Cation Exchange Properties of Subsurface Soil in Mid-Subtropical China: Variations, Correlation with Soil-Forming Factors, and Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Variations in SCEP
3.2. SCEP as a Function of Soil-Forming Factors
3.3. SCEP as a Function of Diagnostic Horizons and Soil Orders
3.4. Correlation and Prediction Model of SCEP with Soil Properties
4. Discussion
4.1. SCEP as a Function of Soil-Forming Factors
4.2. SCEP as an Indicator of Soil Development
4.3. CEC Prediction Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brevik, E.C. Soil health and productivity. In Soils, Plant Growth and Crop Production; Verheye, W., Ed.; EOLSS Publishers: Oxford, UK, 2009; pp. 106–137. [Google Scholar]
- Schaetzl, R.J.; Thompson, M.L. Soil Genesis and Geomorphology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Evangelou, V.P.; Phillips, R.E. Cation exchange in soils. In Chemical Processes in Soils; Tabatabai, M.A., Sparks, D.L., Eds.; Soil Science Society of America: Madison, WI, USA, 2005; Volume 8, pp. 343–410. [Google Scholar]
- Caravaca, F.; Lax, A.; Albaladejo, J. Organic matter, nutrient contents and cation exchange capacity in fine fractions from semiarid calcareous soils. Geoderma 1999, 93, 161–176. [Google Scholar] [CrossRef]
- Ata Rezaei, S.A.; Gilkes, R.J. The effects of landscape attributes and plant community on soil chemical properties in rangelands. Geoderma 2005, 125, 167–176. [Google Scholar] [CrossRef]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Concentrations of exchangeable bases and cation exchange capacity in soils of cropland, grazing and forest in the Bale Mountains, Ethiopia. For. Ecol. Manag. 2008, 256, 1298–1302. [Google Scholar] [CrossRef]
- Iturri, L.A.; Buschiazzo, D.E. Cation exchange capacity and mineralogy of loess soils with different amounts of volcanic ashes. Catena 2014, 121, 81–87. [Google Scholar] [CrossRef]
- Bojko, O.; Kabala, C. Transformation of physicochemical soil properties along a mountain slope due to land management and climate changes—A case study from the Karkonosze Mountains, SW Poland. Catena 2016, 140, 43–54. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, Y.H.; Searle, E.B.; Sardans, J.; Ciais, P.; Peñuelas, J.; Huang, Z. Whole soil acidification and base cation reduction across subtropical China. Geoderma 2020, 361, 114107. [Google Scholar] [CrossRef]
- Ludwig, B.; Khanna, P.K.; Anurugsa, B.; Fölster, H. Assessment of cation and anion exchange and pH buffering in an Amazonian ultisol. Geoderma 2001, 102, 27–40. [Google Scholar] [CrossRef]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a luvisol in the semi-arid subtropics. Soil Tillage Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Cheng, C.; Hsiao, S.; Huang, Y.; Hung, C.; Pai, C.; Chen, C.; Menyailo, O.V. Landslide-induced changes of soil physicochemical properties in Xitou, Central Taiwan. Geoderma 2016, 265, 187–195. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Hu, F.; Xu, C.; Ma, R.; Zhao, S. Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. Catena 2020, 190, 104526. [Google Scholar] [CrossRef]
