Foliar Spray Inoculation with Plant Growth Promoting Bacteria Associated with Nitrogen Doses in Megathyrsus maximus cv. BRS Zuri
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Climatic Conditions
2.2. Experimental Design and Treatments
2.3. Collections and Chemical-Bromatological Composition
2.4. Statistical Analysis
3. Results
3.1. Plant Height and Tiller Number
3.2. Forage Accumulation by Seasons
3.3. Relative Chlorophyll Index and Yield of Dry Mass of the Shoots
3.4. Leaf Blade and Daily Accumulation of Dry Mass of the Shoots
3.5. N Uptake and N Concentration
3.6. Crude Protein and True In Vitro Digestibility of Dry Matter
3.7. Neutral Detergent Insoluble Fiber and Acid Detergent Insoluble Fiber
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Correâ, L.d.A.; Santos, P.M. Management and use of forage plants of the genera Panicum, Brachiaria and Cynodon. Embrapa Livestock Southeast. Documents 34. 36p. 2003. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/697407/1/Documentos340.pdf (accessed on 3 January 2023).
- Silva, J.D.L.; Ribeiro, K.G.; Herculano, B.N.; Pereira, O.G.; Pereira, R.C.; Soares, L.F.P. Forage mass and structural and chemical characteristics of Brachiaria and Panicum cultivars. Braz. Anim. Sci. 2016, 17, 342–348. [Google Scholar] [CrossRef]
- Jank, L.; Santos, M.F.; do Valle, C.B.; Barrios, S.C.L.; Resende, R.M.S. New Alternatives for Forage Cultivars and Improvement for Livestock Sustainability. In Symposium on Fertilization and Pasture Management, 4; Pasture Animal Production Symposium, 4. 2017, pp. 107–117. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1082385/novas-alternativas-de-cultivares-de-forrageiras-e-melhoramento-para-a-sustentabilidade-da-pecuaria (accessed on 3 January 2023).
- Soares Filho, C.V.; Cavazzana, J.F.; Heinrichs, R.; Vendramini, J.M.B.; Lima, G.C.; Moreira, A. The Impact of Organic Biofertilizer Application in Dairy Cattle Manure on the Chemical Properties of the Soil and the Growth and Nutritional Status of Urochroa Grass. Commun. Soil Sci. Plant Anal. 2018, 49, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Jat, L.K.; Singh, Y.V.; Meena, S.K.; Meena, S.K.; Parihar, M.; Jatav, H.S.; Meena, R.K.; Meena, V.S. Does integrated nutrient management enhance agricultural productivity. Pure Appl Microbiol. 2015, 9, 1211–1221. [Google Scholar]
- Wu, S.; Cao, Z.; Li, Z.; Cheung, K.; Wong, M. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 2005, 125, 155–166. [Google Scholar] [CrossRef]
- Parewa, H.P.; Yadav, J.; Rakshit, A. Effect of Fertilizer Levels, FYM and Bioinoculants on Soil Properties in Inceptisol of Varanasi, Uttar Pradesh, India. Int. J. Agric. Environ. Biotechnol. 2014, 7, 517. [Google Scholar] [CrossRef]
- Costa, R.R.G.F.; Quirino, G.D.S.F.; Naves, D.C.D.F.; Santos, C.B.; Rocha, A.F.D.S. Efficiency of inoculant with Azospirillum brasilense on the growth and yield of second-harvest maize1. Pesqui. Agropecuária Trop. 2015, 45, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil Carbon Sequestration for Sustaining Agricultural Production and Improving the Environment with Particular Reference to Brazil. J. Sustain. Agric. 2005, 26, 23–42. [Google Scholar] [CrossRef]
- Sá, J.C.D.M.; Séguy, L.; Tivet, F.; Lal, R.; Bouzinac, S.; Borszowskei, P.R.; Briedis, C.; Dos Santos, J.B.; Hartman, D.D.C.; Bertoloni, C.G.; et al. Carbon Depletion by Plowing and its Restoration by No-Till Cropping Systems in Oxisols of Subtropical and Tropical Agro-Ecoregions in Brazil. Land Degrad. Dev. 2013, 26, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy land-scape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araújo, R.S. Inoculation of Brachiaria spp. With the plant growth-promoting bacterium Azospi-rillum brasilense: An environmentfriendly component in the reclamation of degraded pastures in the tropics. Agric. Eco-Syst. Environ. 2016, 221, 125–131. [Google Scholar] [CrossRef]
- Cardozo, P.; Di Palma, A.; Martin, S.; Cerliani, C.; Esposito, G.; Reinoso, H.; Travaglia, C. Improvement of Maize Yield by Foliar Application of Azospirillum brasilense Az39. J. Plant Growth Regul. 2021, 41, 1032–1040. [Google Scholar] [CrossRef]
- Dos Santos, R.M.; Diaz, P.A.E.; Lobo, L.L.B.; Rigobelo, E.C. Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. Front. Sustain. Food Syst. 2020, 4, 136. [Google Scholar] [CrossRef]
- Hungria, M. Azospirillum: An old new ally. In Brazilian Meeting on Soil Fertility and Plant Nutrition, 32.; Brazilian Meeting on Mycorrhizae, 16.; Brazilian Symposium on Soil Microbiology, 14., Brazilian Meeting on Soil Biology, 11, 2016, Goiânia. Towards New Challenges; Brazilian Society of Soil Science: Goiânia, Brazil, 2016; Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1057259/azospirillum-um-velho-novo-aliado (accessed on 3 January 2023).
