Genome-Wide Association Analysis Identified Newly Natural Variation for Photosynthesis-Related Traits in a Large Maize Panel
Abstract
:1. Introduction
2. Results
3. Variance Analysis and Heritability
4. Association Mapping: QTLs, SNPs and Candidate Genes
5. Discussion
6. Conclusions
7. Materials and Methods
7.1. Plant Materials
7.2. Field Experiment and Phenotypic Measurements
7.3. Statistical Analysis Filtering of Genotypic Data and Association Mapping
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.; Yin, X.; Stomph, T.J.; Struik, P.C. Can Exploiting Natural Genetic Variation in Leaf Photosynthesis Contribute to Increasing Rice Productivity? A Simulation Analysis. Plant Cell Environ. 2014, 37, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Basu, U.; Bajaj, D.; Sharma, A.; Malik, N.; Daware, A.; Narnoliya, L.; Thakro, V.; Upadhyaya, H.D.; Kumar, R.; Tripathi, S.; et al. Genetic Dissection of Photosynthetic Efficiency Traits for Enhancing Seed Yield in Chickpea. Plant Cell Environ. 2019, 42, 158–173. [Google Scholar] [CrossRef] [Green Version]
- Slattery, R.A.; Ainsworth, E.A.; Ort, D.R. A Meta-Analysis of Responses of Canopy Photosynthetic Conversion Efficiency to Environmental Factors Reveals Major Causes of Yield Gap. J. Exp. Bot. 2013, 64, 3723–3733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinclair, T.R.; Rufty, T.W.; Lewis, R.S. Increasing Photosynthesis: Unlikely Solution For World Food Problem. Trends Plant Sci. 2019, 24, 1032–1039. [Google Scholar] [CrossRef]
- Hussain, S.; Ulhassan, Z.; Brestic, M.; Zivcak, M.; Zhou, W.; Allakhverdiev, S.I.; Yang, X.; Safdar, M.E.; Yang, W.; Liu, W. Photosynthesis Research under Climate Change. Photosynth. Res. 2021, 150, 5–19. [Google Scholar] [CrossRef]
- Stewart, D.W.; Costa, C.; Dwyer, L.M.; Smith, D.L.; Hamilton, R.I.; Ma, B.L. Canopy Structure, Light Interception, and Photosynthesis in Maize. Agron. J. 2003, 95, 1465–1474. [Google Scholar] [CrossRef]
- Lee, E.A.; Tollenaar, M. Physiological Basis of Successful Breeding Strategies for Maize Grain Yield. Crop Sci. 2007, 47, S-202. [Google Scholar] [CrossRef]
- Sekhon, R.S.; Saski, C.; Kumar, R.; Flinn, B.S.; Luo, F.; Beissinger, T.M.; Ackerman, A.J.; Breitzman, M.W.; Bridges, W.C.; De Leon, N.; et al. Integrated Genome-Scale Analysis Identifies Novel Genes and Networks Underlying Senescence in Maize. Plant Cell 2019, 31, 1968–1989. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Hou, P.; Duan, F.; Niu, L.; Dai, T.; Wang, K.; Zhao, M.; Li, S.; Zhou, W. Improving Photosynthesis to Increase Grain Yield Potential: An Analysis of Maize Hybrids Released in Different Years in China. Photosynth. Res. 2021, 150, 295–311. [Google Scholar] [CrossRef]
- Flood, P.J.; Harbinson, J.; Aarts, M.G.M. Natural Genetic Variation in Plant Photosynthesis. Trends Plant Sci. 2011, 16, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Faralli, M.; Matthews, J.; Lawson, T. Exploiting Natural Variation and Genetic Manipulation of Stomatal Conductance for Crop Improvement. Curr. Opin. Plant Biol. 2019, 49, 1–7. [Google Scholar] [CrossRef]
- Huo, Y.; Wang, M.; Wei, Y.; Xia, Z. Overexpression of the Maize PsbA Gene Enhances Drought Tolerance through Regulating Antioxidant System, Photosynthetic Capability, and Stress Defense Gene Expression in Tobacco. Front. Plant Sci. 2016, 6, 1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salesse-Smith, C.E.; Sharwood, R.E.; Busch, F.A.; Kromdijk, J.; Bardal, V.; Stern, D.B. Overexpression of Rubisco Subunits with RAF1 Increases Rubisco Content in Maize. Nat. Plants 2018, 4, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.K.; Ishiyama, K.; Suganami, M.; Tazoe, Y.; Watanabe, M.; Imaruoka, S.; Ogura, M.; Ishida, H.; Suzuki, Y.; Obara, M.; et al. Transgenic Rice Overproducing Rubisco Exhibits Increased Yields with Improved Nitrogen-Use Efficiency in an Experimental Paddy Field. Nat. Food 2020, 1, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Leakey, A.D.; Ferguson, J.N.; Pignon, C.P.; Wu, A.; Jin, Z.; Hammer, G.L.; Lobell, D.B. Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C3 and C4 Crops. Annu. Rev. Plant Biol. 2019, 70, 781–808. [Google Scholar] [CrossRef]