- Khaledian, Y.; Brevik, E.C.; Pereira, P.; Cerdà, A.; Fattah, M.A.; Tazikeh, H. Modeling soil cation exchange capacity in multiple countries. Catena 2017, 158, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Seybold, C.A.; Grossman, R.B.; Reinsch, T.G. Predicting cation exchange capacity for soil survey using linear models. Soil Sci. Soc. Am. J. 2005, 69, 856–863. [Google Scholar] [CrossRef] [Green Version]
- Zolfaghari, A.A.; Taghizadeh-Mehrjardi, R.; Moshki, A.R.; Malone, B.P.; Weldeyohannes, A.O.; Sarmadian, F.; Yazdani, M.R. Using the nonparametric k-nearest neighbor approach for predicting cation exchange capacity. Geoderma 2016, 265, 111–119. [Google Scholar] [CrossRef]
- Ghorbani, H.; Kashi, H.; Hafezi Moghadas, N.; Emamgholizadeh, S. Estimation of soil cation exchange capacity using multiple regression, artificial neural networks, and adaptive neuro-fuzzy inference system models in Golestan Province, Iran. Commun. Soil Sci. Plant Anal. 2015, 46, 763–780. [Google Scholar] [CrossRef]
- Hunan Department of Agriculture. Hunan Soil; China Agriculture Press: Beijing, China, 1989. (In Chinese) [Google Scholar]
- Ouyang, N.; Zhang, Y.; Sheng, H.; Zhou, Q.; Huang, Y.; Yu, Z. Clay mineral composition of upland soils and its implication for pedogenesis and soil taxonomy in subtropical China. Sci. Rep. 2021, 11, 9707. [Google Scholar] [CrossRef]
- Qi, C.J.; Peng, D.C.; Tang, D.P. Hunan Vegetation; Hunan Science and Technology Press: Changsha, China, 1990. (In Chinese) [Google Scholar]
- Jahn, R.; Blume, H.P.; Asio, V.B.; Spaargaren, O.; Schad, P. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; ISBN 978-92-5-105521-2. [Google Scholar]
- Schoeneberger, P.J.; Wysocki, D.A.; Benham, E.C.; Broderson, W.D. Field Book for Describing and Sampling Soils, Version 3.0; Natural Resources Conservation Service, USDA, National Soil Survey Center: Lincoln, NE, USA, 2012. [Google Scholar]
- CRGCST (Cooperative Research Group on Chinese Soil Taxonomy). Chinese Soil Taxonomy; Science Press: Beijing, China, 2001. [Google Scholar]
- United States Department of Agriculture-Natural Resources Conservation Service. Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- IUSS Working Group WRB. International soil classification system for naming soils and creating legends for soil maps. In World Reference Base for Soil Resources, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Brady, N.C.; Weil, R. The Nature and Properties of Soils, 15th ed.; Pearson Education: London, UK, 2017. [Google Scholar]
- Zhang, G.L.; Gong, Z.T. Soil Survey Laboratory Methods; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, 2nd ed.; Klute, A., Ed.; Agronomy Monograph 9, ASA and SSSA; Madison Book Company: Seattle, WI, USA, 1986. [Google Scholar]
- Bockheim, J.G. Lithic Humicryods and Haplocryods: Disjunct alpine–subalpine soils of the Northern Hemisphere. Geoderma 2010, 159, 379–389. [Google Scholar] [CrossRef]
- Özler, H.M. Carbonate weathering and connate seawater influencing karst groundwaters in the Gevas–Gurpinar–Güzelsu basins, Turkey. Environ. Earth Sci. 2010, 61, 323–340. [Google Scholar] [CrossRef]
- Kurdi, M.; Hezarkhani, A.; Eslamkish, T. Assessment of chemical properties and hydro-geochemical coefficients at the Qareh Sou Basin, Golestan Province, Iran. Environ. Earth Sci. 2014, 72, 3243–3249. [Google Scholar] [CrossRef]
