Influence of Pesticides and Mineral Fertilizers on the Bacterial Community of Arable Soils under Pea and Chickpea Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Analysis of Soil Physicochemical Properties
2.3. Total DNA Isolation and Metagenomic Analysis of 16S rRNA Genes
2.4. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Abundance and Variability of the Bacterial Community in Relation of Experimental Conditions
3.3. Effect of Experimental Conditions on Microbial Diversity
3.4. Effect of Physicochemical Properties on Microbial Community
4. Discussion
4.1. Changes in Taxonomic Composition
4.2. Pesticides Influence of on the Bacterial Community of Arable Soil
4.3. Fertilizers Influence on the Bacterial Community of Arable Soils
4.4. Influence of Physicochemical Properties on the Microbial Community
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Crop | Treatment | PD_Whole_Tree | Chao1 | Shannon | Simpson |
---|---|---|---|---|---|
Pea | Control | 86.0 | 6843.8 | 10.8 | 0.998 |
85.6 | 7581.3 | 10.9 | 0.998 | ||
Fertilization | 90.7 | 7316.0 | 11.1 | 0.999 | |
89.6 | 7335.6 | 11.1 | 0.999 | ||
Pesticide application | 90.6 | 7138.4 | 11.0 | 0.998 | |
87.4 | 7873.3 | 11.1 | 0.998 | ||
Fertilization + Pesticide application | 87.7 | 6871.9 | 10.9 | 0.998 | |
88.4 | 8132.3 | 11.0 | 0.998 | ||
Chickpea | Control | 84.8 | 7068.8 | 10.9 | 0.998 |
86.0 | 7402.1 | 11.0 | 0.998 | ||
Fertilization | 89.1 | 6750.7 | 10.9 | 0.998 | |
84.4 | 7552.3 | 10.9 | 0.998 | ||
Pesticide application | 86.4 | 7538.3 | 11.1 | 0.999 | |
62.1 | 5205.7 | 10.8 | 0.998 | ||
Fertilization + Pesticide application | 87.7 | 7241.5 | 11.0 | 0.999 | |
86.1 | 6933.9 | 10.9 | 0.998 |
Variable | PC 1 | PC 2 |
---|---|---|
Actinobacteria | 0.866 | 0.432 |
Proteobacteria | −0.830 | 0.510 |
Planctomycetes | 0.910 | −0.144 |
Acidobacteria | −0.709 | −0.463 |
Chloroflexi | 0.903 | −0.178 |
Gemmatimonadetes | −0.689 | −0.370 |
Bacteroidetes | −0.933 | 0.137 |
Verrucomicrobia | −0.936 | −0.004 |
Others | 0.149 | −0.797 |
*N-NH4 | 0.160 | −0.210 |
*N–NO3 | −0.284 | 0.753 |
*P2O5 | 0.254 | −0.112 |
*K2O | 0.211 | 0.186 |
*pH | 0.049 | 0.335 |
*SR | −0.130 | 0.738 |
*SOM | 0.064 | 0.176 |
References
- Bedano, J.C.; Lavelle, P.; Zou, X. Soil biodiversity for the sustainability of agroecosystems. Acta Oecol. 2021, 110, 103705. [Google Scholar] [CrossRef]
- Andronov, E.E.; Ivanova, E.A.; Pershina, E.V.; Orlova, O.V.; Kruglov, Y.V.; Belimov, A.A.; Tikhonovich, I.A. Analysis of soil microbiome indicators in processes of soil formation, organic matter transformation and processes involved with fine regulation of vegetative processes. Dokuchaev Soil Bull. 2015, 80, 83–94. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Li, M.; He, P.; Guo, X.-L.; Zhang, X.; Li, L.-J. Fifteen-year no tillage of a Mollisol with residue retention indirectly affects topsoil bacterial community by altering soil properties. Soil. Till. Res. 2021, 205, 104804. [Google Scholar] [CrossRef]
