Effects of Different Tillage Practices and Nitrogen Fertiliser Application Rates on Soil-Available Nitrogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Soil Sampling
2.4. Soil Nitrate and Ammonium Analysis
2.5. Soil Organic Carbon and pH
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Soil Available Nitrate (NO3−)
4.2. Soil Available NH4+
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.; Li, Q.; Zeng, X.; Liu, Y.; Li, Y. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, F.J. Biological nitrogen fixation. Adv. Microbiol. J. 2016, 6, 407–411. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A Review. Adv. Environ. Biol. 2016, 10, 209–218. [Google Scholar]
- Rutting, T.; Aronsson, H.; Delin, S. Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosyst. 2018, 110, 1–5. [Google Scholar] [CrossRef]
- Verhulst, N.; Govaerts, B.; Verachtert, E.; Castellanos-Navarrete, A.; Mezzalama, M.; Wall, P.; Deckers, J.; Sayre, K.D. Conservation Agriculture, Improving Soil Quality for sustainable Production Systems? In Advances in Soil Science: Food Security and Soil Quality; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 137–208. [Google Scholar]
- Sithole, N.J.; Magwaza, L.S.; Mafongoya, P.L. Conservation agriculture and its impact on soil quality and maize yield: A South African perspective. Soil Tillage Res. 2016, 162, 55–67. [Google Scholar] [CrossRef]
- Xue, J.; Pu, C.; Liu, S.; Chen, Z.; Chen, F.; Xiao, X.; Lal, R.; Zhang, H. Effects of tillage systems on soil organic carbon and total nitrogen in a double paddy cropping system in Southern China. Soil Tillage Res. 2015, 153, 161–168. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X.H. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn–soybean rotations. J. Environ. Qual. 2005, 34, 437–445. [Google Scholar] [CrossRef]
- Hafif, B. Effect of Tillage on Soil Nitrogen; A Review. Int. J. Adv. Sci. Eng. Inf. Technol. 2014, 4, 16–19. [Google Scholar] [CrossRef]
- Rueda, M.; Munoz-Guerra, L.M.; Yunta, F.; Esteban, E.; Tenorio, J.L.; Lucena, J.J. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 2007, 92, 1–9. [Google Scholar]
- Khan, S.; Shah, A.; Nawaz, M.; Khan, M. Impact of different tillage practices on soil physical properties, nitrate leaching and yield attributes of maize (Zea mays L.). J. Soil Sci. Plant Nutr. 2017, 17, 240–252. [Google Scholar] [CrossRef]
- Wilts, A.R.; Reicosky, D.C.; Allmaras, R.R.; Clapp, C.E. Long-term corn residue effects: Harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci. Soc. Am. J. 2004, 68, 1342–1351. [Google Scholar] [CrossRef]
- Cui, S.Y.; Chen, F.; Xue, J.F.; Tang, F.; Zhang, W.G.; Lal, H.L. Tillage effects on nitrogen leaching and nitrous oxide emission from double-cropped paddy fields. Agron. J. 2014, 106, 9. [Google Scholar] [CrossRef]
- Marahatta, S.; Sah, S.K.; MacDonald, A.; Timilnisa, J.; Devkota, K.P. Influence of Conservation Agriculture Practices on Physical and Chemicl Properties of Soil. Int. J. Adv. Res. 2014, 2, 43–49. [Google Scholar]
- Jensen, L.S.; Schjoerring, J.K. Benefits of Nitrogen for Food, Fibre and Industrial Production, The European Nitrogen Assessment ed.; Cambridge University Press: Cambridge, UK, 2011; pp. 1–9. [Google Scholar]
- Ribaudo, M.; Delgado, J.; Hansen, L.; Livingston, M.; Mosheim, R.; Williamson, J. Nitrogen in Agricultural Systems: Implications for Conservation Policy; ERR-127; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2011. [Google Scholar]