- Silva, M.B.; dos Anjos, L.H.C.; Pereira, M.G.; Schiavo, J.A.; Cooper, M.; de Souza Cavassani, R. Soils in the karst landscape of Bodoquena plateau in cerrado region of Brazil. Catena 2017, 154, 107–117. [Google Scholar] [CrossRef]
- Funakawa, S.; Watanabe, T.; Kosaki, T. Regional trends in the chemical and mineralogical properties of upland soils in humid Asia: With special reference to the WRB classification scheme. Soil Sci. Plant Nutr. 2008, 54, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Guo, W.; Huang, B.; Zhuo, M.; Li, D.; Li, Z.; Yuan, Z. Effects of soil properties, topography and landform on the understory biomass of a pine forest in a subtropical hilly region. Catena 2019, 176, 104–111. [Google Scholar] [CrossRef]
- Tessens, E.; Shamshuddin, J. Characteristics related to charges in oxisols of peninsular Malaysia. Pedologie 1982, 32, 85–105. [Google Scholar]
- Ma, C.; Eggleton, R.A. Cation exchange capacity of kaolinite. Clay Miner. 1999, 47, 174–180. [Google Scholar] [CrossRef]
- Khawmee, K.; Suddhiprakarn, A.; Kheoruenromne, I.; Singh, B. Surface charge properties of kaolinite from Thai soils. Geoderma 2013, 192, 120–131. [Google Scholar] [CrossRef]
- Ivanić, M.; Vdović, N.; Barreto, S.D.; Bermanec, V.; Sondi, I. Mineralogy, surface properties and electrokinetic behaviour of kaolin clays from the naturally occurring pegmatite deposits. Geol. Croat. 2015, 68, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Vourlitis, G.L.; de Almeida Lobo, F.; Lawrence, S.; Codolo de Lucena, I.; Pinto, O.B.; Dalmagro, H.J.; Carmen, E.; Rodriguez, O.; de Souza Nogueira, J. Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (cerrado) in southern Mato Grosso. Soil Sci. Soc. Am. J. 2013, 77, 1370–1379. [Google Scholar] [CrossRef] [Green Version]
- Sherman, L.A.; Brye, K.R. Soil Chemical Property Changes in Response to Long-Term Pineapple Cultivation in Costa Rica. Agrosyst. Geosci. Environ. 2019, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Duan, B.; Xian, J.; Korpelainen, H.; Li, C. Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. For. Ecol. Manag. 2011, 262, 361–369. [Google Scholar] [CrossRef]
- Oorts, K.; Vanlauwe, B.; Cofie, O.O.; Sanginga, N.; Merckx, R. Charge characteristics of soil organic matter fractions in a Ferric Lixisol under some multipurpose trees. Agrofor. Syst. 2000, 48, 169–188. [Google Scholar] [CrossRef]
- Bai, Y.C.; Chang, Y.Y.; Hussain, M.; Lu, B.; Zhang, J.P.; Song, X.B.; Lei, X.S.; Pei, D. Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms 2020, 8, 694. [Google Scholar] [CrossRef]
- Osher, L.J.; Buol, S.W. Relationship of soil properties to parent material and landscape position in eastern Madre de Dios, Peru. Geoderma 1998, 83, 143–166. [Google Scholar] [CrossRef]
- Sparling, G.P.; Ross, D.J.; Trustrum, N.A.; Arnold, G.; West, A.W.; Speir, T.W.; Schipper, L.A. Recovery of topsoil characteristics after landslip erosion in dry hill country of New Zealand, and a test of the space-for-time hypothesis. Soil Biol. Biochem. 2003, 35, 1575–1586. [Google Scholar] [CrossRef]