- Zhou, J.; Guan, D.; Zhou, B.; Zhao, B.; Ma, M.; Qin, J.; Jiang, X.; Chen, S.; Cao, F.; Shen, D.; et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42–51. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Strauss, S.L.; González-López, J.; Bedmar, E.J. Changes in the diversity and predicted functional composition of the bulk and rhizosphere soil bacterial microbiomes of tomato and common bean after inorganic N-fertilization. Rhizosphere 2021, 18, 100362. [Google Scholar] [CrossRef]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; van Bruggen, A.H.C. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Appl. Soil Ecol. 2020, 154, 103641. [Google Scholar] [CrossRef]
- Mei, N.; Zhang, X.; Wang, X.; Peng, C.; Gao, H.; Zhu, P.; Gu, Y. Effects of 40 years applications of inorganic and organic fertilization on soil bacterial community in a maize agroecosystem in northeast China. Eur. J. Agron. 2021, 130, 126332. [Google Scholar] [CrossRef]
- Su, P.; Lou, J.; Brookes, P.C.; Luo, Y.; He, Y.; Xu, J. Taxon-specific responses of soil microbial communities to different soil priming effects induced by addition of plant residues and their biochars. J. Soil. Sediment. 2017, 17, 674–684. [Google Scholar] [CrossRef]
- Hartman, K.; van der Heijden, M.G.A.; Wittwer, R.A.; Banerjee, S.; Walser, J.-C.; Schlaeppi, K. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 2018, 6, 14. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, P.; He, L.; Gao, X.; Li, W.; Zhou, Y.; Li, Z.; Li, H.; Yang, L. Effects of tillage managements and maize straw returning on soil microbiome using 16S rDNA sequencing. J. Integr. Plant Biol. 2019, 61, 765–777. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, T.; Li, Y.; Zhao, D.; Han, J.; Liu, Y.; Liao, Y. Relationship between the microbial community and catabolic diversity in response to conservation tillage. Soil. Till. Res. 2020, 196, 104431. [Google Scholar] [CrossRef]
- Semenov, M.V.; Chernov, T.I.; Tkhakakhova, A.K.; Zhelezova, A.D.; Ivanova, E.A.; Kolganova, T.V.; Kutovaya, O.V. Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century. Appl. Soil Ecol. 2018, 127, 8–18. [Google Scholar] [CrossRef]
- Lapteva, E.M.; Vinogradova, Y.u.A.; Chernov, T.I.; Kovaleva, V.A.; Perminova, E.M. Structure and diversity of soil microbial communities in the permafrost peatlands in the northwest of Bolshezemelskaya tundra. Proc. Komi Sci. Cent. Ural. Branch Russ. Acad. Sci. 2017, 4, 5–14. (In Russian) [Google Scholar]
- Chernov, T.I.; Tkhakakhova, A.K.; Lebedeva, M.P.; Kutovaya, O.V. Comprehensive analysis of the microbiome in the complete profile of virgin light-colored solonetz soil at the territory of Dzhanybek experimental station. Dokuchaev Soil Bull. 2015, 77, 66–77. (In Russian) [Google Scholar] [CrossRef]
- Chernov, T.I.; Tkhakakhova, A.K.; Ivanova, E.A.; Kutovaya, O.V.; Turusov, V.I. Seasonal dynamics of the microbiome of chernozems of the long-term agrochemical experiment in Kamennaya Steppe. Eurasian Soil Sci. 2015, 48, 1349–1353. [Google Scholar] [CrossRef]
- Tkhakakhova, A.K.; Chernov, T.I.; Ivanova, E.A.; Kutovaya, O.V.; Kogut, B.M.; Zavalin, A.A. Changes in the metagenome of the prokaryotic community of chernozems under the influence of mineral fertilizers. Russ. Agric. Sci. 2016, 42, 62–65. [Google Scholar] [CrossRef]
- Nikitin, D.A.; Ivanova, E.A.; Zhelezova, A.D.; Semenov, M.V.; Gadzhiumarov, R.G.; Tkhakakhova, A.K.; Chernov, T.I.; Ksenofontova, N.A.; Kutovaya, O.V. Assessment of the impact of no-till and conventional tillage technologies on the microbiome of southern agrochernozems. Eurasian Soil Sci. 2020, 53, 1782–1793. [Google Scholar] [CrossRef]