- Krystofova, O.; Shestivska, V.; Galiová, M.V.; Novotny, K.; Kaiser, J.; Zehnalek, J.; Babula, P.; Opatrilova, R.; Adam, V.; Kizek, R. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. Sensors 2009, 9, 5040–5058. [Google Scholar] [CrossRef]
- Brennecke, K.; Bertipaglia, L.M.A.; Antoniazzi, A.; Souza, E.F. Inoculation of the bacterium Pseudomonas fluorescens on the growth rate of Brachiaria decumbens spp. Anim. Sci. Acad. J. 2016, 14, 217–224. [Google Scholar]
- Radha, T.K.; Rao, D.L.N. Plant Growth Promoting Bacteria from Cow Dung Based Biodynamic Preparations. Indian J. Microbiol. 2014, 54, 413–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, A.; Hernandez, A.; Heydrich, M. Selection of rhizobacteria for use in maize cultivation. Cultiv. Trop. 1995, 6, 5–8. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, K.G. Köppen’s climate classification map for Brazil. Meteorol. Zeintschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication, 2nd ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Quaggio, J.A.; Alcântara, P.B.; Cantarella, H.; Paulino, V.T.; Villa, M.R. BULLETIN 100: Fertilization and Liming Recommendation for the State of São Paulo; B-100; Campinas Agronomic Institute: Campinas, Brazil, 2022; pp. 428–436. [Google Scholar]
- Hungria, M.; Campo, R.J.; Souza, E.M.; Pedrosa, F.O. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 2010, 331, 413–425. [Google Scholar] [CrossRef]
- Hungria, M.; Mendes, I.C.; Mercante, F.M. Biological Nitrogen Fixation Technology with Bean Plant: Feasibility in Small Family Properties and Technified Properties; Embrapa Soy: Londrina, Brazil, 2013; 32p, (Embrapa Soja. Documentos, 338). [Google Scholar]
- Zucareli, C.; Cil, I.R.; Prete, C.E.C.; Prando, A.M. Agronomic Efficiency of Inoculation Based on Pseudomonas Fluorescens in Corn Crop.Agrarian, [S. l.], v. 4, n. 13, p. 152–157. 2011. Available online: https://ojs.ufgd.edu.br/index.php/agrarian/article/view/569 (accessed on 2 December 2022).
- Fukami, J.; Da Osa, C.; Ollero, F.J.; Megías, M.; Hungria, M. Coinoculação de milho com Azospirillum brasilense e Rhizobium tropici como estratégia para mitigar o estresse salino. Funct. Plant Biol. 2017, 45, 328–339. [Google Scholar] [CrossRef]
- Hungria, M.; Araujo, R.S. Manual de Métodos Empregados em Estudos de Microbiologia Agrícola; EMBRAPA-SPI: Brasilia, Brazil, 1994; p. 542. [Google Scholar]
- Embrapa. Produção e Resistência para a Pecuária. Campo Grande, MS: Embrapa Gado de Corte, 2 p. 2014. Available online: https://www.embrapa.br/web/mobile/busca-de-produtos-processos-eservicos/-/produto-servico/1309/panicum-maximum---brs-zuri (accessed on 8 November 2021).
