Comparison of the Effect of Solid and Liquid Digestate on the Growth of Lettuce (Lactuca sativa L.) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Digestate
2.2. Plant Material and Growth Conditions
2.3. Soil Analyses
2.4. Plant Analyses
2.4.1. Main Photosynthetic Parameters
2.4.2. Fractal Analysis
2.4.3. Non-Enzymatic Defense Response
2.4.4. Lipid Peroxidation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, N.; Gerber, M. Rheological Properties of Digestate from Agricultural Biogas Plants: An Overview of Measurement Techniques and Influencing Factors. Renew. Sustain. Energy Rev. 2020, 121, 109709. [Google Scholar] [CrossRef]
- Tampio, E.; Marttinen, S.; Rintala, J. Liquid Fertilizer Products from Anaerobic Digestion of Food Waste: Mass, Nutrient and Energy Balance of Four Digestate Liquid Treatment Systems. J. Clean. Prod. 2016, 125, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Simplicio, W.S.; Wu, G.; Hu, Z.; Hu, H.; Zhan, X. Nutrient Recovery from Digestate of Anaerobic Digestion of Livestock Manure: A Review. Curr. Pollut. Rep. 2018, 4, 74–83. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Zollitsch, W.; Mayer, K.; Gruber, L. Biogas Production from Maize and Dairy Cattle Manure-Influence of Biomass Composition on the Methane Yield. Bioresour. Technol. 2006, 100, 5777–5782. [Google Scholar] [CrossRef]
- Kougias, P.G.; Angelidaki, I. Biogas and Its Opportunities—A Review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Jamison, J.; Khanal, S.K.; Nguyen, N.H.; Deenik, J.L. Assessing the Effects of Digestates and Combinations of Digestates and Fertilizer on Yield and Nutrient Use of Brassica Juncea (Kai Choy). Agronomy 2021, 11, 509. [Google Scholar] [CrossRef]
- Celletti, S.; Lanz, M.; Bergamo, A.; Benedetti, V.; Basso, D.; Baratieri, M.; Cesco, S.; Mimmo, T. Evaluating the Aqueous Phase From Hydrothermal Carbonization of Cow Manure Digestate as Possible Fertilizer Solution for Plant Growth. Front. Plant Sci. 2021, 12, 1317. [Google Scholar] [CrossRef]
- Scaglia, B.; Pognani, M.; Adani, F. The Anaerobic Digestion Process Capability to Produce Biostimulant: The Case Study of the Dissolved Organic Matter (DOM) vs. Auxin-like Property. Sci. Total Environ. 2017, 589, 36–45. [Google Scholar] [CrossRef]
- Scaglia, B.; Pognani, M.; Adani, F. Evaluation of Hormone-like Activity of the Dissolved Organic Matter Fraction (DOM) of Compost and Digestate. Sci. Total Environ. 2015, 514, 314–321. [Google Scholar] [CrossRef]
- Yu, F.B.; Luo, X.P.; Song, C.F.; Shan, S.D. Concentrated Biogas Slurry Enhanced Soil Fertility and Tomato Quality. Acta Agric. Scand. 2009, 60, 262–268. [Google Scholar] [CrossRef]
- Liu, W.K.; Yang, Q.C.; Du, L. Soilless Cultivation for High-Quality Vegetables with Biogas Manure in China: Feasibility and Benefit Analysis. Renew. Agric. Food Syst. 2009, 24, 300–307. [Google Scholar] [CrossRef]
- Ronga, D.; Pane, C.; Zaccardelli, M.; Pecchioni, N. Use of Spent Coffee Ground Compost in Peat-Based Growing Media for the Production of Basil and Tomato Potting Plants. Commun. Soil Sci. Plant Anal. 2016, 47, 356–368. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj (accessed on 5 March 2022).
- Council Directive of 12 December 1991. EUR-Lex-31991L0676-EN-EUR-Lex. Available online: europa.eu (accessed on 9 March 2022).
