Composting Sugarcane Filter Mud with Different Sources Differently Benefits Sweet Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Crop Managements
2.3. Compost Material and Treatment Preparation
2.4. Sampling Procedures and Measurements
2.5. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Phenological and Growth Parameters
3.3. Sweet Maize Yield and Yield Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qureshi, M.A.; Afghan, S. The Pakistan sugar industry its current status and future needs. Pak. Sugar J. 2020, 35, 13. [Google Scholar] [CrossRef]
- Raza, Q.-U.-A.; Bashir, M.A.; Rehim, A.; Sial, M.U.; Ali Raza, H.M.; Atif, H.M.; Brito, A.F.; Geng, Y. Sugarcane Industrial Byproducts as Challenges to Environmental Safety and Their Remedies: A Review. Water 2021, 13, 3495. [Google Scholar] [CrossRef]
- Sardar, S.; Ilyas, S.U.; Malik, S.R.; Javaid, K.; Sardar, S.; Ilyas, S.U.; Malik, S.R. Compost fertilizer production from sugar press mud (SPM). Int. J. Chem. Environ. Eng. 2012, 3, 39–43. [Google Scholar]
- United States Department of Agriculture. Global Agriculture Information Network. Sugarcane Report 2022. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Sugar%20Annual_Islamabad_Pakistan_PK2022-0004.pdf (accessed on 2 October 2022).
- Pires, A.; Martinho, G. Waste hierarchy index for circular economy in waste management. J. Waste Manag. 2019, 95, 298–305. [Google Scholar] [CrossRef]
- Chan, K. Soil organic carbon and soil structure: Implications for the soil health of agrosystems. Soil Health. In The Foundation of Sustainable Agriculture’, Proceedings of a Workshop on the Importance of Soil Health in Agriculture; Agricultural Institute: Wollongbar, NSW, Australia, 2001; pp. 126–133. [Google Scholar]
- Bangar, K.; Parmar, B.; Ashok, M. Effect of nitrogen and pressmud cake application on yield and uptake of N, P and K by sugarcane (Saccharum officinarum L.). Crop Res. 2000, 19, 198–203. [Google Scholar]
- Razzaq, A. Assessing sugarcane filter cake as crop nutrients and soil health ameliorant. Pak. Sugar J. 2001, 21, 15–18. [Google Scholar]
- Dey, P.; Singh, S.; Buragohain, S.; Burthakur, M. Integrated effect of organic and inorganic fertilizers for cane yield and sugar production in spring planted sugarcane. Indian Sugar 1997, 47, 279–282. [Google Scholar]
- Dominguez, J. Testing the impact of vermicomposting. BioCycle 1997, 38, 58. [Google Scholar]
- Rakkiyappan, P.; Thangavelu, S.; Malathi, R.; Radhamani, R. Effect of biocompost and enriched pressmud on sugarcane yield and quality. Sugar Tech. 2001, 3, 92–96. [Google Scholar] [CrossRef]
- Iqbal, S.Z.; Abdull Razis, A.F.; Usman, S.; Ali, N.B.; Asi, M.R. Variation of Deoxynivalenol Levels in Corn and Its Products Available in Retail Markets of Punjab, Pakistan, and Estimation of Risk Assessment. Toxins 2021, 13, 296. [Google Scholar] [CrossRef]
- Zia, A.; Munsif, F.; Jamal, A.; Mihoub, A.; Saeed, M.F.; Fawad, M.; Ahmad, I.; Ali, A. Morpho-Physiological Attributes of Different Maize (Zea mays L.) Genotypes Under Varying Salt Stress Conditions. Gesunde Pflanz. 2022, 74, 661–673. [Google Scholar] [CrossRef]
- Khan, Z.; Khalil, S.; Farhatullah, K.M.; Khan, M.I.; Basir, A. Selecting optimum planting date for sweet corn in Peshawar. Sarhad J. Agric 2011, 27, 341–347. [Google Scholar]
- Özata, E. Evaluation of fresh ear yield and quality performance in super sweet corn. Int. J. life Sci. Biotechnol. 2019, 2, 80–94. [Google Scholar] [CrossRef]
- Hirich, A.; Rami, A.; Laajaj, K.; Choukr-Allah, R.; Jacobsen, S.; El Omari, H. Sweet corn water productivity under several deficit irrigation regimes applied during vegetative growth stage using treated wastewater as water irrigation source. Int. J. Agric. Biosyst. Eng. 2012, 6, 43–50. [Google Scholar]