- Venterea, R.T.; Burger, M.; Spokas, K.A. Nitrogen Oxide and Methane emissions under varying tillage and fertilizer management. J. Environ. Qual. 2005, 34, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Zulu, S.G.; Motsa, N.M.; Sithole, N.J.; Magwaza, L.S.; Ncama, K. Soil macrofauna abundance and taxonomic richness under long-term no-till conservation agriculture in a semi-arid environment of South Africa. Agronomy 2022, 12, 722. [Google Scholar] [CrossRef]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2nd ed.; Sacred: Nairobi, Kenya, 2002. [Google Scholar]
- Kowalenko, C.G. Assessment of Leco CNS-2000 analyzer for simultaneously measuring total carbon, nitrogen and sulphur in soil Commun. Soil Sci. Plant Anal. 2001, 32, 14. [Google Scholar] [CrossRef]
- Malhi, S.S.; Nyborg, M.; Harapiak, J.T. Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay. Soil Tillage Res. 1998, 48, 91–101. [Google Scholar] [CrossRef]
- Cheneby, D.; Brauman, A.; Rabary, B.; Philippot1, L. Differential Responses of Nitrate Reducer Community Size, Structure, and Activity to Tillage Systems. Appl. Environ. Microbiol. 2009, 75, 3180–3186. [Google Scholar] [CrossRef]
- Vilakazi, B.S.; Zengeni, R.; Mafongoya, P. The effects of different tillage techniques and N fertilizer rates on Nitrogen and Phosphorus in dry land Agriculture. Agronomy 2022, 12, 2389. [Google Scholar] [CrossRef]
- Celika, I.; Günal, H.; Acara, M.; Göka, M.; Barut, Z.B.; Pamiralan, H. Long-term tillage and residue management effect on soil compaction and nitrate leaching in a Typic Haploxerert soil. Int. J. Plant Prod. 2017, 11, 131–150. [Google Scholar]
- Oladele, S.O.; Adeyemo, A.J.; Awodun, M.A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 2019, 336, 1–11. [Google Scholar] [CrossRef]
- Anugroho, F.; Kitou, M. Effect of Tillage Treatments of Hairy Vetch Residues on Soil Inorganic-N Distributions and Corn Growth in a Subtropical Region. Appl. Environ. Soil Sci. 2020, 2020, 7049161. [Google Scholar] [CrossRef]
- Zia, N.; Iqbal, M.; Sarwar, N.; Nawaz, M.; Imran, M.; Shaheen, M.R.; Ur-Rehman, A.; Shehzad, S.; Jawad, Y. Impact of tillage methods and nitrogen application rates on Soil physical health indices, NO3, Content and yield related traits of wheat. Int. J. Biosci. 2018, 12, 73–81. [Google Scholar]
- Lopez-Bellido, L.; Munoz-Romero, V.; Fernandez-Garcia, P.; Lopez-Bellido, R.J. Ammonium accumulation in soil: The long-term effects of tillage, rotation and N rate in a Mediterranean Vertisol. Soil Use Manag. 2014, 30, 471–479. [Google Scholar] [CrossRef]
NO3− | NH4+ | ||||
---|---|---|---|---|---|
Effects | Df | F | p | F | p |
Treatments | 2 | 61,184.55 | <0.001 *** | 66.90 | <0.001 *** |
Depth | 2 | 2914.23 | <0.001 *** | 674.09 | <0.001 *** |
N level | 2 | 98.75 | <0.001 *** | 674.21 | <0.001 *** |
Season | 2 | 611.47 | <0.001 *** | 372.57 | <0.001 *** |
Treatments × Depth | 4 | 1344.32 | <0.001 *** | 799.06 | <0.001 *** |
Treatment × N level | 4 | 3915.15 | <0.001 *** | 759.68 | <0.001 *** |
Depth × N level | 4 | 3717.67 | <0.001 *** | 367.86 | <0.001 *** |
Tillage × Season | 4 | 262.12 | <0.001 *** | 44.56 | <0.001 *** |
Depth × Season | 4 | 305.94 | <0.001 *** | 141.54 | <0.001 *** |
N Level × Season | 4 | 599.66 | <0.001 *** | 92.84 | <0.001 *** |
Tillage × Depth × N Level | 8 | 6274.74 | <0.001 *** | 1059.93 | <0.001 *** |
Tillage × Depth × Season | 8 | 763.77 | <0.001 *** | 178.78 | <0.001 *** |