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A New Nutrient Source-Review Mineral Nutrition of Energy Crops View Project Long-Term Sewage Sludge Compost Utilization View Project Digestate: A New Nutrient Source-Review; Interopen Community Interest Company: London, UK, 2012. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural Benefits and Environmental Risks of Soil Fertilization with Anaerobic Digestates: A Review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Sheets, J.P.; Yang, L.; Ge, X.; Wang, Z.; Li, Y. Beyond Land Application: Emerging Technologies for the Treatment and Reuse of Anaerobically Digested Agricultural and Food Waste. Waste Manag. 2015, 44, 94–115. [Google Scholar] [CrossRef] [Green Version]
- Drosg, B.; Fuchs, W.; Al, T.; Madsen, S.M.; Linke, B. Nutrient Recovery by Biogas Digestate Processing; IEA: Paris, France, 2015. [Google Scholar]
- Fuchs, J.G.; Berner, A.; Mayer, J.; Smidt, E.; Schleiss, K. Influence of compost and digestates on plant growth and health: Potentials and limits. In Proceedings of the International Congress CODIS 2008, Solothurn, Switzerland, 27–29 February 2008; pp. 101–110. [Google Scholar]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of Digestate as an Alternative to Mineral Fertilizer: Effects on Growth and Crop Quality. Arch. Agron. Soil Sci. 2019, 65, 700–711. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Mallamaci, C.; Attinà, E.; Muscolo, A. Using Digestate as Fertilizer for a Sustainable Tomato Cultivation. Sustainability 2021, 13, 1574. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Bélanger, G.; Rochette, P.; Eriksen-Hamel, N.; Bittman, S.; Gasser, M.O. Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agron. J. 2008, 100, 1303–1309. [Google Scholar] [CrossRef]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Ronga, D.; Setti, L.; Salvarani, C.; de Leo, R.; Bedin, E.; Pulvirenti, A.; Milc, J.; Pecchioni, N.; Francia, E. Effects of Solid and Liquid Digestate for Hydroponic Baby Leaf Lettuce (Lactuca sativa L.) Cultivation. Sci. Hortic. 2019, 244, 172–181. [Google Scholar] [CrossRef]
- Estevez, M.M.; Sapci, Z.; Linjordet, R.; Schnürer, A.; Morken, J. Semi-Continuous Anaerobic Co-Digestion of Cow Manure and Steam-Exploded Salix with Recirculation of Liquid Digestate. J. Environ. Manag. 2014, 136, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Odlare, M.; Arthurson, V.; Pell, M.; Svensson, K.; Nehrenheim, E.; Abubaker, J. Land Application of Organic Waste–Effects on the Soil Ecosystem. Appl. Energy 2011, 88, 2210–2218. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/ (accessed on 2 March 2022).
- Vannini, A.; Fedeli, R.; Guarnieri, M.; Loppi, S. Foliar Application of Wood Distillate Alleviates Ozone-Induced Damage in Lettuce (Lactuca Sativa L.). Toxics 2022, 10, 178. [Google Scholar] [CrossRef]
- Ntinas, G.K.; Bantis, F.; Koukounaras, A.; Kougias, P.G. Exploitation of Liquid Digestate as the Sole Nutrient Source for Floating Hydroponic Cultivation of Baby Lettuce (Lactuca sativa) in Greenhouses. Energies 2021, 14, 7199. [Google Scholar] [CrossRef]
- Montemurro, F.; Ferri, D.; Vitti, C.; Tittarelli, F.; Canali, S. Anaerobic Digestate and On-Farm Compost Application: Effects on Lettuce (Lactuca sativa L.) Crop Production and Soil Properties. Compost. Sci. Util. 2013, 18, 184–193. [Google Scholar] [CrossRef]
- Fedeli, R.; Vannini, A.; Guarnieri, M.; Monaci, F.; Loppi, S. Bio-Based Solutions for Agriculture: Foliar Application of Wood Distillate Alone and in Combination with Other Plant-Derived Corroborants Results in Different Effects on Lettuce (Lactuca sativa L.). Biology 2022, 11, 404. [Google Scholar] [CrossRef]
- Celletti, S.; Bergamo, A.; Benedetti, V.; Pecchi, M.; Patuzzi, F.; Basso, D.; Baratieri, M.; Cesco, S.; Mimmo, T. Phytotoxicity of Hydrochars Obtained by Hydrothermal Carbonization of Manure-Based Digestate. J. Environ. Manag. 2021, 280, 111635. [Google Scholar] [CrossRef]
- Casagrande, A. Die Ariiometer-Methode zur Bestimmung der Kornverteilung yon Boden und Anderen Materialen; Springer: Berlin/Heidelberg, Germany, 1934; p. 56S. [Google Scholar]
- Nelson, D.W.; Sommers, L.E.; Sparks, D.L. Methods of soil analysis. Part 3. Chemical methods. Soil Sci. Soc. Am. Book Ser. 1996, 5, 961–1010. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, J.; Qi, Y.; Hu, Y.; Shen, J.; Qi, Y. Estimation of Rice Biomass at Different Growth Stages by Using Fractal Dimension in Image Processing. Appl. Sci. 2021, 11, 7151. [Google Scholar] [CrossRef]
- Kenkel, N.C.; Walker, D.J. Fractals and Ecology. Abstr. Bot. 1993, 17, 53–70. [Google Scholar]
- Lorimer, N.D. The Fractal Forest: Fractal Geometry and Applications in Forest Science; U.S. Department of Agriculture: Washington, DC, USA, 1994.