- Revilla, P.; Anibas, C.M.; Tracy, W.F. Sweet corn research around the world 2015–2020. Agronomy 2021, 11, 534. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Bilalis, D.; Karkanis, A.; Froud-Williams, B.; Eleftherochorinos, I. Effects of cultural system (organic and conventional) on growth, photosynthesis and yield components of sweet corn (Zea mays L.) under semi-arid environment. Not. Bot. Horti. Agrobo. 2009, 37, 104–111. [Google Scholar]
- Gaikwad, S.; Puranik, R.; Deshmukh, S. Dynamics of soil microbial population and nutrient availability as influenced by application of pressmud cake in entisol. J. Soils Crop 1996, 6, 82–85. [Google Scholar]
- Rangaraj, T.; Somasundaram, E.; Amanullah, M.; Thirumurugan, V.; Ramesh, S.; Ravi, S. Effect of Agro-industrial wastes on soil properties and yield of irrigated finger millet (Eleusine coracana L. Gaertn) in coastal soil. Res. J. Agric. Biol. Sci. 2007, 3, 153–156. [Google Scholar]
- Shah, T.; Khan, H.; Noor, M.; Ghoneim, A.; Wang, X.; Sher, A.; Nasir, M.; Basahi, M. Effects of potassium on phenological, physiological and agronomic traits of maize (Zea mays L.) under high nitrogen nutrition with optimum and reduced irrigation. Appl. Ecol. Environ. Res. 2018, 16, 7079–7097. [Google Scholar] [CrossRef]
- Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants: German Federal Biological Research Centre for Agriculture and Forestry, BBCH-Monograph; BlackwellScience: Berlin, Germany, 2001; p. 104. [Google Scholar]
- Kumar, V.; Chopra, A. Effects of sugarcane pressmud on agronomical characteristics of hybrid cultivar of eggplant (Solanum melongena L.) under field conditions. Int. J. Recycl. Org. Waste Agric. 2016, 5, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Thompson, W.; Leege, P.; Millner, P.; Watson, M. Test Methods for the Examination of Composting and Compost; The United States Composting Council Research Education Foundation, The United States Department of Agriculture: Washington, WA, USA, 2001. [Google Scholar]
- Musa, U.T.; Hassan, U.T. Leaf area determination for maize (Zea mays L.), okra (Abelmoschus esculentus L.) and cowpea (Vigna unguiculata L.) crops using linear measurements. J. Biol. Agric. Healthc. 2016, 6, 104–111. [Google Scholar]
- Saeed, M.F.; Jamal, A.; Muhammad, D.; Shah, G.M.; Bakhat, H.F.; Ahmad, I.; Ali, S.; Ihsan, F.; Wang, J. Optimizing phosphorus levels in wheat grown in a calcareous soil with the use of adsorption isotherm models. Soil Sci. Plant Nutr. 2021, 21, 81–94. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics, a Biometrical Approach; McGraw-Hill Kogakusha, Ltd.: New York, NY, USA, 1980. [Google Scholar]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Adediran, J.; Taiwo, L.; Sobulo, R. Effect of organic wastes and method of composting on compost maturity, nutrient composition of compost and yields of two vegetable crops. J. Sustain. Agric. 2003, 22, 95–109. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Onemli, F. The effects of soil organic matter on seedling emergence in sunflower (Helianthus annuus L.). Plant Soil Environ. 2004, 50, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Hortik, H.J.; Arnold, C.Y. Temperature and the rate of development of sweet corn. Amer. Soc. Hort. 1965, 87, 303–312. [Google Scholar]
- Arnold, C.Y. Predicting Stages of Sweet Corn (Zea mays L.) Development1. J. Am. Soc. Hortic. 1974, 99, 501–505. [Google Scholar] [CrossRef]
- Raman, S.; Patel, A.; Shah, G.; Kaswala, R. Feasibility of some industrial wastes for soil improvement and crop production. J. Indian Soc. Soil Sci. 1996, 44, 147–150. [Google Scholar]
- Trinsoutrot, I.; Recous, S.; Mary, B.; Nicolardot, B. C and N fluxes of decomposing 13C and 15N Brassica napus L.: Effects of residue composition and N content. Soil Biol. Biochem. 2000, 32, 1717–1730. [Google Scholar] [CrossRef]
