Evolution of Maize Compost in a Mediterranean Agricultural Soil: Implications for Carbon Sequestration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Setup
- The field experiment (Figure 1a) consisted of a factorial field study with a completely randomized block design. This included three treatments and three repetitions per treatment with a total of nine plots (0.25 m2 each). The treatments involved the application of 2 Kg m−2 of a 2.9-year-aged compost amendment, hereafter called “AC”, and a “younger”, newer compost, “NC” (obtained after 1.7 years of composting). Additionally, an untreated control, “C”, was included.
- The laboratory incubation experiment (Figure 1b) was used to study the first stages of SOM transformation and the PE that may occur after compost amendment. Forty samples incubated for one month were included. After 1 month, 20 samples intended for C modelling were retired, and the other 20 were maintained in incubation for an additional 5 months. These were later used for thermogravimetric and C stable isotope studies. Detailed technical aspects are described in Section 2.5 and Section 2.8.
2.2. Soil Sampling
2.3. Chemical and Physical Analysis
2.4. Compost Samples
2.5. Soil Incubation
2.6. Elemental (EA) and Stable Isotope Analyses (EA-IRMS)
2.7. Priming Effect
2.8. Thermal Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Compost Application on Physicochemical Properties of Soils
3.2. Degradation of Compost into SOC Pools
3.3. Compost-Derived Carbon Contribution
3.4. Priming Effect
3.5. Thermal Alteration in SOM during Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Odlare, M.; Pell, M.; Svensson, K. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manag. 2008, 28, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; Silva, D.J.; Gava, C.A.T.; Oliveira, T.C.T.D.; Freitas, M.D.S.C.D. Carbon in humic fractions of organic matter in soil treated with organic composts under mango cultivation. Rev. Bras. Ciênc. Solo 2016, 40. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sheng, L.; Li, Y.; Jiang, H.; Lv, Z.; Qi, W.; Luo, W. Soil labile organic carbon indicating seasonal dynamics of soil organic carbon in northeast peatland. Ecol. Indic. 2022, 138, 108847. [Google Scholar] [CrossRef]
- Zou, X.M.; Ruan, H.H.; Fu, Y.; Yang, X.D.; Sha, L.Q. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure. Soil Biol. Biochem. 2005, 37, 1923–1928. [Google Scholar] [CrossRef]
- Fangueiro, D.; Chadwick, D.; Dixon, L.; Bol, R. Quantification of priming and CO2 emission sources following the application of different slurry particle size fractions to a grassland soil. Soil Biol. Biochem. 2007, 39, 2608–2620. [Google Scholar] [CrossRef]
- San-Emeterio, L.M.; López-Núñez, R.; González-Vila, F.J.; González-Pérez, J.A. Evolution of composting process in maize biomass revealed by analytical pyrolysis (Py-GC/MS) and pyrolysis compound specific isotope analysis (Py-CSIA). Appl. Sci. 2021, 11, 6684. [Google Scholar] [CrossRef]
- Arias, M.E.; González-Pérez, J.A.; González-Vila, F.J.; Ball, A.S. Soil health: A new challenge for microbiologists and chemists. Int. Microbiol. 2005, 8, 13–21. [Google Scholar]
- Teutscherova, N.; Vázquez, E.; Santana, D.; Navas, M.; Masaguer, A.; Benito, M. Influence of pruning waste compost maturity and biochar on carbon dynamics in acid soil: Incubation study. Eur. J. Soil Biol. 2017, 78, 66–74. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
- Gasser, A.A.; Diel, J.; Nielsen, K.; Mewes, P.; Engels, C.; Franko, U. A model ensemble approach to determine the humus building efficiency of organic amendments in incubation experiments. Soil Use Manag. 2022, 38, 179–190. [Google Scholar] [CrossRef]
- Hilscher, A.; Knicker, H. Carbon and nitrogen degradation on molecular scale of grass-derived pyrogenic organic material during 28 months of incubation in soil. Soil Biol. Biochem. 2011, 43, 261–270. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; González-Pérez, J.A.; González-Vázquez, R.; Knicker, H.; López-Capel, E.; Manning, D.A.C.; González-Vila, F.J. Use of pyrolysis/GC–MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest. Catena 2008, 74, 296–303. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Faria, S.R.; Varela, M.E.; Knicker, H.; González-Vila, F.J.; González-Pérez, J.A.; Keizer, J. Characterization of wildfire effects on soil organic matter using analytical pyrolysis. Geoderma 2012, 191, 24–30. [Google Scholar] [CrossRef]