- GOST 17.4.4.02-2017; Nature Protection. Soils. Methods for Sampling and Preparation of Soil for Chemical, Bacteriological, Helmintological Analysis. Standardinformrm: Moscow, Russia, 2018. (In Russian)
- Directive document 2.1.7.730-799; Hygienic Assessment of Soil Quality in Populated Areas. Ministry of Health of the Russian Federation: Moscow, Russia, 1999. (In Russian)
- GOST 26489-85; Soils. Determination of Exchangeable Ammonium by CINAO Method. Standards Publishing House: Moscow, Russia, 1985. (In Russian)
- GOST 26951-86; Soils. Determination of Nitrates by Ionometric Method. Standards Publishing House: Moscow, Russia, 1986. (In Russian)
- GOST 26205-91; Soils. Determination of Mobile Compounds of Phosphorus and Potassium by Machigin Method Modified by CINAO. Standards Publishing House: Moscow, Russia, 1992. (In Russian)
- GOST 26213-2021; Soils. Methods for Determination of Organic Matter. Russian Standardization Institute: Moscow, Russia, 2021. (In Russian)
- GOST 26423-85; Soils. Methods for Determination of Specific Electric Conductivity, pH and Solid Residue of Water Extract. Standartinform: Moscow, Russia, 2011. (In Russian)
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [Green Version]
- Essel, E.; Xie, J.; Deng, C.; Peng, Z.; Wang, J.; Shen, J.; Xie, J.; Coulter, J.A.; Li, L. Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation. Soil Till. Res. 2019, 194, 104302. [Google Scholar] [CrossRef]
- Malla, M.A.; Dubey, A.; Kumar, A.; Yadav, S. Metagenomic analysis displays the potential predictive biodegradation pathways of the persistent pesticides in agricultural soil with a long record of pesticide usage. Microbiol. Res. 2022, 261, 127081. [Google Scholar] [CrossRef]
- Tosi, M.; Deen, W.; Drijber, R.; McPherson, M.; Stengel, A.; Dunfield, K. Long-term N inputs shape microbial communities more strongly than current-year inputs in soils under 10-year continuous corn cropping. Soil Biol. Biochem. 2021, 160, 108361. [Google Scholar] [CrossRef]
- Romdhane, S.; Devers-Lamrani, M.; Beguet, J.; Bertrand, C.; Calvayrac, C.; Salvia, M.-V.; Ben Jrad, A.; Dayan, F.E.; Spor, A.; Barthelmebs, L.; et al. Assessment of the ecotoxicological impact of natural and synthetic β-triketone herbicides on the diversity and activity of the soil bacterial community using omic approaches. Sci. Total Environ. 2019, 651, 241–249. [Google Scholar] [CrossRef]
- Orr, C.H.; Stewart, C.J.; Leifert, C.; Cooper, J.M.; Cummings, S.P. Effect of crop management and sample year on abundance of soil bacterial communities in organic and conventional cropping systems. J. Appl. Microbiol. 2015, 119, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Leitner, Z.R.; Daigh, A.L.M.; DeJong-Hughes, J. Temporal fluctuations of microbial communities within the crop growing season. Geoderma 2021, 391, 114951. [Google Scholar] [CrossRef]