- Fedeli, R.; Vannini, A.; Celletti, S.; Maresca, V.; Munzi, S.; Cruz, C.; Alexandrov, D.; Guarnieri, M.; Loppi, S. Foliar Application of Wood Distillate Boosts Plant Yield and Nutritional Parameters of Chickpea. Ann. Appl. Biol. 2022. [Google Scholar] [CrossRef]
- Loppi, S.; Fedeli, R.; Canali, G.; Guarnieri, M.; Biagiotti, S.; Vannini, A. Comparison of the Mineral and Nutraceutical Profiles of Elephant Garlic (Allium ampeloprasum L.) Grown in Organic and Conventional Fields of Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Biology 2021, 10, 1058. [Google Scholar] [CrossRef]
- Celletti, S.; Fedeli, R.; Ghorbani, M.; Loppi, S. Impact of Starch-Based Bioplastic on Growth and Biochemical Parameters of Basil Plants. Sci. Total Environ. 2023, 159163. [Google Scholar] [CrossRef]
- Silvestri, C.; Celletti, S.; Cristofori, V.; Astolfi, S.; Ruggiero, B.; Rugini, E. Olive (Olea europaea L.) Plants Transgenic for Tobacco Osmotin Gene Are Less Sensitive to in Vitro-Induced Drought Stress. Acta Physiol. Plant. 2017, 39, 1–9. [Google Scholar] [CrossRef]
- Italian Minister Decree DECRETO-LEGGE 21 Marzo 2022, n. 21. Available online: https://www.gazzettaufficiale.it/eli/id/2022/03/21/22G00032/SG (accessed on 13 April 2022).
- Chen, J.; Cao, C.; Cai, M.; Yuan, B.; Zhai, J. Effect of Different Nitrogen Nutrition and Soil Water Potential on Physiological Parameters and Yield of Hybrid Rice. Field Crops Res. 2008, 14, 199–206. [Google Scholar]
- Robles-Aguilar, A.A.; Temperton, V.M.; Jablonowski, N.D. Maize Silage Digestate Application Affecting Germination and Early Growth of Maize Modulated by Soil Type. Agronomy 2019, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Mortola, N.; Rosa, V.; Cosentino, N.; Eiza, M. Potential Use of a Poultry Manure Digestate as a Biofertiliser: Evaluation of Soil Properties and Lactuca sativa Growth. Pedosphere 2019, 29, 60–69. [Google Scholar] [CrossRef]
- Maunuksela, L.; Herranen, M.; Torniainen, M. Quality Assessment of Biogas Plant End Products by Plant Bioassays. Int. J. Environ. 2012, 3, 305–310. [Google Scholar] [CrossRef]
- Zheng, X.; Fan, J.; Cui, J.; Wang, Y.; Zhou, J.; Ye, M.; Sun, M. Effects of Biogas Slurry Application on Peanut Yield, Soil Nutrients, Carbon Storage, and Microbial Activity in an Ultisol Soil in Southern China. J. Soils Sediments 2016, 16, 449–460. [Google Scholar] [CrossRef]
- Malav, L.C.; Khan, S.A.; Gupta, N. Impacts of Biogas Slurry Application on Soil Environment, Yield and Nutritional Quality of Baby Corn. Int. J. Plant Res. 2015, 28, 194–202. [Google Scholar] [CrossRef]
- Xu, C.; Tian, Y.; Sun, Y.; Dong, L. Effects of Biogas Slurry Irrigation on Growth, Photosynthesis, and Nutrient Status of Perilla Frutescens Seedlings. Commun. Soil Sci. Plant Anal. 2013, 44, 3381–3390. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.; Ibrahim, M.H.; Hashim, R. Land Application of Sewage Sludge: Physicochemical and Microbial Response. Rev. Environ. Contam. Toxicol. 2012, 214, 41–61. [Google Scholar] [CrossRef]
- Tan, F.; Zhu, Q.; Guo, X.; He, L. Effects of Digestate on Biomass of a Selected Energy Crop and Soil Properties. J. Sci. Food Agric. 2021, 101, 927–936. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, S.; Wang, Y.; Wang, R. Advantages of the Integrated Pig-Biogas-Vegetable Greenhouse System in North China. Ecol. Eng. 2005, 24, 175–183. [Google Scholar] [CrossRef]