- Prats, S.A.; Merino, A.; Gonzalez-Perez, J.A.; Verheijen, F.G.A.; De la Rosa, J.M. Can straw-biochar mulching mitigate erosion of wildfire-degraded soils under extreme rainfall? Sci. Total Environ. 2021, 761, 143219. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Mitusov, A.; Schneckenberger, K. Effect of C3–C4 vegetation change on δ13C and δ15N values of soil organic matter fractions separated by thermal stability. Plant Soil 2006, 283, 229–238. [Google Scholar] [CrossRef]
- Chen, C.; Leinweber, P.; Eckhardt, K.U.; Sparks, D.L. The composition and stability of clay-associated organic matter along a soil profile. Soil Syst. 2018, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Leinweber, P.; Schulten, H.R.; Jancke, H. New evidence for the molecular composition of soil organic matter in Vertisols. Soil Sci. 1999, 164, 857–870. [Google Scholar] [CrossRef]
- Lopez-Capel, E.; Sohi, S.P.; Gaunt, J.L.; Manning, D.A. Use of thermogravimetry–differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci. Soc. Am. J. 2005, 69, 136–140. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports, 106; FAO: Rome, Italy, 2015; pp. 1–203. [Google Scholar]
- Grossman, R.B.; Reinsch, T.G. Bulk Density and Linear Extensibility: Core Method. In Methods of Soil Analysis. Part 4, Physical Methods; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2002; pp. 201–228. [Google Scholar]
- Cheng, X.; Luo, Y.; Chen, J.; Lin, G.; Chen, J.; Li, B. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biol. Biochem. 2006, 38, 3380–3386. [Google Scholar] [CrossRef]
- Knicker, H.; González-Vila, F.J.; González-Vázquez, R. Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 2013, 56, 31–39. [Google Scholar] [CrossRef]
- Nordgren, A. Apparatus for the continuous, long-term monitoring of soil respiration rate in large numbers of samples. Soil Biol. Biochem. 1988, 20, 955–957. [Google Scholar] [CrossRef]
- Knicker, H.; Hilscher, A.; De la Rosa, J.M.; González-Pérez, J.A.; González-Vila, F.J. Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils. Geoderma 2013, 197, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Coplen, T.B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef]
- Derrien, D.; Amelung, W. Computing the mean residence time of soil carbon fractions using stable isotopes: Impacts of the model framework. Eur. J. Soil Sci. 2011, 62, 237–252. [Google Scholar] [CrossRef]
- Luo, Y.; Durenkamp, M.; De Nobili, M.; Lin, Q.; Brookes, P.C. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol. Biochem. 2011, 43, 2304–2314. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Knicker, H.; López-Capel, E.; Manning, D.A.C.; Gonzalez-Perez, J.A.; González-Vila, F.J. Direct detection of black carbon in soils by Py-GC/MS, carbon-13 NMR spectroscopy and thermogravimetric techniques. Soil Sci. Soc. Am. J. 2008, 72, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Tejada, M.; Hernandez, M.T.; Garcia, C. Soil restoration using composted plant residues: Effects on soil properties. Soil Tillage Res. 2009, 102, 109–117. [Google Scholar] [CrossRef]
- Wan, X.; Huang, Z.; He, Z.; Yu, Z.; Wang, M.; Davis, M.R.; Yang, Y. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant Soil 2015, 387, 103–116. [Google Scholar] [CrossRef]
- Brust, G.E. Management strategies for organic vegetable fertility. In Safety and Practice for Organic Food; Academic Press: Cambridge, MA, USA, 2019; pp. 193–212. [Google Scholar]
- Howell, J. Soil Basics Part III: Organic Matter: Key to Soil Management. University of Massachusetts Amherst. 2013. Available online: https://ag.umass.edu/vegetable/fact-sheets/soil-basics-part-iii-organic-matter-key-to-management (accessed on 25 February 2023).