- Prado, S.A.; Cabrera-Bosquet, L.; Grau, A.; Coupel-Ledru, A.; Millet, E.J.; Welcker, C.; Tardieu, F. Phenomics Allows Identification of Genomic Regions Affecting Maize Stomatal Conductance with Conditional Effects of Water Deficit and Evaporative Demand. Plant. Cell Environ. 2018, 41, 314–326. [Google Scholar] [CrossRef]
- Ghannoum, O. How Can We Breed for More Water Use-Efficient Sugarcane? J. Exp. Bot. 2016, 67, 557–559. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, H.; Liu, S.; Ferjani, A.; Li, J.; Yan, J. Genetic Variation in ZmVPP1 Contributes to Drought Tolerance in Maize Seedlings. Nat. Genet. 2016, 48, 1233–1241. [Google Scholar] [CrossRef]
- Djemel, A.; Álvarez-Iglesias, L.; Pedrol, N.; López-Malvar, A.; Ordás, A.; Revilla, P. Identification of Drought Tolerant Populations at Multi-Stage Growth Phases in Temperate Maize Germplasm. Euphytica 2018, 214, 138. [Google Scholar] [CrossRef]
- Djemel, A.; Álvarez-Iglesias, L.; Santiago, R.; Malvar, R.A.; Pedrol, N.; Revilla, P. Algerian Maize Populations from the Sahara Desert as Potential Sources of Drought Tolerance. Acta Physiol. Plant. 2019, 41, 12. [Google Scholar] [CrossRef]
- Lopez, M.A.; Xavier, A.; Rainey, K.M. Phenotypic Variation and Genetic Architecture for Photosynthesis and Water Use Efficiency in Soybean (Glycine max L. Merr). Front. Plant Sci. 2019, 10, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Yang, Y.; Zhang, S.; Che, Z.; Yuan, W.; Yu, D. GWAS Reveals Two Novel Loci for Photosynthesis-Related Traits in Soybean. Mol. Genet. Genom. 2020, 295, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Lü, H.; Yang, Y.; Li, H.; Liu, Q.; Zhang, J.; Yin, J.; Chu, S.; Zhang, X.; Yu, K.; Lv, L.; et al. Genome-Wide Association Studies of Photosynthetic Traits Related to Phosphorus Efficiency in Soybean. Front. Plant Sci. 2018, 9, 1226. [Google Scholar] [CrossRef] [Green Version]
- Pignon, C.P.; Fernandes, S.B.; Valluru, R.; Bandillo, N.; Lozano, R.; Buckler, E.; Gore, M.A.; Long, S.P.; Brown, P.J.; Leakey, A.D.B. Phenotyping Stomatal Closure by Thermal Imaging for GWAS and TWAS of Water Use Efficiency-Related Genes. Plant Physiol. 2021, 187, 2544–2562. [Google Scholar] [CrossRef]
- Pelleschi, S.; Leonardi, A.; Rocher, J.P.; Cornic, G.; De Vienne, D.; Thévenot, C.; Prioul, J.L. Analysis of the Relationships between Growth, Photosynthesis and Carbohydrate Metabolism Using Quantitative Trait Loci (QTLs) in Young Maize Plants Subjected to Water Deprivation. Mol. Breed. 2006, 17, 21–39. [Google Scholar] [CrossRef]
- Flood, P.J. Using Natural Variation to Understand the Evolutionary Pressures on Plant Photosynthesis. Curr. Opin. Plant Biol. 2019, 49, 68–73. [Google Scholar] [CrossRef]
- Morales, F.; Ancín, M.; Fakhet, D.; González-Torralba, J.; Gámez, A.L.; Seminario, A.; Soba, D.; Ben Mariem, S.; Garriga, M.; Aranjuelo, I. Photosynthetic Metabolism under Stressful Growth Conditions as a Bases for Crop Breeding and Yield Improvement. Plants 2020, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Yi, Q.; Álvarez-Iglesias, L.; Malvar, R.A.; Romay, M.C.; Revilla, P. A Worldwide Maize Panel Revealed New Genetic Variation for Cold Tolerance. Theor. Appl. Genet. 2021, 134, 1083–1094. [Google Scholar] [CrossRef]
- Romay, M.C.; Millard, M.J.; Glaubitz, J.C.; Peiffer, J.A.; Swarts, K.L.; Casstevens, T.M.; Elshire, R.J.; Acharya, C.B.; Mitchell, S.E.; Flint-garcia, S.A.; et al. Comprehensive Genotyping of the USA National Maize Inbred Seed Bank. Genome Biol. 2013, 14, R55. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.G.; Bradbury, P.J.; Zhang, N.; Gibon, Y.; Stitt, M.; Buckler, E.S. Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize. PLoS Genet. 2014, 10, e1004845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodhouse, M.R.; Cannon, E.K.; Portwood, J.L.; Harper, L.C.; Gardiner, J.M.; Schaeffer, M.L.; Andorf, C.M. A Pan-Genomic Approach to Genome Databases Using Maize as a Model System. BMC Plant Biol. 2021, 21, 385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Zhong, Y. Genetic Dissection of the Photosynthetic Parameters of Maize (Zea mays L.) in Drought-Stressed and Well-Watered Environments. Russ. J. Plant Physiol. 2021, 68, 1125–1134. [Google Scholar] [CrossRef]