- Pampana, S.; Rossi, A.; Arduini, I. Biosolids Benefit Yield and Nitrogen Uptake in Winter Cereals without Excess Risk of N Leaching. Agronomy 2021, 11, 1482. [Google Scholar] [CrossRef]
- Muhammad, W.; Asghar, A.; Muhammad, T.; Muhammad, N.; Muhammad, H.; Muzzamil, H.S.; Saba, T.; Muqarrab, A.; Atta, U.M.; Azhar, G. Effect of diverse use of nitrogen sources on grain yield, harvest index, nitrogen-use efficiency and phenological development of hybrid maize (Zea mays L.). J. Med. Plant Res. 2012, 6, 3656–3663. [Google Scholar] [CrossRef]
- Imran, S.; Arif, M.; Khan, A.; Khan, M.A.; Shah, W.; Latif, A. Effect of nitrogen levels and plant population on yield and yield components of maize. Adv. Crop Sci. Technol. 2015, 3, 170. [Google Scholar] [CrossRef]
- Woodruff, L.; Habteselassie, M.; Norton, J.; Boyhan, G.; Cabrera, M. Yield and nutrient dynamics in conventional and organic sweet corn production systems. Agron. J. 2019, 111, 2395–2403. [Google Scholar] [CrossRef]
- Pampana, S.; Ercoli, L.; Masoni, A.; Arduini, I. Remobilization of dry matter and nitrogen in maize as affected by hybrid maturity class. Ital. J. Agron. 2009, 4, 39–46. [Google Scholar] [CrossRef]
- Kumar, C.; Ramawat, N.; Verma, A.K. Organic fertigation system in saline-sodic soils: A new paradigm for the restoration of soil health. Agron. J. 2022, 114, 317–330. [Google Scholar] [CrossRef]
- Rajeshwari, R.; Hebsur, N.; Pradeep, H.; Bharamagoudar, T. Effect of Integrated Nitrogen Management on Growth and Yield of Maize. Agric. Sci. 2010, 20, 399–400. [Google Scholar]
- Masti, S.; Pawar, A.; Roy, D. Effect of liquid organic manures on growth characters of maize (Zea mays L.). Ind. J. Agric. Sci. 2003, 23, 123–128. [Google Scholar]
- Kumar, V.; Chopra, A. Acta Advances in Agricultural Sciences. Acta Advan. Agric. Sci. 2014, 2, 17–39. [Google Scholar]
- Ezhilvannan, D.; Sharavanan, P.; Vijayaragavan, M. Effect of sugar mill effluent on changes of growth and amino acid and protein contents of maize (Zea mays L.) plants. Eco. Biotechnol. 2011, 3. Available online: https://updatepublishing.com/journal/index.php/jebt/article/view/182 (accessed on 2 October 2022).
- Makinde, E.; Ayoola, O. Growth, yield and NPK uptake by maize with complementary organic and inorganic fertilizers. African J. Food Agric. Nutr. Dev. 2010, 10, 2204–2217. [Google Scholar] [CrossRef]
- Varatharajan, T.; Choudhary, A.; Pooniya, V.; Dass, A.; Meena, M.; Gurung, B.; Harish, M. Influence of integrated crop management practices on yield, PAR interception, resource-use-efficiency and energetics in pigeonpea in north Indian plains. J. Environ. Biol. 2019, 40, 1204–1210. [Google Scholar] [CrossRef]
- Ungureanu, N.; Vlăduț, V.; Biriș, S.-Ș. Sustainable Valorization of Waste and By-Products from Sugarcane Processing. Sustainability 2022, 14, 11089. [Google Scholar] [CrossRef]
- Keivanrad, S.; Delkosh, B.; Hossein, A.; Shirani, R.; Zandi, P. The Effect of different rates of nitrogen and plant density on qualitative and quantitative traits of Indian mustard. Adv. Environ. Biol. 2012, 6, 145–152. [Google Scholar]
- Hosinkhani, M.; Kordlaghari, K.; Balouchi, H. Effects of potassium and iron nutrient elements on the quantity yield of Shariar wheat cultivar in Boyerahmad Reign. Ann. Biol. Res. 2013, 4, 56–60. [Google Scholar]
- Rana, D.; Dass, A.; Rajanna, G.; Choudhary, A. Fertilizer phosphorus solubility effects on Indian mustard–maize and wheat–soybean cropping systems productivity. J. Agron. 2018, 110, 2608–2618. [Google Scholar] [CrossRef]