- Miralles, I.; Ortega, R.; Almendros, G.; Sánchez-Marañón, M.; Soriano, M. Soil quality and organic carbon ratios in mountain agroecosystems of South-east Spain. Geoderma 2009, 150, 120–128. [Google Scholar] [CrossRef]
- Chaudhari, P.R.; Ahire, D.V.; Ahire, V.D.; Chkravarty, M.; Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 2013, 3, 1–8. [Google Scholar]
- Zech, W.; Senesi, N.; Guggenberger, G.; Kaiser, K.; Lehmann, J.; Miano, T.M.; Miltner, A.; Schroth, G. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 1997, 79, 117–161. [Google Scholar] [CrossRef]
- Schweizer, M.; Fear, J.; Cadisch, G. Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Commun. Mass Spectrom. 1999, 13, 1284–1290. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Rosado, M.; Paneque, M.; Miller, A.Z.; Knicker, H. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 2018, 613, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Leal, O.D.A.; Dick, D.P.; de la Rosa, J.M.; Leal, D.P.B.; González-Pérez, J.A.; Campos, G.S.; Knicker, H. Charcoal fine residues effects on soil organic matter humic substances, composition, and biodegradability. Agronomy 2019, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Campos, P.; Knicker, H.; Velasco-Molina, M.; De la Rosa, J.M. Assessment of the biochemical degradability of crop derived biochars in trace elements polluted soils. J. Anal. Appl. Pyrolysis 2021, 157, 105186. [Google Scholar] [CrossRef]
- De Gerenyu, V.O.L.; Kurganova, I.N.; Kuzyakov, Y. Carbon pool and sequestration in former arable Chernozems depending on restoration period. Ekologija 2008, 54, 232–238. [Google Scholar] [CrossRef]
- Wiesenberg, G.L.; Schwarzbauer, J.; Schmidt, M.W.; Schwark, L. Source and turnover of organic matter in agricultural soils derived from n-alkane/n-carboxylic acid compositions and C-isotope signatures. Org. Geochem. 2004, 35, 1371–1393. [Google Scholar] [CrossRef]
- Diels, J.; Vanlauwe, B.; Van der Meersch, M.K.; Sanginga, N.; Merckx, R. Long-term soil organic carbon dynamics in a subhumid tropical climate: 13C data in mixed C3/C4 cropping and modeling with ROTHC. Soil Biol. Biochem. 2004, 36, 1739–1750. [Google Scholar] [CrossRef]
- Gargouri, K.; Masmoudi, M.; Rhouma, A. Influence of olive mill wastewater (OMW) spread on carbon and nitrogen dynamics and biology of an arid sandy soil. Commun. Soil Sci. Plant Anal. 2014, 45, 1–14. [Google Scholar] [CrossRef]
- Blagodatskaya, Е.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bol, R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biol. Biochem. 2006, 38, 747–758. [Google Scholar] [CrossRef]
- Wichuk, K.M.; McCartney, D. Compost stability and maturity evaluation—A literature review. Can. J. Civ. Eng. 2010, 37, 1505–1523. [Google Scholar] [CrossRef]