- Duncan, W.G.; Hesketh, J.D. Net Photosynthetic Rates, Relative Leaf Growth Rates, and Leaf Numbers of 22 Races of Maize Grown at Eight Temperatures1. Crop Sci. 1968, 8, 670–674. [Google Scholar] [CrossRef]
- Long, S.P.; Marshall-Colon, A.; Zhu, X.G. Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell 2015, 161, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic Strategies for Improving Crop Yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Zamioudis, C.; Hanson, J.; Pieterse, C.M.J. β-Glucosidase BGLU42 Is a MYB72-Dependent Key Regulator of Rhizobacteria-Induced Systemic Resistance and Modulates Iron Deficiency Responses in Arabidopsis Roots. New Phytol. 2014, 204, 368–379. [Google Scholar] [CrossRef]
- Rouyi, C.; Baiya, S.; Lee, S.K.; Mahong, B.; Jeon, J.S.; Ketudat- Cairns, J.R.; Ketudat-Cairns, M. Recombinant Expression and Characterization of the Cytoplasmic Rice β-Glucosidase Os1BGlu4. PLoS ONE 2014, 9, e96712. [Google Scholar] [CrossRef] [Green Version]
- Castorina, G.; Domergue, F.; Chiara, M.; Zilio, M.; Persico, M.; Ricciardi, V.; Horner, S.; Consonni, G. Drought-Responsive ZmFDL1 / MYB94 Regulates Cuticle Biosynthesis and Cuticle-Dependent Leaf Permeability. Plant Physiol. 2020, 184, 266–282. [Google Scholar] [CrossRef]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-Sink Transport of Sugar and Regulation by Environmental Factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef] [Green Version]
- Rajhi, I.; Yamauchi, T.; Takahashi, H.; Nishiuchi, S.; Shiono, K.; Watanabe, R.; Mliki, A.; Nagamura, Y.; Tsutsumi, N.; Nishizawa, N.K.; et al. Identification of Genes Expressed in Maize Root Cortical Cells during Lysigenous Aerenchyma Formation Using Laser Microdissection and Microarray Analyses. New Phytol. 2011, 190, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, S.; Bertin, P.; Presterl, T.; Jamin, P.; Coubriche, D.; Gouesnard, B.; Laborde, J.; Charcosset, A. Association Mapping for Phenology and Plant Architecture in Maize Shows Higher Power for Developmental Traits Compared with Growth Influenced Traits. Hered 2016, 118, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; He, X.; Baer, M.; Beirinckx, S.; Tian, T.; Moya, Y.A.T.; Zhang, X.; Deichmann, M.; Frey, F.P.; Bresgen, V.; et al. Plant Flavones Enrich Rhizosphere Oxalobacteraceae to Improve Maize Performance under Nitrogen Deprivation. Nat. Plants 2021, 7, 481–499. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, H.; Hu, X.; Liu, Z.; Wu, Y.; Huang, C. Genome-Wide Association Study Reveals the Genetic Basis of Stalk Cell Wall Components in Maize. PLoS ONE 2016, 11, e0158906. [Google Scholar] [CrossRef] [Green Version]
- Monir, M.M.; Zhu, J. Dominance and Epistasis Interactions Revealed as Important Variants for Leaf Traits of Maize NAM Population. Front. Plant Sci. 2018, 9, 627. [Google Scholar] [CrossRef]
- Pan, L.; George-Jaeggli, B.; Borrell, A.; Jordan, D.; Koller, F.; Al-Salman, Y.; Cano, F.J. Coordination of Stomata and Vein Patterns with Leaf Width Underpins Water-use Efficiency in a C4 Crop. Plant Cell Environ. 2022, 45, 1612–1630. [Google Scholar] [CrossRef]
- Revilla, P.; Rodríguez, V.M.; Ordás, A.; Rincent, R.; Charcosset, A.; Giauffret, C.; Melchinger, A.E.; Schön, C.C.; Bauer, E.; Altmann, T.; et al. Cold Tolerance in Two Large Maize Inbred Panels Adapted to European Climates. Crop Sci. 2014, 54, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Gobierno de España Agencia Estatal de Meteorología—AEMET. Available online: https://www.aemet.es/ (accessed on 18 November 2022).