- Farrukh, A.; Iqbal, A.; Zafar, M. Antioxidant and Free Radical Scavenging Properties of Twelve Traditionally Used Indian Medicinal Plants. Turk. J. Biol. 2006, 30, 177–183. [Google Scholar]
- Mukherjee, P.K.; Nema, N.K.; Maity, N.; Sarkar, B.K. Phytochemical and Therapeutic Potential of Cucumber. Fitoterapia 2013, 84, 227–236. [Google Scholar] [CrossRef]
- Babajide, J.M.; Olaluwoye, A.A.; Taofik Shittu, T.A.; Adebisi, M.A. Physicochemical Properties and Phytochemical Components of Spiced Cucumber-Pineapple Fruit Drink. NIFOJ 2013, 31, 40–52. [Google Scholar] [CrossRef] [Green Version]
- DellaPenna, D. Carotenoid Synthesis and Function in Plants: Insights from Mutant Studies. In The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration; Springer: Berlin/Heidelberg, Germany, 1999; pp. 21–37. [Google Scholar] [CrossRef] [Green Version]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; de Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in Plants: From Functions to Biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.K.; Palma, J.M.; Corpas, F.J. Redox State as a Central Regulator of Plant-Cell Stress Responses. In Redox State as a Central Regulator of Plant-Cell Stress Responses; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–386. [Google Scholar] [CrossRef]
- Szeto, Y.T.; Tomlinson, B.; Benzie, I.F.F. Total Antioxidant and Ascorbic Acid Content of Fresh Fruits and Vegetables: Implications for Dietary Planning and Food Preservation. Br. J. Nutr. 2002, 87, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Locato, V.; Cimini, S.; de Gara, L. Strategies to Increase Vitamin C in Plants: From Plant Defense Perspective to Food Biofortification. Front. Plant Sci. 2013, 4, 152. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Noctor, G. Ascorbate and Glutathione: The Heart of the Redox Hub. Plant. Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [Green Version]
- Aćamović-Djoković, G.; Pavlović, R.; Mladenović, J.; Djurić, M. Vitamin C Content of Different Types of Lettuce Varieties 1. Acta Agric. Serb. 2011, XVI, 83–89. [Google Scholar]
- Llorach, R.; Martínez-Sánchez, A.; Tomás-Barberán, F.A.; Gil, M.I.; Ferreres, F. Characterisation of Polyphenols and Antioxidant Properties of Five Lettuce Varieties and Escarole. Food. Chem. 2008, 108, 1028–1038. [Google Scholar] [CrossRef]
- Ma, J.; Du, G.; Li, X.; Zhang, C.; Guo, J. A Major Locus Controlling Malondialdehyde Content under Water Stress Is Associated with Fusarium Crown Rot Resistance in Wheat. Mol. Genet. 2015, 290, 1955–1962. [Google Scholar] [CrossRef]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Agrawal, M. Effects of Sewage Sludge Amendment on Heavy Metal Accumulation and Consequent Responses of Beta Vulgaris Plants. Chemosphere 2007, 67, 2229–2240. [Google Scholar] [CrossRef]
- Srivastava, V.; Gupta, S.K.; Singh, P.; Sharma, B.; Singh, R.P. Biochemical, Physiological, and Yield Responses of Lady’s Finger (Abelmoschus esculentus L.) Grown on Varying Ratios of Municipal Solid Waste Vermicompost. Int. J. Recycl. Org. Waste Agric. 2018, 7, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Jakhar, S.; Mukherjee, D. Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L. Physiol. Mol. Biol. Plants 2014, 20, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Gallos, L.K.; Havlin, S.; Makse, H.A. How to Calculate the Fractal Dimension of a Complex Network: The Box Covering. J. Stat. Mech. Theory Exp. 2007, 2007, P03006. [Google Scholar] [CrossRef] [Green Version]