- Senesi, N. Composted materials as organic fertilizers. Sci. Total Environ. 1989, 81, 521–542. [Google Scholar] [CrossRef]
- Ciavatta, C.; Centemero, M.; Toselli, M.; Zaccone, C.; Senesi, N. Compost in Agriculture Production, Analysis and Applications. In Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 297–321. [Google Scholar]
- Federici, E.; Massaccesi, L.; Pezzolla, D.; Fidati, L.; Montalbani, E.; Proietti, P.; Nasini, L.; Regni, L.; Scargetta, S.; Gigliotti, G. Short-term modifications of soil microbial community structure and soluble organic matter chemical composition following amendment with different solid olive mill waste and their derived composts. Appl. Soil Ecol. 2017, 119, 234–241. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Horwath, W.R.; Dorodnikov, M.; Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 2019, 128, 66–78. [Google Scholar] [CrossRef]
- Terrer, C.; Vicca, S.; Stocker, B.D.; Hungate, B.A.; Phillips, R.P.; Reich, P.B.; Finzi, A.C.; Prentice, I.C. Ecosystem responses to elevated CO 2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol. 2018, 217, 507–522. [Google Scholar] [CrossRef] [Green Version]
- Terrer, C.; Phillips, R.P.; Hungate, B.A.; Rosende, J.; Pett-Ridge, J.; Craig, M.E.; van Groeningen, K.J.; Keenan, T.F.; Sulman, B.N.; Stocker, B.D.; et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 2021, 591, 599–603. [Google Scholar] [CrossRef]
- Siles, J.A.; Díaz-López, M.; Vera, A.; Eisenhauer, N.; Guerra, C.A.; Smith, L.C.; Buscot, F.; Reitz, T.; Breitkreuz, C.; van den Hoogen, J.; et al. Priming effects in soils across Europe. Glob. Chang. Biol. 2022, 28, 2146–2157. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic evaluation of biochar, compost and biochar-blended compost across different cropping systems: Perspective from the European project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.M.; Plaza, C.; Polo, A.; Plante, A.F. Use of thermal analysis techniques (TG–DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application. Waste Manag. 2012, 32, 158–164. [Google Scholar] [CrossRef]
NC | AC | |
---|---|---|
C content (%) | 35.6 ± 0.2 | 30.1 ± 0.0 |
N content (%) | 1.1 ± 0.1 | 1.4 ± 0.3 |
C:N ratio | 32.4 | 21.5 |
Lignin/polysaccharide ratio * | 2.2 | 2.3 |
δ13C | −17.5 ± 0.0 | −18.1 ± 0.1 |
δ15N | 9.4 ± 0.4 | 9.6 ± 0.3 |
pH (1:5 w/v) | 7.9 ± 0.0 | 6.1 ± 0.0 |
EC (µS/cm) | 422.5 ± 0.7 | 413 ± 1.5 |
Control | NC | AC | |
---|---|---|---|
C:N ratio | 11.7 ± 1.2 a | 13.2 ± 1.1 b | 16.0 ± 3.0 c |
pH (1:2.5 w/v) | 8.7 ± 0.0 b | 8.2 ± 0.0 a | 8.1 ± 0.0 a |
EC (µS/cm) | 201.0 ± 1.2 a | 315.8 ± 4.8c | 295.3 ± 9.4 b |
Bulk density (g·cm−3) | 1.6 ± 0.1 b | 1.3 ± 0.3 a | 1.4 ± 0.2 a |
C Loss (mg) | Total C Loss (% of TC) | Afast (% of TC) | Kfast (year−1) | MRTfast (days) | Aslow (% of TC) | Kslow (year−1) | MRTslow (years) | |