- Buckler, E.S.; Holland, J.B.; Bradbury, P.J.; Acharya, C.B.; Brown, P.J.; Browne, C.; Ersoz, E.; Flint-Garcia, S.; Garcia, A.; Glaubitz, J.C.; et al. The Genetic Architecture of Maize Flowering Time. Science 2009, 325, 714–718. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Bosquet, L.; Molero, G.; Bort, J.; Nogués, S.; Araus, J.L. The Combined Effect of Constant Water Deficit and Nitrogen Supply on WUE, NUE and Δ13C in Durum Wheat Potted Plants. Ann. Appl. Biol. 2007, 151, 277–289. [Google Scholar] [CrossRef]
- SAS/STAT, Statistical Analysis System Proprietary Software Release 9.4; SAS Institute Inc.: Cary, NC, USA, 2007.
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martínez, C.T. Estimated and Interpreting Heritability for Plant Breeding: An Update. Plant Breed. Rev. 2003, 22, 9–122. [Google Scholar]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.; Nielsen, D.M.; Holland, J.B.; et al. A Unified Mixed-Model Method for Association Mapping That Accounts for Multiple Levels of Relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Becker, L.C.; Becker, D.M.; Starmer, J.D.; Province, M.A. Avoiding the High Bonferroni Penalty in Genome-Wide Association Studies. Genet. Epidemiol. 2010, 34, 100–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowda, M.; Das, B.; Makumbi, D.; Babu, R.; Semagn, K.; Mahuku, G.; Olsen, M.S.; Bright, J.M.; Beyene, Y.; Prasanna, B.M. Genome-Wide Association and Genomic Prediction of Resistance to Maize Lethal Necrosis Disease in Tropical Maize Germplasm. Theor. Appl. Genet. 2015, 128, 1957–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inbred | AN (µmol CO2 m−2 s−1) | gS (mol H2O m−2 s−1) | E (mmol H2O m−2 s−1) | WUEi (µmol CO2 mol−1 H2O) | WUEinst (µmol CO2 mmol−1 H2O) |
---|---|---|---|---|---|
A665 | 25.96 ± 1.34 a | 0.1918 ± 0.0100 a | 3.49 ± 0.18 a | 143.13 ± 6.56 b | 7.96 ± 0.46 ab |
PH207 | 25.74 ± 1.39 a | 0.1690 ± 0.0161 a | 3.54 ± 0.34 a | 179.97 ± 11.20 ab | 8.67 ± 0.64 ab |
A632 | 24.15 ± 1.18 a | 0.1751 ± 0.0109 a | 3.47 ± 0.22 a | 158.08 ± 15.80 ab | 7.99 ± 0.65 ab |
EP42 | 23.99 ± 1.04 a | 0.1784 ± 0.0179 a | 3.01 ± 0.22 ab | 154.31 ± 6.68 b | 11.23 ± 2.76 a |
A619 | 21.33 ± 0.57 b | 0.1169 ± 0.0052 b | 2.63+0.11 b | 198.08 ± 1.89 a | 9.66 ± 0.16 ab |
A662 | 18.15 ± 1.00 c | 0.1156 ± 0.0075 b | 2.99 ± 0.18 ab | 166.60 ± 6.75 ab | 7.04 ± 0.58 b |
LSD0.05 | 2.33 | 0.0358 | 0.8033 | 40.20 | 4.03 |
Source | Mean Square | ||||
---|---|---|---|---|---|
AN | gS | E | WUEi | WUEinst | |
Year | 2695.68 *** | 0.03 * | 20.43 *** | 11037.07 | 313.92 * |
Block (Year) | 52.79 * | 0.01 * | 2.23 | 3158.41 | 77.35 * |