- Richter-Heitmann, T.; Hofner, B.; Krah, F.S.; Sikorski, J.; Wüst, P.K.; Bunk, B.; Huang, S.; Regan, K.M.; Berner, D.; Boeddinghaus, R.S.; et al. Stochastic dispersal rather than deterministic selection explains the spatio-temporal distribution of soil bacteria in a temperate grassland. Front. Microbiol. 2020, 11, 1391. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.; Ramirez, K.; Aanderud, Z.; Lennon, J.; Fierer, N. Temporal variability in soil microbial communities across land-use types. ISME J. 2013, 7, 1641–1650. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Chen, S.; Qi, G.; He, Z.; Zhao, X. Microbial taxa and functional genes shift in degraded soil with bacterial wilt. Sci. Rep. 2017, 7, 39911. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Andreson, I.C.; Singh, B.K. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Zhu, Y.; Zhu, L.; Zhang, J.; Li, B.; Wang, J.; Wang, J.; Zhang, C.; Cheng, C. Effects of the herbicide mesotrione on soil enzyme activity and microbial communities. Ecotoxicol. Environ. Safe 2018, 164, 571–578. [Google Scholar] [CrossRef]
- Newman, M.M.; Hoilett, N.; Lorenz, N.; Dick, R.P.; Liles, M.R.; Ramsier, C.; Kloepper, J.W. Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci. Total Environ. 2016, 543(A), 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Li, G.; Chen, X.; Liu, J.; Liu, M.; Jiang, C.; Li, Z. Rational dose of insecticide chlorantraniliprole displays a transient impact on the microbial metabolic functions and bacterial community in a silty-loam paddy soil. Sci. Total Environ. 2018, 616–617, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Egbe, C.C.; Oyetibo, G.O.; Ilori, M.O. Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicol. Environ. Safe 2021, 207, 111319. [Google Scholar] [CrossRef]
- Wolińska, A.; Frąc, M.; Oszust, K.; Szafranek-Nakonieczna, A.; Zielenkiewicz, U.; Stępniewska, Z. Microbial biodiversity of meadows under different modes of land use: Catabolic and genetic fingerprinting. World J. Microb. Biot. 2017, 33, 154. [Google Scholar] [CrossRef] [Green Version]
- Balázs, H.E.; Schmid, C.A.O.; Podar, D.; Hufnagel, G.; Radl, V.; Schröder, P. Development of microbial communities in organochlorine pesticide contaminated soil: A post-reclamation perspective. Appl. Soil Ecol. 2020, 150, 103467. [Google Scholar] [CrossRef]
- Sim, J.X.F.; Drigo, B.; Doolette, C.L.; Vasileiadis, S.; Karpouzas, D.G.; Lombi, E. Impact of twenty pesticides on soil carbon microbial functions and community composition. Chemosphere 2022, 307, 135820. [Google Scholar] [CrossRef]
- Ju, C.; Xu, J.; Wu, X.; Dong, F.; Liu, X.; Tian, C.; Zheng, Y. Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. Sci. Total Environ. 2017, 609, 655–663. [Google Scholar] [CrossRef]
- Nicola, L.; Turco, E.; Albanese, D.; Donati, C.; Thalheimer, M.; Pindo, M.; Insam, H.; Cavalieri, D.; Pertot, I. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Appl. Soil Ecol. 2017, 113, 71–79. [Google Scholar] [CrossRef]
- Hou, K.; Lu, C.; Shi, B.; Xiao, Z.; Wang, X.; Zhang, J.; Cheng, C.; Ma, J.; Du, Z.; Li, B.; et al. Evaluation of agricultural soil health after applying pyraclostrobin in wheat/maize rotation field based on the response of soil microbes. Agr. Ecosyst. Environ. 2022, 340, 108186. [Google Scholar] [CrossRef]