- Wilcke, W.; Valladarez, H.; Stoyan, R.; Yasin, S.; Valarezo, C.; Zech, W. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 2003, 53, 79–95. [Google Scholar] [CrossRef]
- Nie, X.; Li, Z.; He, J.; Huang, J.; Zhang, Y.; Huang, B.; Ma, W.; Lu, Y.; Zeng, G. Enrichment of organic carbon in sediment under field simulated rainfall experiments. Environ. Earth Sci. 2015, 74, 5417–5425. [Google Scholar] [CrossRef]
- Lesoli, M.S.; Dube, S.; Fatunbi, A.O.; Moyo, B. Physicochemical characteristics of communal rangeland soils along two defined toposequences in the Eastern Cape, South Africa. Afr. J. Range. For. Sci. 2010, 27, 89–94. [Google Scholar] [CrossRef]
- Khormali, F.; Ajami, M. Pedogenetic investigation of soil degradation on a deforested loess hillslope of Golestan Province, Northern Iran. Geoderma 2011, 167, 274–283. [Google Scholar] [CrossRef]
- Schawe, M.; Glatzel, S.; Gerold, G. Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: Podzolization vs. hydromorphy. Catena 2007, 69, 83–90. [Google Scholar] [CrossRef]
- Mareschal, L.; Nzila, J.D.D.; Turpault, M.P.; Thongo M’Bou, A.; Mazoumbou, J.C.; Bouillet, J.P.; Ranger, J.; Laclau, J.P. Mineralogical and physico-chemical properties of ferralic arenosols derived from unconsolidated Plio-Pleistocenic deposits in the coastal plains of Congo. Geoderma 2011, 162, 159–170. [Google Scholar] [CrossRef]
- Pincus, L.N.; Ryan, P.C.; Huertas, F.J.; Alvarado, G.E. The influence of soil age and regional climate on clay mineralogy and cation exchange capacity of moist tropical soils: A case study from Late Quaternary chronosequences in Costa Rica. Geoderma 2017, 308, 130–148. [Google Scholar] [CrossRef]
- DeNovio, N.M.; Saiers, J.E.; Ryan, J.N. Colloid movement in unsaturated porous media: Recent Advances and Future Directions. Vadose Zone J. 2004, 3, 338–351. [Google Scholar] [CrossRef]
- Ranville, J.F.; Chittleborough, D.J.; Beckett, R. Particle-size and element distributions of soil colloids. Soil Sci. Soc. Am. J. 2005, 69, 1173–1184. [Google Scholar] [CrossRef]
- Keren, R.; Sparks, D.L. The role of edge surfaces in flocculation of 2:1 clay minerals. Soil Sci. Soc. Am. J. 1995, 59, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Lavkulich, L.M.; Arocena, J.M. Luvisolic soils of Canada: Genesis, distribution, and classification. Can. J. Soil. Sci. 2011, 91, 781–806. [Google Scholar] [CrossRef]
- Gong, Z.T.; Zhang, G.L.; Chen, Z.C. Pedogenesis and Soil Taxonomy; Science Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Shainberg, I.; Kemper, W.D. Hydration status of adsorbed cations. Soil Sci. Soc. Am. J. 1966, 30, 707–713. [Google Scholar] [CrossRef]
- Petersen, L.W.; Moldrup, P.; Jacobsen, O.H.; Rolston, D.E. Relations between specific surface area and soil physical and chemical properties. Soil Sci. 1996, 161, 9–21. [Google Scholar] [CrossRef]
- Paluszek, J. Estimation of cation exchange capacity and cation saturation of Luvisols developed from loess. J. Entomol. 2014, 19, 1085–1098. [Google Scholar] [CrossRef]
- Uehara, G.; Gillman, G.P. The Mineralogy, Chemistry and Physics of Tropical Soils with Variable Charge Clays; Westview Press: Boulder, CO, USA, 1981. [Google Scholar]
