Adusta. Appl. Microbiol. Biotechnol. 2016, 100, 6491–6499. [Google Scholar] [CrossRef] [PubMed]
- Ntougias, S.; Baldrian, P.; Ehaliotis, C.; Nerud, F.; Merhautová, V.; Zervakis, G.I. Olive Mill Wastewater Biodegradation Potential of White-Rot Fungi—Mode of Action of Fungal Culture Extracts and Effects of Ligninolytic Enzymes. Bioresour. Technol. 2015, 189, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Siddeeg, S.M.; Tahoon, M.A.; Mnif, W.; Ben Rebah, F. Iron Oxide/Chitosan Magnetic Nanocomposite Immobilized Manganese Peroxidase For. J. Clean. Prod. 2020, 243, 118634. [Google Scholar]
- Tortella, G.R.; Diez, M.C.; Durán, N. Fungal Diversity and Use in Decomposition of Environmental Pollutants. Crit. Rev. Microbiol. 2005, 31, 197–212. [Google Scholar] [CrossRef]
- Acevedo, F.; Pizzul, L.; Castillo, M.D.P.; Rubilar, O.; Lienqueo, M.E.; Tortella, G.; Diez, M.C. A Practical Culture Technique for Enhanced Production of Manganese Peroxidase by Anthracophyllum Discolor Sp4. Brazilian Arch. Biol. Technol. 2011, 54, 1175–1186. [Google Scholar] [CrossRef] [Green Version]
- Aranda, E.; Sampedro, I.; Ocampo, J.A.; García-Romera, I. Phenolic Removal of Olive-Mill Dry Residues by Laccase Activity of White-Rot Fungi and Its Impact on Tomato Plant Growth. Int. Biodeterior. Biodegrad. 2006, 58, 176–179. [Google Scholar] [CrossRef]
- Datta, R.; Kelkar, A.; Baraniya, D.; Molaei, A.; Moulick, A. Enzymatic Degradation of Lignin in Soil: A Review Sustainability Enzymatic Degradation of Lignin in Soil: A Review. Sustainability 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Benavides, V.; Pinto-Ibieta, F.; Serrano, A.; Rubilar, O.; Ciudad, G. Use of Anthracophyllum Discolor and Stereum Hirsutum as a Suitable Strategy for Delignification and Phenolic Removal of Olive Mill Solid Waste. Foods 2022, 11, 1587. [Google Scholar] [CrossRef]
- Kaouachi, A.; Amane, M.; Jaafari, S. El Biovalorisation of Two-Phase Olive Mill Waste by Composting Process. Int. J. Sci. Res. ISSN 2017, 2319–7064. [Google Scholar] [CrossRef]
- Sampedro, I.; Marinari, S.; D’Annibale, A.; Grego, S.; Ocampo, J.A.; García-Romera, I. Organic Matter Evolution and Partial Detoxification in Two-Phase Olive Mill Waste Colonized by White-Rot Fungi. Int. Biodeterior. Biodegrad. 2007, 60, 116–125. [Google Scholar] [CrossRef]
- Tortella, G.R.; Rubilar, O.; Gianfreda, L.; Valenzuela, E.; Diez, M.C. Enzymatic Characterization of Chilean Native Wood-Rotting Fungi for Potential Use in the Bioremediation of Polluted Environments with Chlorophenols. World J. Microbiol. Biotechnol. 2008, 24, 2805–2818. [Google Scholar] [CrossRef] [Green Version]
- Levin, L.; Melignani, E.; Ramos, A.M. Effect of Nitrogen Sources and Vitamins on Ligninolytic Enzyme Production by Some White-Rot Fungi. Dye Decolorization by Selected Culture Filtrates. Bioresour. Technol. 2010, 101, 4554–4563. [Google Scholar] [CrossRef] [PubMed]