Inbred | 322.28 *** | 0.04 *** | 5.40 ** | 12125.36 * | 57.04 |
Year*Inbred | 20.68 | 0.005 | 2.45 | 6168.85 | 61.86 |
Residual error | 21.07 | 0.005 | 2.39 | 5956.63 | 61.01 |
Heritability (%) | 92.5 ± 4.84 | 88.2 ± 7.55 | 34.8 ± 54.87 | 65.8 ± 26.08 | 14.0 ± 75.26 |
Trait | AN | gS | E | WUEi | WUEinst |
---|---|---|---|---|---|
AN | 1 | 0.71 *** | 0.65 *** | −0.34 *** | −0.06 |
gS | 1 | 0.64 *** | −0.66 *** | −0.23 *** | |
E | 1 | −0.48 *** | −0.65 *** | ||
WUEi | 1 | 0.48 *** | |||
WUEinst | 1 |
Trait a | The Most Significant SNP b | Bin c | QTL Interval | Num. of Significant | p-Value d | R2 | Add Effect e | Add | Add | Add | N i | Allele |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNPs Contained | Effect 2017 f | Effect 2018 g | Effect 2019 h | |||||||||
AN | S2_9085639 | 2.02 | S2_9085639 | 1 | 8.80 × 10−5 | 0.03 | 1.31 *** | 0.36 | 1.41 ** | 0.7300 | 552/76 | A/G |
AN | S3_68053212 | 3.04 | S3_68053212 | 1 | 7.76 × 10−5 | 0.03 | 1.82 *** | 0.44 | 1.65 ** | 1.40 * | 36/643 | A/T |
AN | S6_108121295 | 6.04 | S6_108121295 | 1 | 5.92 × 10−5 | 0.03 | 1.15 *** | 0.14 | 1.27 ** | 0.82 * | 583/119 | T/C |
AN | S8_82856407 | 8.03 | S8_82856407 | 1 | 2.30 × 10−5 | 0.03 | 1.80 *** | 0.91 | 1.07 | 1.69 ** | 582/43 | G/C |
AN | S9_123361111 | 9.04 | S9_123361111 | 1 | 6.21 × 10−5 | 0.03 | 1.54 *** | 0.03 | 1.09 * | 1.38 ** | 550/52 | C/G |
gS | S2_210377804 | 2.08 | S2_210377804 | 1 | 7.53 × 10−5 | 0.02 | 0.02 *** | 0.004 | 0.03 ** | 0.01 * | 47/599 | C/A |
gS | S2_220728960 | 2.09 | S2_220728960 | 1 | 3.34 × 10−5 | 0.03 | 0.02 *** | 0.01 | 0.03 *** | 0.005 | 52/536 | A/G |
gS | S2_228080815 | 2.09 | S2_228080814/S2_228080854 | 8 | 5.05 × 10−5 | 0.03 | 0.02 *** | 0.01 | 0.03 ** | 0.01 | 54/585 | A/C |
gS | S3_167009854 | 3.06 | S3_167009854 | 1 | 1.11 × 10−5 | 0.03 | 0.02 *** | 0.003 | 0.03 *** | 0.01 | 68/574 | A/T |
gS | S5_58061077 | 5.03 | S5_58061077 | 1 | 3.49 × 10−5 | 0.03 | 0.02 *** | 0.004 | 0.03 *** | 0.01 * | 43/590 | T/G |
gS | S5_76914876 | 5.03 | S5_76914876 | 1 | 1.49 × 10−5 | 0.03 | 0.02 *** | 0.01 * | 0.03 *** | 0.02 *** | 45/578 | A/C |
gS | S5_78713714 | 5.03 | S5_78713714 | 1 | 6.25 × 10−6 | 0.03 | 0.02 *** | 0.01 | 0.04 *** | 0.01 | 38/607 | C/T |
gS | S5_79113622 | 5.04 | S5_79113622 | 1 | 2.33 × 10−5 | 0.03 | 0.02 *** | 0.005 | 0.04 *** | 0.02 ** | 37/629 | T/C |
gS | S5_135301104 | 5.04 | S5_135301104 | 1 | 4.07 × 10−5 | 0.03 | 0.02 *** | 0.001 | 0.04 *** | 0.01 * | 39/609 | T/A |
gS | S5_147167570 | 5.04 | S5_147167570 | 1 | 7.09 × 10−6 | 0.03 | 0.02 *** | 0.0001 | 0.04 *** | 0.01 * | 37/626 | C/T |