- Ulusoy, Y.; Tekin, Y.; Tümsavas, Z.; Mouazen, A.M. Prediction of soil cation exchange capacity using visible and near infrared spectroscopy. Biosyst. Eng. 2016, 152, 79–93. [Google Scholar] [CrossRef]
- Khaledian, Y.; Kiani, F.; Ebrahimi, S.; Brevik, E.C.; Aitkenhead-Peterson, J. Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad. Dev. 2017, 28, 128–141. [Google Scholar] [CrossRef]
- Shabani, A.; Norouzi, M. Predicting cation exchange capacity by artificial neural network and multiple linear regression using terrain and soil characteristics. Indian J. Sci. Technol. 2015, 8, 1–10. [Google Scholar] [CrossRef]
Parent Rock/Material | Bulk Density g cm−3 | Particle Size Distribution (mm) g kg−1 | Soil Organic C g kg−1 | pH | Total Potassium g kg−1 | |||
---|---|---|---|---|---|---|---|---|
Sand 2.00–0.05 | Silt 0.05–0.002 | Clay <0.002 | H2O | H2O | ||||
Granite (n = 42) | 1.4 ± 0.2 ab | 445 ± 126 a | 260 ± 60 d | 295 ± 113 c | 6.9 ± 6.7 ab | 4.8 ± 0.4 b | 3.8 ± 0.1 b | 28 ± 7 a |
Quaternary red clay (n = 45) | 1.4 ± 0.2 a | 239 ± 134 c | 318 ± 103 c | 443 ± 68 b | 5.7 ± 5.3 b | 4.8 ± 0.3 b | 3.8 ± 0.1 b | 15 ± 4 c |
Slate (n = 34) | 1.3 ± 0.2 ab | 241 ± 172 c | 432 ± 139 a | 327 ± 114 c | 9.8 ± 8.7 a | 4.8 ± 0.5 b | 3.7 ± 0.2 b | 19 ± 5 b |
Limestone (n = 43) | 1.3 ± 0.2 ab | 110 ± 90 d | 324 ± 101 c | 566 ± 145 a | 7.7 ± 5.1 ab | 5.8 ± 0.6 a | 4.8 ± 1.1 a | 16 ± 6 c |
Sandstone (n = 39) | 1.3 ± 0.2 b | 297 ± 88 b | 371 ± 75 b | 332 ± 60 c | 9.2 ± 8.3 a | 4.8 ± 0.5 b | 3.8 ± 0.2 b | 16 ± 6 c |
Soil Horizons | Parent Rock/Material | Exchangeable Base (cmol kg−1) | Exchangeable Acidity (cmol kg−1) | CEC | ECEC | BSξ | Alsat | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ex | Mg2+ex | K+ex | Na+ex | Sum | H+ex | Al3+ex | Sum | cmol kg−1 | % | ||||
Surface horizons | Granite | 0.7 ± 0.7 b£ | 0.27 ± 0.16 b | 0.35 ± 0.18 a | 0.24 ± 0.22 a | 1.6 ± 0.8 b | 0.38 ± 0.2 a | 4.5 ± 2.5 a | 5.0 ± 2.5 a | 14 ± 3 a | 6.6 ± 2.2 a | 12 ± 8 b | 66 ± 22 a |
Quaternary red clay | 1.4 ± 1.4 b | 0.47 ± 0.36 b | 0.26 ± 0.14 ab | 0.22 ± 0.26 a | 2.3 ± 1.8 b | 0.29 ± 0.15 a | 6.1 ± 1.3 a | 6.4 ± 1.3 a | 15 ± 2 a | 8.7 ± 1.3 a | 15 ± 12 b | 72 ± 17 a | |
Slate | 1.4 ± 1.1 b | 0.37 ± 0.32 b | 0.22 ± 0.1 b | 0.10 ± 0.09 ab | 2.1 ± 1.4 b | 0.36 ± 0.13 a | 4.8 ± 2.4 a | 5.2 ± 2.4 a | 17 ± 5 a | 7.3 ± 1.7 a | 13 ± 8 b | 64 ± 24 a | |
Limestone | 5.3 ± 3.2 a | 0.79 ± 0.32 a | 0.21 ± 0.08 b | 0.04 ± 0.04 b | 6.3 ± 3.4 a | 0.11 ± 0.16 b | 1.5 ± 2.6 b | 1.7 ± 2.7 b | 16 ± 3 a | 8.0 ± 2.6 a | 40 ± 22 a | 18 ± 29 b | |
Sandstone | 1.1 ± 0.9 b | 0.42 ± 0.36 b | 0.23 ± 0.08 ab | 0.10 ± 0.09 ab | 1.9 ± 1.3 b | 0.32 ± 0.19 a | 5.5 ± 2.9 a | 5.8 ± 3.0 a | 16 ± 3 a | 7.7 ± 2.3 a | 12 ± 9 b | 67 ± 27 a | |
Subsurface horizons | Granite | 0.4 ± 0.4 b | 0.23 ± 0.16 b | 0.24 ± 0.14 a | 0.20 ± 0.14 a | 1.1 ± 0.6 b | 0.23 ± 0.1 ab | 4.5 ± 1.4 a | 4.7 ± 1.5 a | 12 ± 2 bc | 5.8 ± 1.4 c | 9 ± 6 b | 76 ± 12 a |
Quaternary red clay | 1.0 ± 0.5 b | 0.65 ± 0.41 a | 0.19 ± 0.09 ab | 0.19 ± 0.13 a | 2.1 ± 0.9 b | 0.18 ± 0.07 ab | 5.6 ± 1.0 a | 5.8 ± 1.0 a | 15 ± 2 ab | 7.8 ± 1.0 ab | 13 ± 5 b | 72 ± 11 a | |
Slate | 1.2 ± 0.7 b | 0.39 ± 0.46 ab | 0.13 ± 0.04 b | 0.11 ± 0.11 ab | 1.8 ± 1.1 b | 0.24 ± 0.11 a | 4.2 ± 3.3 a | 4.5 ± 1.3 a | 13 ± 5 abc | 6.3 ± 1.5 bc | 14 ± 8 b | 68 ± 13 a | |