- Nottale, L.; Chaline, J.; Grou, P. On the Fractal Structure of Evolutionary Trees. Fractals Biol. Med. 2002, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Weibel, E.R. Design of Biological Organisms and Fractal Geometry. In Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction; Nonnenmacher, T.F., Losa, G.A., Weibel, E.R., Eds.; Birkhäuser: Basel, Switzerland, 1994; pp. 68–85. [Google Scholar] [CrossRef]
- Su, J. A Spectrum Fractal Feature Classification Algorithm for Agriculture Crops with Hyper Spectrum Image. NASA 2011, 8002, 172–177. [Google Scholar] [CrossRef]
- Bayırlı, M.; Selvi, S.; Çakılcıoğlu, U. Determining Different Plant Leaves’ Fractal Dimensions: A New Approach to Taxonomical Study of Plants. Bangladesh J. Bot. 2014, 43, 267–275. [Google Scholar] [CrossRef]
- Ivanov, V.B.; Scherbakov, A.V. Assessment of the level of stress on plants of Western Siberian raised bogs by the method of fractal analysis. Sib. J. Life Sci. Agric. 2021, 13, 224–237. [Google Scholar] [CrossRef]
- Boluda, R.; Roca-Pérez, L.; Marimón, L. Soil plate bioassay: An effective method to determine ecotoxicological risks. Chemosphere 2011, 84, 1–8. [Google Scholar] [CrossRef]
SD | LD | |
---|---|---|
pH | 7.9 ± 0.02 | 7.6 ± 0.03 |
EC (mS cm−1) | 1.5 ± 0.1 | 20.0 ± 0.2 |
Total N (%) | 2.0 ± 0.01 | 9.7 ± 0.01 |
Total P (%) | 0.89 ± 0.03 | 0.55 ± 0.02 |
Cd (mg kgDW−1) | <0.1 | <0.1 |
Cr (mg kgDW−1) | <0.2 | <0.2 |
Cu (mg kgDW−1) | 46.9 ± 0.3 | 155 ± 0.3 |
Hg (mg kgDW−1) | <0.1 | <0.1 |
Ni (mg kgDW−1) | 15.2 ± 0.1 | 14.5 ± 0.1 |
Pb (mg kgDW−1) | <0.5 | <0.5 |
Zn (mg kgDW−1) | 177 ± 0.9 | 583 ± 1.5 |
Organic matter (%) | 60.7 ± 0.1 | 62.6 ± 0.09 |
Water content (%) | 56.4 ± 0.01 | 95.7 ± 0.02 |
Salmonella spp. | Absent | Absent |
Escherichia coli (UFC g−1) | <1.0 × 10−1 | <1.0 × 10−1 |
Soil | |
---|---|
Texture (%) | |
Sand | 22.1 |
Silt | 44.8 |
Clay | 33.1 |
pH 1:20 w/v | 8.05 ± 0.02 |
EC 1:20 w/v (µS cm−1) | 358 ± 21 |
CEC (cmol kg −1) | 29.7 ± 0.8 |
Total N (%) | 0.16 ± 0.001 |
Ca (mg kg−1) | 60,258 ± 288 |
Fe (mg kg−1) | 39,651 ± 646 |
K (mg kg−1) | 19,017 ± 153 |
Mg (mg kg−1) | 14,767 ± 224 |
Mn (mg kg−1) | 653 ± 14 |
Na (mg kg−1) | 8757 ± 30 |
P (mg kg−1) | 663 ± 20 |
S (mg kg−1) | 63 ± 1.2 |
Organic carbon (%) | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedeli, R.; Celletti, S.; Loppi, S.; Vannini, A. Comparison of the Effect of Solid and Liquid Digestate on the Growth of Lettuce (Lactuca sativa L.) Plants. Agronomy 2023, 13, 782. https://doi.org/10.3390/agronomy13030782
Fedeli R, Celletti S, Loppi S, Vannini A. Comparison of the Effect of Solid and Liquid Digestate on the Growth of Lettuce (Lactuca sativa L.) Plants. Agronomy. 2023; 13(3):782. https://doi.org/10.3390/agronomy13030782
Chicago/Turabian StyleFedeli, Riccardo, Silvia Celletti, Stefano Loppi, and Andrea Vannini. 2023. "Comparison of the Effect of Solid and Liquid Digestate on the Growth of Lettuce (Lactuca sativa L.) Plants" Agronomy 13, no. 3: 782. https://doi.org/10.3390/agronomy13030782
APA StyleFedeli, R., Celletti, S., Loppi, S., & Vannini, A. (2023). Comparison of the Effect of Solid and Liquid Digestate on the Growth of Lettuce (Lactuca sativa L.) Plants. Agronomy, 13(3), 782. https://doi.org/10.3390/agronomy13030782