- Kaal, E.E.J.; Field, J.A.; Joyce, T.W. Increasing Ligninolytic Enzyme Activities in Several White-Rot Basidiomycetes by Nitrogen-Sufficient Media. Bioresour. Technol. 1995, 53, 133–139. [Google Scholar] [CrossRef]
- Jasmin, M.Y.; Syukri, F.; Kamarudin, M.S.; Karim, M. Potential of Bioremediation in Treating Aquaculture Sludge: Review Article. Aquaculture 2020, 519, 734905. [Google Scholar] [CrossRef]
- Wu, Y.; Song, K. Process Performance of Anaerobic Co-Digestion of Waste Activated Sludge and Aquaculture Sludge. Aquac. Eng. 2020, 90, 102090. [Google Scholar] [CrossRef]
- Yogev, U.; Gross, A. Reducing Environmental Impact of Recirculating Aquaculture Systems by Introducing a Novel Microaerophilic Assimilation Reactor: Modeling and Proof of Concept. J. Clean. Prod. 2019, 226, 1042–1050. [Google Scholar] [CrossRef]
- Khiari, Z.; Kaluthota, S.; Savidov, N. Aerobic Bioconversion of Aquaculture Solid Waste into Liquid Fertilizer: Effects of Bioprocess Parameters on Kinetics of Nitrogen Mineralization. Aquaculture 2019, 500, 492–499. [Google Scholar] [CrossRef]
- Federation, W.E.; Association, A. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005; p. 21. [Google Scholar]
- Miranda, I.; Simões, R.; Medeiros, B.; Nampoothiri, K.M.; Sukumaran, R.K.; Rajan, D.; Pereira, H.; Ferreira-Dias, S. Valorization of Lignocellulosic Residues from the Olive Oil Industry by Production of Lignin, Glucose and Functional Sugars. Bioresour. Technol. 2019, 292, 121936. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Lu-Chau, T.A.; Gullón, B.; Ruiz, E.; Romero, I.; Castro, E.; Lema, J.M. Application of a Combined Fungal and Diluted Acid Pretreatment on Olive Tree Biomass. Ind. Crops Prod. 2018, 121, 10–17. [Google Scholar] [CrossRef]
- Lourenço, L.A.; Debiasi, M.; Magina, A.; Benathar, L.; Tavares, B.; Maria, S.; Guelli, A.; De Souza, U.; García, M. Biosurfactant Production by Trametes Versicolor Grown on Two-Phase Olive Mill Waste in Solid State Fermentation. Environ. Technol. 2017, 39, 3066–3076. [Google Scholar] [CrossRef]
- Schalchli, H.; Hormazábal, E.; Rubilar, O.; Briceño, G.; Mutis, A.; Zocolo, G.J.; Diez, M.C. Production of Ligninolytic Enzymes and Some Diffusible Antifungal Compounds by White-rot Fungi Using Potato Solid Wastes as the Sole Nutrient Source. J. Appl. Microbiol. 2017, 123, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, M.; González, M.E.; Cartes, A.; Diez, M.C. Effect of Soya Lecithin on the Enzymatic System of the White-Rot Fungi Anthracophyllum Discolor. J. Ind. Microbiol. Biotechnol. 2011, 38, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jin, D.; Ouyang, X.; Zhao, L.; Qiu, X.; Wang, F. Effect of Structural Characteristics on the Depolymerization of Lignin into Phenolic Monomers. Fuel 2018, 223, 366–372. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Larou, E.; Mountzouris, K.C.; Zervakis, G.I. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium Erinaceus. Appl. Biochem. Biotechnol. 2016, 180, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chandra, R. Ligninolytic Enzymes and Its Mechanisms for Degradation of Lignocellulosic Waste in Environment. Heliyon 2020, 6, e03170. [Google Scholar] [CrossRef]