gS | S8_86848172 | 8.03 | S8_86848172 | 1 | 6.33 × 10−6 | 0.04 | 0.002 *** | 0.003 | 0.13 * | 0.004 | 433/192 | A/G |
gS | S8_165286201 | 8.08 | S8_165286201 | 1 | 6.64 × 10−6 | 0.03 | 0.02 *** | 0.001 | 0.02 * | 0.01 ** | 44/664 | A/G |
gS | S10_148532329 | 10.07 | S10_148532329 | 1 | 6.43 × 10−5 | 0.03 | 0.02 *** | 0.003 | 0.02 ** | 0.01 | 55/577 | A/G |
E | S1_29241480 | 1.03 | S1_29241451/S1_29241480 | 3 | 2.33 × 10−5 | 0.03 | 0.20 *** | 0.21 ** | 0.15 * | 0.20 *** | 174/439 | C/G |
E | S8_58532890 | 8.03 | S8_58532890 | 1 | 2.70 × 10−5 | 0.03 | 0.36 *** | 0.16 | 0.46 *** | 0.13 | 42/562 | C/G |
E | S8_86848172 | 8.03 | S8_86848172 | 1 | 1.56 × 10−5 | 0.04 | 0.01 *** | 0.04 | 2.54 ** | 0.03 | 192/433 | G/A |
E | S8_152322485 | 8.06 | S8_152322485 | 1 | 8.89 × 10−5 | 0.03 | 0.17 *** | 0.01 | 0.25 *** | 0.12 * | 285/350 | G/A |
E | S8_165286201 | 8.08 | S8_165286201 | 1 | 9.46 × 10−5 | 0.02 | 0.32 *** | 0.09 | 0.31 * | 0.26 * | 44/664 | A/G |
E | S9_139701148 | 9.06 | S9_139701148 | 1 | 8.46 × 10−5 | 0.03 | 0.17 *** | 0.12 | 0.13 * | 0.09 | 247/349 | C/G |
WUEinst | S1_46418459 | 1.03 | S1_46418459 | 1 | 8.22 × 10−5 | 0.02 | 0.66 *** | 0.08 | 0.80 ** | 0.53 ** | 585/57 | C/A |
WUEinst | S5_186840948 | 5.05 | S5_186840948 | 1 | 8.11 × 10−5 | 0.02 | 0.38 *** | 0.25 | 0.40 * | 0.21 | 288/381 | A/G |
WUEinst | S8_152321463 | 8.06 | S8_152321463/S8_152322485 | 2 | 5.71 × 10−5 | 0.03 | 0.40 *** | 0.01 | 0.57 ** | 0.32 ** | 323/284 | T/C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Q.; López-Malvar, A.; Álvarez-Iglesias, L.; Romay, M.C.; Revilla, P. Genome-Wide Association Analysis Identified Newly Natural Variation for Photosynthesis-Related Traits in a Large Maize Panel. Agronomy 2023, 13, 801. https://doi.org/10.3390/agronomy13030801
Yi Q, López-Malvar A, Álvarez-Iglesias L, Romay MC, Revilla P. Genome-Wide Association Analysis Identified Newly Natural Variation for Photosynthesis-Related Traits in a Large Maize Panel. Agronomy. 2023; 13(3):801. https://doi.org/10.3390/agronomy13030801
Chicago/Turabian StyleYi, Qiang, Ana López-Malvar, Lorena Álvarez-Iglesias, María Cinta Romay, and Pedro Revilla. 2023. "Genome-Wide Association Analysis Identified Newly Natural Variation for Photosynthesis-Related Traits in a Large Maize Panel" Agronomy 13, no. 3: 801. https://doi.org/10.3390/agronomy13030801
APA StyleYi, Q., López-Malvar, A., Álvarez-Iglesias, L., Romay, M. C., & Revilla, P. (2023). Genome-Wide Association Analysis Identified Newly Natural Variation for Photosynthesis-Related Traits in a Large Maize Panel. Agronomy, 13(3), 801. https://doi.org/10.3390/agronomy13030801