Tillage × N Level × Season | 8 | 370.18 | <0.001 *** | 312.48 | <0.001 *** |
Depth × N Level × Season | 8 | 367.92 | <0.001 *** | 493.52 | <0.001 *** |
Tillage × Depth × N Level × Season | 16 | 452.35 | <0.001 *** | 161.72 | <0.001 *** |
Tillage System | ||||
---|---|---|---|---|
Soil pH | Depth (cm) | NT | RT | CT |
0–10 | 5.56 a | 5.65 a | 6.09 a | |
10–20 | 5.69 a | 6.12 a | 6.27 a | |
20–30 | 5.56 a | 6.31 a | 6.10 a | |
Mean | 5.60 a | 6.03 b | 6.16 b | |
LSDt = 0.298, LSDt×d = 0.516 | ||||
SOC (%) | ||||
0–10 | 2.21 d | 2.04 cd | 1.83 bc | |
10–20 | 1.61 ab | 1.60 ab | 1.74 abc | |
20–30 | 1.53 a | 1.51 a | 1.68 ab | |
Mean | 1.78 a | 1.72 a | 1.75 a | |
LSDt = 0.108, LSDt×d = 0.186 |
N Level (kg/ha) | |||||
Soil pH | Tillage | 0 | 100 | 200 | Mean |
CT | 6.10 a | 6.12 a | 6.25 a | 6.16 b | |
NT | 5.74 a | 5.53 a | 5.54 a | 5.60 a | |
RT | 6.17 a | 5.91 a | 6.01 a | 6.03 b | |
LDSt = 0.298, LSDt×f = 0.516 | |||||
SOC (%) | CT | 1.74 a | 1.81 a | 1.69 a | 1.75 a |
NT | 1.73 a | 1.88 a | 1.74 a | 1.78 a | |
RT | 1.59 a | 1.73 a | 1.83 a | 1.71 a | |
LSDt = 0.108, LSDt×f = 0.186 |
NO3− | NH4+ | ||||||
Depth (cm) | Depth (cm) | ||||||
Tillage | N Level | 0–10 | 10–20 | 20–30 | 0–10 | 10–20 | 20–30 |
CT | 0 | 7.216 ᴶ ± 0.161 | 7.014 ᴵ ± 0.024 | 7.553 ᴷ ±0.472 | 0.5681 ᵉᶠ ± 0.167 | 0.2380 ᵃᵇ ± 0.029 | 1.3436 ᴵ ± 0.182 |
100 | 9.934 ⁿ ± 0.151 | 5.796 ᵉ ± 0.242 | 5.270 ᶜ ± 0.037 | 0.7691 ʰᴵ ± 0.208 | 0.8484 ᴵᴶ ± 0.284 | 0.2647 ᵃᵇᶜ ± 0.025 | |
200 | 5.267 ᶜ ± 0.055 | 7.142 ᴶ ± 0. 374 | 5.606 ᵈ ± 0.173 | 0.6770 ᶠᶢʰ ± 0.081 | 0.6520 ᶠᶢʰ ± 0.193 | 0.4664 ᵈᵉ ± 0.068 | |
NT | 0 | 7.587 ᴷ ± 0.166 | 5.929 ᶠ ± 0.235 | 8.467 ᴵ ± 0.335 | 3.4274 ⁿ ± 0.558 | 0.3769 ᶜᵈ ± 0.029 | 0.6291 ᶠ ± 0.107 |
100 | 6.607 ᶢ ± 0.302 | 6.876 ʰ ± 0.255 | 8.535 ᴵ ± 0.084 | 0.1813 ᵃ ± 0.045 | 0.2933 ᵃᵇᶜ ± 0.065 | 0.3117 ᵇᶜ ± 0.072 | |
200 | 9.943 ⁿ ± 0.097 | 8.910 ᵐ ± 0.390 | 6.700 ᶢ ± 0.105 | 0.3901 ᶜᵈ ± 0.036 | 0.4888 ᵈᵉ ± 0.031 | 0.7570 ᶢʰᴵ ± 0.263 | |
RT | 0 | 4.616 ᵃ ± 0.036 | 4.735 ᵇ ± 0.057 | 4.661 ᵃᵇ ± 0.021 | 0.1688 ᵃ ± 0.054 | 0.6405 ᶠᶢ ± 0.161 | 1.1971 ᴷ ± 0.154 |
100 | 4.696 ᵃᵇ ± 0.023 | 4.644 ᵃᵇ ± 0.039 | 4.636 ᵃᵇ ± 0.007 | 0.5549 ᵉᶠ ± 0.019 | 0.2736 ᵃᵇᶜ ± 0.004 | 1.5482 ᵐ ± 0.320 | |
200 | 5.221 ᶜ ± 0.216 | 4.646 ᵃᵇ ± 0.077 | 4.630 ᵃ ± 0.017 | 0.9218 ᴶ ± 0.175 | 0.5509 ᵉᶠ ± 0.057 | 0.9657 ᴶ ± 0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulu, S.G.; Motsa, N.M.; Magwaza, L.S.; Ncama, K.; Sithole, N.J. Effects of Different Tillage Practices and Nitrogen Fertiliser Application Rates on Soil-Available Nitrogen. Agronomy 2023, 13, 785. https://doi.org/10.3390/agronomy13030785
Zulu SG, Motsa NM, Magwaza LS, Ncama K, Sithole NJ. Effects of Different Tillage Practices and Nitrogen Fertiliser Application Rates on Soil-Available Nitrogen. Agronomy. 2023; 13(3):785. https://doi.org/10.3390/agronomy13030785
Chicago/Turabian StyleZulu, Samukelisiwe G., Nozipho M. Motsa, Lembe Samukelo Magwaza, Khayelihle Ncama, and Nkanyiso J. Sithole. 2023. "Effects of Different Tillage Practices and Nitrogen Fertiliser Application Rates on Soil-Available Nitrogen" Agronomy 13, no. 3: 785. https://doi.org/10.3390/agronomy13030785
APA StyleZulu, S. G., Motsa, N. M., Magwaza, L. S., Ncama, K., & Sithole, N. J. (2023). Effects of Different Tillage Practices and Nitrogen Fertiliser Application Rates on Soil-Available Nitrogen. Agronomy, 13(3), 785. https://doi.org/10.3390/agronomy13030785