- Acevedo, F.; Pizzul, L.; Castillo, M.D.P.; Cuevas, R.; Diez, M.C. Degradation of Polycyclic Aromatic Hydrocarbons by the Chilean White-Rot Fungus Anthracophyllum Discolor. J. Hazard. Mater. 2011, 185, 212–219. [Google Scholar] [CrossRef]
- Fenice, M.; Federici, F.; Annibale, A.D. Submerged and Solid-State Production of Laccase and Mn-Peroxidase by Panus tigrinus on Olive Mill Wastewater-Based Media. J. Biotechnol. 2003, 100, 77–85. [Google Scholar] [CrossRef] [PubMed]
Pre-Treatment (C/N Ratio/Substrate) | Dry Basis Mass OMSW (g) | Volume AS (mL) | Volume H2O (mL) | Pre-Treatment TS (g L−1) |
---|---|---|---|---|
C/N-58 OMSW | 5.2 | 0 | 75 | 69 |
C/N-45 OMSW/AS | 12.2 | 75 | 0 | 171 |
C/N-32 OMSW/AS | 5.0 | 75 | 0 | 75 |
C/N-19 OMSW/AS | 1.8 | 75 | 0 | 32 |
C/N-7 AS | 0 | 75 | 0 | 8 |
Pre-Treatment (C/N Ratio/Substrate) | Dry Basis Mass OMSW (g) | Volume AS (mL) | Volume H2O (mL) | Pre-Treatment TS (g L−1) |
---|---|---|---|---|
C/N-45 OMSW/AS | 12.2 | 75 | 0 | 171 |
C/N-58 OMSW a | 12.8 | 0 | 75 | 171 |
C/N-32 OMSW/AS | 5.0 | 75 | 0 | 75 |
C/N-58 OMSW b | 5.6 | 0 | 75 | 75 |
C/N-19 OMSW/AS | 1.8 | 75 | 0 | 32 |
C/N-58 OMSW c | 2.4 | 0 | 75 | 32 |
Substrate | C/N % w/w | TS % w/w | VS % w/w | TOC % w/w | COD mg L−1 | TN mg Kg−1 | pH | TSP g GA Kg−1 | Lignin % w/w |
---|---|---|---|---|---|---|---|---|---|
OMSW | 48.4/0.84 | 38.5 | 34.5 | 29.2 | 87,867 | 282.9 | 5.10 | 1.49 | 33.4 |
AS | 53.4/7.92 | 0.8 | 0.7 | 200 mg L−1 | 15,491 | 897.5 mg L−1 | 5.11 | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araneda, M.; Pinto-Ibieta, F.; Xu, X.; Rubilar, O.; Fermoso, F.G.; Ciudad, G. Aquaculture Sludge as Co-Substrate for Sustainable Olive Mill Solid Waste Pre-Treatment by Anthracophyllum discolor. Agronomy 2023, 13, 724. https://doi.org/10.3390/agronomy13030724
Araneda M, Pinto-Ibieta F, Xu X, Rubilar O, Fermoso FG, Ciudad G. Aquaculture Sludge as Co-Substrate for Sustainable Olive Mill Solid Waste Pre-Treatment by Anthracophyllum discolor. Agronomy. 2023; 13(3):724. https://doi.org/10.3390/agronomy13030724
Chicago/Turabian StyleAraneda, Michael, Fernanda Pinto-Ibieta, Xiaofan Xu, Olga Rubilar, Fernando G. Fermoso, and Gustavo Ciudad. 2023. "Aquaculture Sludge as Co-Substrate for Sustainable Olive Mill Solid Waste Pre-Treatment by Anthracophyllum discolor" Agronomy 13, no. 3: 724. https://doi.org/10.3390/agronomy13030724
APA StyleAraneda, M., Pinto-Ibieta, F., Xu, X., Rubilar, O., Fermoso, F. G., & Ciudad, G. (2023). Aquaculture Sludge as Co-Substrate for Sustainable Olive Mill Solid Waste Pre-Treatment by Anthracophyllum discolor. Agronomy, 13(3), 724. https://doi.org/10.3390/agronomy13030724