- Santísima-Trinidad, A.B.L.; Montiel-Rozas, M.M.; Diéz-Rojo, M.Á.; Pascual, J.A.; Ros, M. Impact of foliar fungicides on target and non-target soil microbial communities in cucumber crops. Ecotoxcol. Environ. Safe 2018, 166, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, S.; Jiang, Q.; Bai, Y.; Shen, G.; Li, S.; Ding, W. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci. Rep. 2016, 6, 36773. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Pandey, G.; Sharma, P.; Kumari, K.; Malhotra, S.; Pandey, R.; Raina, V.; Kohler, H.P.E.; Holliger, C.; Jackson, C.; et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol. Mol. Biol. R. 2010, 74, 58–80. [Google Scholar] [CrossRef] [Green Version]
- Jeffries, T.C.; Rayu, S.; Nielsen, U.N.; Lai, K.; Ijaz, A.; Nazaries, L.; Singh, B.K. Metagenomic functional potential predicts degradation rates of a model organophosphorus xenobiotic in pesticide contaminated soils. Front. Microbiol. 2018, 9, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cycoń, M.; Piotrowska-Seget, Z. Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: A review. Front. Microbiol. 2016, 7, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Qiu, Y.; Yao, T.; Ma, Y.; Zhang, H.; Yang, X.; Li, C. Evaluation of seven chemical pesticides by mixed microbial culture (PCS-1): Degradation ability, microbial community, and Medicago sativa phytotoxicity. J. Hazard. Mater. 2020, 389, 121834. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, J.; Wang, C.; Wang, Q. The 19-years inorganic fertilization increased bacterial diversity and altered bacterial community composition and potential functions in a paddy soil. Appl. Soil Ecol. 2019, 144, 60–67. [Google Scholar] [CrossRef]
- Guo, J.; Liu, W.; Zhu, C.; Luo, G.; Kong, Y.; Ling, N.; Wang, M.; Dai, J.; Shen, Q.; Guo, S. Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant Soil 2018, 424, 335–349. [Google Scholar] [CrossRef]
- Bebber, D.P.; Richards, V.R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Wei, D.; Zhu, P.; Cui, X.; Zhou, B.; Chen, X.; Jin, J.; Liu, X.; Wang, G. Soil bacterial communities under different long-term fertilization regimes in three locations across the black soil region of Northeast China. Pedosphere 2018, 28, 751–763. [Google Scholar] [CrossRef]
- Phares, C.A.; Amoakwah, E.; Danquah, A.; Akaba, S.; Frimpong, K.A.; Mensah, T.A. Improved soil physicochemical, biological properties and net income following the application of inorganic NPK fertilizer and biochar for maize production. Acta Ecol. Sin. 2022, 42, 289–295. [Google Scholar] [CrossRef]
- Zhang, Q.; Han, Y.; Chen, W.; Guo, Y.; Wu, M.; Wang, Y.; Li, H. Soil type and pH mediated arable soil bacterial compositional variation across geographic distance in North China Plain. Appl. Soil Ecol. 2022, 169, 104220. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-S.; Lee, S.-H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef]
- Raimondi, G.; Maucieri, C.; Squartini, A.; Stevanato, P.; Tolomio, M.; Toffanin, A.; Borin, M. Soil indicators for comparing medium-term organic and conventional agricultural systems. Eur. J. Agron. 2023, 142, 126669. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, C.-A.; Hua, K.; Wang, D.; Wan, S.; He, C.; Zhan, L. Temporal variation of management effects on soil microbial communities. Geoderma 2022, 418, 115828. [Google Scholar] [CrossRef]
Plant-Protecting Agent | Trade Name | Composition | Application | Dose (L ha−1) | Crop |
---|---|---|---|---|---|