- Shafi, M.; Bakht, J.; Jan, M.T.; Shah, Z. Soil C and N dynamics and maize (Zea may L.) yield as affected by cropping systems and residue management in North-western Pakistan. Soil Tillage Res. 2007, 94, 520–529. [Google Scholar] [CrossRef]
- Iqbal, S.; Arif, M.S.; Khan, H.Z.; Yasmeen, T.; Thierfelder, C.; Li, T.; Khan, S.; Nadir, S.; Xu, J. Compost Amended with N Enhances Maize Productivity and Soil Properties in Semi-Arid Agriculture. Agron. J. 2019, 111, 2536–2544. [Google Scholar] [CrossRef]
- Ali, K.; Munsif, F.; Zubair, M.; Hussain, Z.; Shahid, M.; Din, I.U.; Khan, N. Management of organic and inorganic nitrogen for different maize varieties. Sarhad J. Agric. 2011, 27, 525–529. [Google Scholar]
- Younas, M.; Zou, H.; Laraib, T.; Abbas, W.; Akhtar, M.W.; Aslam, M.N.; Amrao, L.; Hayat, S.; Abdul Hamid, T.; Hameed, A. The influence of vermicomposting on photosynthetic activity and productivity of maize (Zea mays L.) crop under semi-arid climate. PLoS ONE 2021, 16, e0256450. [Google Scholar] [CrossRef]
- Joshi, N.; Sharma, S.; Kangri, G. Physico-chemical characterization of sulphidation press mud composted press mud and vermicomposted pressmud. Rep. Opin. 2010, 2, 79–82. [Google Scholar]
- Kumpawat, B.; Rathore, S. Response of maize (Zea mays)-wheat (Triticum aestivum) cropping squence to fertilizer application. Indian J. Agron. 1995, 40, 26–29. [Google Scholar]
- Asif, M.; Saleem, M.F.; Anjum, S.A.; Wahid, M.A.; Bilal, M.F. Effect of nitrogen and zinc sulphate on growth and yield of maize (Zea mays L.). J. Agric. Res. 2013, 51, 455–464. [Google Scholar]
- Gunjal, B.; Chitodkar, S. Direct and residual fertility of varying sources and levels of nutrients on growth and yield behaviour of sweet corn (Zea mays L.)-potato (Solanum tuberosum L.) cropping system. Int. J. Chem. Stud. 2017, 5, 1336–1342. [Google Scholar]
- IBrahim, M.; Azzaz, N.; Khalifa, Y.; El-Mazny, R. Response of some maize hybrids to different nitrogen fertilization levels and filter mud cake for sugar production. J. Plant Prod. 2014, 5, 1491–1503. [Google Scholar] [CrossRef] [Green Version]
- Ajmal, S.; Sohail, K.; Saleem, M.; Haq, M. Association analysis for grain yield and yield components in maize. Pak. J. Pl. Sci 2000, 6, 12–17. [Google Scholar]
Properties | CS1 − SFM | CS2 − SFM | CS1 + SFM | CS2 + SFM |
---|---|---|---|---|
Bulk density (g cm−3) | 0.45 | 0.56 | 0.84 | 1.89 |
Moisture (%) | 15.6 | 20.6 | 25.5 | 40.4 |
Porosity (%) | 50.6 | 60.5 | 72.3 | 80.3 |
pH | 6.1 | 7.1 | 8.1 | 9.2 |
Total carbon (%) | 50.4 | 25.7 | 70.0 | 28.9 |
Total organic matter (%) | 27.5 | 30.6 | 39.9 | 41.3 |
Total nitrogen (%) | 1.3 | 1.2 | 7.0 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salman, M.; Inamullah; Jamal, A.; Mihoub, A.; Saeed, M.F.; Radicetti, E.; Ahmad, I.; Naeem, A.; Ullah, J.; Pampana, S. Composting Sugarcane Filter Mud with Different Sources Differently Benefits Sweet Maize. Agronomy 2023, 13, 748. https://doi.org/10.3390/agronomy13030748
Salman M, Inamullah, Jamal A, Mihoub A, Saeed MF, Radicetti E, Ahmad I, Naeem A, Ullah J, Pampana S. Composting Sugarcane Filter Mud with Different Sources Differently Benefits Sweet Maize. Agronomy. 2023; 13(3):748. https://doi.org/10.3390/agronomy13030748
Chicago/Turabian StyleSalman, Muhammad, Inamullah, Aftab Jamal, Adil Mihoub, Muhammad Farhan Saeed, Emanuele Radicetti, Iftikhar Ahmad, Asif Naeem, Jawad Ullah, and Silvia Pampana. 2023. "Composting Sugarcane Filter Mud with Different Sources Differently Benefits Sweet Maize" Agronomy 13, no. 3: 748. https://doi.org/10.3390/agronomy13030748
APA StyleSalman, M., Inamullah, Jamal, A., Mihoub, A., Saeed, M. F., Radicetti, E., Ahmad, I., Naeem, A., Ullah, J., & Pampana, S. (2023). Composting Sugarcane Filter Mud with Different Sources Differently Benefits Sweet Maize. Agronomy, 13(3), 748. https://doi.org/10.3390/agronomy13030748