Limestone | 4.5 ± 3.8 a | 0.64 ± 0.45 a | 0.13 ± 0.06 b | 0.05 ± 0.06 b | 5.3 ± 4.2 a | 0.13 ± 0.13 b | 2.6 ± 2.0 b | 2.7 ± 2.1 b | 16 ± 4 a | 8.0 ± 2.8 a | 31 ± 23 a | 40 ± 32 b | |
Sandstone | 1.1 ± 0.9 b | 0.42 ± 0.42 ab | 0.15 ± 0.06 b | 0.08 ± 0.08 b | 1.7 ± 1.3 b | 0.16 ± 0.09 ab | 4.2 ± 1.7 a | 4.4 ± 1.7 a | 11 ± 2 c | 6.1 ± 1.5 c | 15 ± 10 b | 68 ± 28 a | |
M ± S | 1.7 ± 2.3 | 0.45 ± 0.39 | 0.19 ± 0.1 | 0.13 ± 0.15 | 2.5 ± 2.6 | 0.21 ± 0.14 | 4.4 ± 2.4 | 4.7 ± 2.5 | 14 ± 4 | 7.1 ± 2.2 | 17 ± 16 | 64 ± 27 |
Ca2+ex | Mg2+ex | K+ex | Na+ex | SBC | H+ex | Al3+ex | EA | CEC | ECEC | BS | Alsat | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH (H2O) | 0.78 ** | 0.64 ** | −0.30 ** | 0.79 ** | −0.46 ** | −0.70 ** | −0.71 ** | 0.26 ** | 0.76 ** | −0.80 ** | ||
pH (KCl) | 0.86 ** | 0.52 ** | −0.23 ** | 0.84 ** | −0.44 ** | −0.67 ** | −0.64 ** | 0.26 ** | 0.25 ** | 0.79 ** | −0.74 ** | |
SOC | 0.32 ** | 0.37 ** | 0.39 ** | 0.16 * | ||||||||
Sand | −0.27 ** | −0.24 ** | 0.23 ** | −0.26 ** | 0.16 * | −0.54 ** | −0.29 ** | −0.15 * | 0.24 ** | |||
Silt | 0.16 * | −0.14 * | 0.14 * | −0.20 ** | ||||||||
Clay | 0.22 ** | 0.15 * | −0.19 ** | −0.16 * | 0.21 ** | 0.51 ** | 0.29 ** | |||||
BD | −0.18 ** | 0.18 * | −0.15 * | −0.32 ** |
n | R2 | Adj. R2 | RMSE | NRMSE | Formula/Eigenvalues | |
---|---|---|---|---|---|---|
MSR model | ||||||
All horizons | 203 | 0.49 | 0.48 | 2.80 | 0.22 | CEC = 3.961 − 0.004 × sand + 0.219 × SOC + 0.013 × clay + 1.165 × pH (H2O) − 0.055 × Fed |
Surface horizon | 68 | 0.68 | 0.66 | 2.11 | 0.16 | CEC = 12.848 − 0.009 × sand + 0.279 × SOC + 1.055 × pH (KCl) − 3.361 × BD |
Subsurface horizon | 135 | 0.46 | 0.44 | 2.95 | 0.25 | CEC = 1.445 + 0.019 × clay − 0.087 × Fed + 1.32 × pH (H2O) |
RF model | ||||||
All horizons | 203 | 0.73 | 0.47 | 2.05 | 0.16 | SOC, Clay |
Surface horizon | 68 | 0.92 | 0.86 | 1.19 | 0.07 | pH(H2O), SOC, Clay |
Subsurface horizon | 135 | 0.60 | 0.58 | 4.69 | 0.31 | SOC, Clay |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, N.; Zhang, P.; Zhang, Y.; Sheng, H.; Zhou, Q.; Huang, Y.; Yu, Z. Cation Exchange Properties of Subsurface Soil in Mid-Subtropical China: Variations, Correlation with Soil-Forming Factors, and Prediction. Agronomy 2023, 13, 741. https://doi.org/10.3390/agronomy13030741
Ouyang N, Zhang P, Zhang Y, Sheng H, Zhou Q, Huang Y, Yu Z. Cation Exchange Properties of Subsurface Soil in Mid-Subtropical China: Variations, Correlation with Soil-Forming Factors, and Prediction. Agronomy. 2023; 13(3):741. https://doi.org/10.3390/agronomy13030741
Chicago/Turabian StyleOuyang, Ningxiang, Pengbo Zhang, Yangzhu Zhang, Hao Sheng, Qing Zhou, Yunxiang Huang, and Zhan Yu. 2023. "Cation Exchange Properties of Subsurface Soil in Mid-Subtropical China: Variations, Correlation with Soil-Forming Factors, and Prediction" Agronomy 13, no. 3: 741. https://doi.org/10.3390/agronomy13030741
APA StyleOuyang, N., Zhang, P., Zhang, Y., Sheng, H., Zhou, Q., Huang, Y., & Yu, Z. (2023). Cation Exchange Properties of Subsurface Soil in Mid-Subtropical China: Variations, Correlation with Soil-Forming Factors, and Prediction. Agronomy, 13(3), 741. https://doi.org/10.3390/agronomy13030741