- Silva, D.J.; Queiroz, A.C. Análise de Alimentos: Métodos Químicos e Biológicos, 3rd ed.; Universidade Federal de Viçosa: Viçosa, Brazil, 2002; 235p. [Google Scholar]
- Campos, F.P.; Nussio, C.M.B.; Nussio, L.G. Métodos de Análise de Alimentos; FEALQ: Piracicaba, Brazil, 2004. [Google Scholar]
- Holden, L.A. Comparison of methods of in vitro dry matter digestibility for tem feeds. J. Dairy Sci. 1999, 82, 1791–1794. [Google Scholar] [CrossRef]
- Sarruge, J.R.; Haag, H.P. Análises Químicas em Plantas; ESALQ: Piracicaba, Brazil, 1974. [Google Scholar]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciência E Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- MAPA (Ministério da Agricultura, Pecuária e Abastecimento). INSTRUÇÃO NORMATIVA Nº 13, de 24 de Março de 2011. 2011. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf/view (accessed on 30 August 2021).
- Rosier, A.; Medeiros, F.H.V.; Bais, H.P. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 2018, 428, 35–55. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, G.S.; Rondina, A.B.L.; Santos, M.S.; Nogueira, M.A.; Hungria, M. Pointing Out Opportunities to Increase Grassland Pastures Productivity via Microbial Inoculants: Attending the Society’s Demands for Meat Production with Sustainability. Agronomy 2022, 12, 1748. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; Megías, M.; Hungria, M. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 2017, 7, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukami, J.; Nogueira, M.A.; Araujo, R.S.; Hungria, M. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 2016, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Hungria, M.; Rondina, A.B.L.; Nunes, A.L.P.; Araujo, R.S.; Nogueira, M.A. Seed and leaf-spray inoculation of PGPR in bra-chiarias (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield and nutrient status. Plant Soil 2021, 463, 171–186, Erratum in Plant Soil 2021, 466, 675. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Rev. Bras. Ciência Do Solo 2021, 45, e20200128. [Google Scholar] [CrossRef]
- Sá, G.C.R.; Carvalho, C.L.M.; Moreira, A.; Hungria, M.; Nogueira, M.; Heinrichs, R.; Soares Filho, C.V. Biomass Yield, Nitrogen Accumulation and Nutritive Value of Mavuno Grass Inoculated with Plant Growth-promoting Bacteria. Commun. Soil Sci. Plant Anal. 2019, 50, 1931–1942. [Google Scholar] [CrossRef]
- Leite, R.C.; Santos, A.C.; Santos, J.G.; Leite, R.C.; Oliveira, L.B.T.; Hungria, M. Mitigation of Mombasa Grass (Megathyrsus maximus) dependence on nitrogen fertilization as function of inoculation with Azospirillum brasilense. Rev. Bras. Ciência Do Solo 2019, 43, e0180234. [Google Scholar] [CrossRef] [Green Version]
- Sá, G.C.R.; Hungria, M.; Carvalho, C.L.M.; Moreira, A.; Nogueira, M.; Heinrichs, R.; Soares Filho, C.V. Nutrients Uptake in Shoots and Biomass Yields and Roots and Nutritive Value of Zuri Guinea Grass Inoculated with Plant Growth-promoting Bacteria. Commun. Soil Sci. Plant Anal. 2019, 50, 2927–2940. [Google Scholar] [CrossRef]
- Puente, M.L.; Gualpa, J.L.; Lopez, G.A.; Molina, R.M.; Carletti, S.M.; Cassán, F.D. The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis 2017, 76, 41–49. [Google Scholar] [CrossRef]
- Moretti, L.G.; Crusciol, C.A.C.; Bossolani, J.W.; Momesso, L.; Garcia, A.; Kuramae, E.E.; Hungria, M. Bacterial Consortium and Microbial Metabolites Increase Grain Quality and Soybean Yield. J. Soil Sci. Plant Nutr. 2020, 20, 1923–1934. [Google Scholar] [CrossRef]
- Moretti, L.G.; Crusciol, C.A.C.; Kuramae, E.E.; Bossolani, J.W.; Moreira, A.; Costa, N.R.; Alves, C.J.; Pascoaloto, I.M.; Rondina, A.B.L.; Hungria, M. Effects of growth-promoting bacteria on soybean root activity, plant development and yield. Agron. J. 2020, 112, 418–428. [Google Scholar] [CrossRef]