Insecticides | Euphoria | 106 g L−1 lambda-Cyhalothrin + 141 g L−1 thiamethoxam | SC | 0.2 | Pea/Chickpea |
Fascord | 100 g L−1 alpha-cypermethrin | EC | 0.2 | Pea | |
BI-58 New | 400 g L−1 dimethoate | EC | 1.0 | Pea | |
Fungicides | Ceriax Plus | 66.6 g L−1 pyraclostrobin + 41.6 g L−1 fluxapyroxad + 41.6 g L−1 epoxiconazole | EC | 0.4 | Pea/Chickpea |
Herbicides | Benito | 300 g L−1 bentazone | CC | 3.0 | Pea/Chickpea |
Crop | Treatment | Sample Date | NH4+–N (mg kg−1) | NO3−–N (mg kg−1) | P2O5 (mg kg−1) | K2O (mg kg−1) | pH | Solid Residue (% w/w) | SOM (%) |
---|---|---|---|---|---|---|---|---|---|
Pea | Control | 27 May 2021 | 5.2 | 6.4 | 39.4 | 382.0 | 6.59 | 0.052 | 3.88 |
13 July 2021 | 3.6 | 9.6 | 27.2 | 372.5 | 6.68 | 0.050 | 3.95 | ||
Fertilization | 27 May 2021 | 4.8 | 4.5 | 46.4 | 353.4 | 7.31 | 0.047 | 3.92 | |
13 July 2021 | 4.8 | 11.0 | 31.7 | 362.9 | 6.99 | 0.058 | 3.96 | ||
Pesticide application | 27 May 2021 | 4.0 | 3.8 | 18.1 | 334.3 | 6.69 | 0.045 | 3.91 | |
13 July 2021 | 4.4 | 8.7 | 16.2 | 334.3 | 6.84 | 0.048 | 4.06 | ||
Fertilization + Pesticide application | 27 May 2021 | 8.1 | 5.9 | 33.2 | 334.3 | 6.83 | 0.042 | 3.86 | |
13 July 2021 | 5.4 | 9.4 | 32.4 | 343.8 | 6.78 | 0.059 | 3.95 | ||
Chickpea | Control | 27 May 2021 | 4.1 | 5.6 | 27.9 | 343.8 | 6.79 | 0.041 | 3.80 |
13 July 2021 | 3.8 | 13.5 | 25.7 | 367.7 | 6.67 | 0.059 | 3.91 | ||
Fertilization | 27 May 2021 | 6.5 | 5.9 | 33.0 | 343.8 | 7.27 | 0.057 | 3.83 | |
13 July 2021 | 5.0 | 14.1 | 25.3 | 353.4 | 6.81 | 0.070 | 3.82 | ||
Pesticide application | 27 May 2021 | 5.1 | 5.6 | 19.8 | 343.8 | 6.84 | 0.045 | 3.83 | |
13 July 2021 | 4.3 | 15.9 | 20.0 | 343.8 | 7.04 | 0.069 | 3.91 | ||
Fertilization + Pesticide application | 27 May 2021 | 5.4 | 6.8 | 30.9 | 334.3 | 7.85 | 0.058 | 3.88 | |
13 July 2021 | 4.8 | 14.8 | 28.3 | 372.5 | 7.83 | 0.081 | 3.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khmelevtsova, L.; Konstantinova, E.; Karchava, S.; Klimova, M.; Azhogina, T.; Polienko, E.; Khammami, M.; Sazykin, I.; Sazykina, M. Influence of Pesticides and Mineral Fertilizers on the Bacterial Community of Arable Soils under Pea and Chickpea Crops. Agronomy 2023, 13, 750. https://doi.org/10.3390/agronomy13030750
Khmelevtsova L, Konstantinova E, Karchava S, Klimova M, Azhogina T, Polienko E, Khammami M, Sazykin I, Sazykina M. Influence of Pesticides and Mineral Fertilizers on the Bacterial Community of Arable Soils under Pea and Chickpea Crops. Agronomy. 2023; 13(3):750. https://doi.org/10.3390/agronomy13030750
Chicago/Turabian StyleKhmelevtsova, Ludmila, Elizaveta Konstantinova, Shorena Karchava, Maria Klimova, Tatiana Azhogina, Elena Polienko, Margarita Khammami, Ivan Sazykin, and Marina Sazykina. 2023. "Influence of Pesticides and Mineral Fertilizers on the Bacterial Community of Arable Soils under Pea and Chickpea Crops" Agronomy 13, no. 3: 750. https://doi.org/10.3390/agronomy13030750
APA StyleKhmelevtsova, L., Konstantinova, E., Karchava, S., Klimova, M., Azhogina, T., Polienko, E., Khammami, M., Sazykin, I., & Sazykina, M. (2023). Influence of Pesticides and Mineral Fertilizers on the Bacterial Community of Arable Soils under Pea and Chickpea Crops. Agronomy, 13(3), 750. https://doi.org/10.3390/agronomy13030750