---|---|---|---|---|---|---|---|---|
Control | 9.6 ± 0.4 a | 4.7 ± 0.3 a | 1.7 ± 0.4 a | 38.5 ± 9.1 b | 10.8 ± 2.0 a | 98.3 ± 0.4 b | 0.58 ± 0.02 a | 1.7 ± 0.1 b |
NC-3% | 23.2 ± 2.6 b | 6.2 ± 0.7 b | 7.9 ± 1.7 b | 7.0 ± 1.0 a | 54.4 ± 8.1 c,* | 92.2 ± 1.7 a,b | 0.99 ± 0.09 b,* | 1.2 ± 0.2 a |
NC-5% | 24.5 ± 1.5 b | 6.0 ± 0.2 b | 4.2 ± 1.0 b | 16.9 ± 3.0 b,* | 23.5 ± 3.6 b | 96.0 ± 1.1 b,* | 0.44 ± 0.14 a | 3.8 ± 1.7 c,* |
AC-3% | 32.2 ± 2.7 b | 9.4 ± 0.8 c | 8.5 ± 3.9 b | 27.2 ± 6.1 b | 11.2 ± 1.0 a | 91.6 ± 4.0 a | 0.74 ± 0.20 a,b | 1.6 ± 0.3 b |
AC-5% | 54.6 ± 2.5 c,* | 11.6 ± 0.6 c | 14.1 ± 2.4 b,* | 32.2 ± 4.3 b | 12.0 ± 1.6 a | 86.0 ± 2.4 a | 0.41 ± 0.09 a | 2.9 ± 0.8 c,* |
Field Soils | Incubated Soils | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T6 | T1 | T6 | ||||||||||
Temp. (°C) | Control | NC | AC | Control | NC | AC | Control | NC | AC | Control | NC | AC | |
Weight Loss (%) | 105–600 | 2.5 | 4.1 | 3.9 | 2.8 | 3.1 | 3.1 | 2.6 | 4.4 | 4.1 | 2.9 | 4.8 | 5.0 |
Moisture and Labile OM-W1 | 105–200 | 0.2 | 0.9 | 4.0 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.3 |
Intermediate OM-W2 | 200–425 | 1.0 | 1.5 | 1.3 | 1.0 | 1.3 | 1.2 | 0.9 | 2.0 | 1.8 | 1.2 | 2.1 | 2.4 |
Recalcitrant OM-W3 | 425–600 | 1.2 | 1.7 | 1.7 | 1.5 | 1.5 | 1.6 | 1.5 | 2.1 | 2.0 | 1.4 | 2.3 | 2.3 |
Relative Weight Loss (%) | |||||||||||||
Moisture and Labile OM | 105–200 | 9 | 21 | 101 | 12 | 8 | 11 | 9 | 6 | 6 | 9 | 8 | 6 |
Int OM-W2 | 200–425 | 41 | 37 | 33 | 35 | 42 | 37 | 36 | 46 | 45 | 42 | 44 | 48 |
Recalcitrant OM-W3 | 425–600 | 49 | 42 | 43 | 53 | 50 | 52 | 55 | 48 | 49 | 48 | 48 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. San-Emeterio, L.; De la Rosa, J.M.; Knicker, H.; López-Núñez, R.; González-Pérez, J.A. Evolution of Maize Compost in a Mediterranean Agricultural Soil: Implications for Carbon Sequestration. Agronomy 2023, 13, 769. https://doi.org/10.3390/agronomy13030769
M. San-Emeterio L, De la Rosa JM, Knicker H, López-Núñez R, González-Pérez JA. Evolution of Maize Compost in a Mediterranean Agricultural Soil: Implications for Carbon Sequestration. Agronomy. 2023; 13(3):769. https://doi.org/10.3390/agronomy13030769
Chicago/Turabian StyleM. San-Emeterio, Layla, José M. De la Rosa, Heike Knicker, Rafael López-Núñez, and José A. González-Pérez. 2023. "Evolution of Maize Compost in a Mediterranean Agricultural Soil: Implications for Carbon Sequestration" Agronomy 13, no. 3: 769. https://doi.org/10.3390/agronomy13030769
APA StyleM. San-Emeterio, L., De la Rosa, J. M., Knicker, H., López-Núñez, R., & González-Pérez, J. A. (2023). Evolution of Maize Compost in a Mediterranean Agricultural Soil: Implications for Carbon Sequestration. Agronomy, 13(3), 769. https://doi.org/10.3390/agronomy13030769