- Moretti, L.G.; Crusciol, C.A.C.; Bossolani, J.W.; Calonego, J.C.; Moreira, A.; Garcia, A.; Momesso, L.; Kuramae, E.E.; Hungria, M. Beneficial microbial species and metabolites alleviate soybean oxidative damage and increase grain yield during short dry spells. Eur. J. Agron. 2021, 127, 126293. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; de la Osa, C.; Valderrama-Fernández, R.; Nogueira, M.A.; Megías, M.; Hungria, M. Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Arch. Microbiol. 2018, 200, 1191–1203. [Google Scholar] [CrossRef] [PubMed]
- Puente, M.L.; Zawoznik, M.; de Sabando, M.L.; Perez, G.; Gualpa, J.L.; Carletti, S.M.; Cassán, F.D. Improvement of soybean grain nutritional quality under foliar inoculation with Azospirillum brasilense strain Az39. Symbiosis 2018, 77, 41–47. [Google Scholar] [CrossRef]
- Fukami, J.; Cerezini, P.; Hungria, M. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express 2018, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Soares Filho, C.V.; de Carvalho, C.L.M.; Hungria, M.; Nogueira, M.A.; Moreira, A.; Duarte, A.N.M. Nitrogen in Shoots, Number of Tillers, Biomass Yield and Nutritive Value of Zuri Guinea Grass Inoculated with Plant-Growth Promoting Bacteria. Int. J. Innov. Educ. Res. 2020, 8, 437–463. [Google Scholar] [CrossRef]
- Zahir, Z.A.; Arshad, M.; Frankenberger, W.T. Plant Growth Promoting Rhizobacteria: Applications and Perspectives In Agriculture. Adv. Agron. 2003, 81, 97–168. [Google Scholar] [CrossRef]
- Zahir, A.; Arshad, M.; Khalid, A. Improving maize yield by inoculation with plant growth promoting rhizobacteria. Pak. J. Soil Sci. 1998, 15, 7–11. [Google Scholar]
- Picazevicz, A.A.C.; Shockness, L.D.S.F.; Santos Filho, A.L.; Do Nascimento, I.R.; Maciel, L.D.; Da Silva, L.R.; Costa, G.E.G. Crescimento de Panicum maximum cv. BRS Zuri em resposta a rizobactéria e nitrogênio. Rev. Bras. De Agropecuária Sus-Tentável 2020, 10, 33–37. [Google Scholar] [CrossRef]
- Heinrichs, R.; Meirelles, G.C.; DE Melo Santos, L.F.; DA Silva Lira, M.V.; DE Marcos Lapaz, A.; Nogueira, M.A.; Bonini, C.S.B.; Soares Filho, C.V.; Moreira, A. Azospirillum inoculation of ‘Marandu’ palisade grass seeds: Effects on forage production and nutritional status. Semin. Ciências Agrárias 2020, 41, 465–478. [Google Scholar] [CrossRef]
- Criollo, P.; Obando, M.; Sánchez, L.; Bonilla, R. Efecto de bacterias promotoras del crecimiento vegetal (PGPR) asociadas a Pennisetum clandestinum en el altiplano cundiboyacense‖. Rev. Corpoica—Cienc. Y Tecnol. Agropecu. 2012, 13, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Santana, S.R.A.; Voltolini, T.V.; Antunes, G.D.R.; da Silva, V.M.; Simões, W.L.; Morgante, C.V.; de Freitas, A.D.S.; Chaves, A.R.D.M.; Aidar, S.D.T.; Fernandes-Júnior, P.I. Inoculation of plant growth-promoting bacteria attenuates the negative effects of drought on sorghum. Arch. Microbiol. 2020, 202, 1015–1024. [Google Scholar] [CrossRef]
- Mamédio, D.; Cecato, U.; Sanches, R.; Silva, S.M.D.S.D.; Da Silva, D.R.; Rodrigues, V.O.; Galbeiro, S.; Barreiros, A.R.D.; Vicente, J.V.D.R. Do plant-growth promoting bacteria contribute to greater persistence of tropical pastures in water deficit?—A review. Res. Soc. Dev. 2020, 9, e523985756. [Google Scholar] [CrossRef]
- Duarte, C.F.D.; Cecato, U.; Hungria, M.; Fernandes, H.J.; Biserra, T.T.; Galbeiro, S.; Toniato, A.K.B.; Silva, D.R. Morpho-genetic and structural characteristics of Urochloa species under inoculation with plant growth-promoting bacteria and nitrogen fertilisation. Crop Pasture Sci. 2020, 71, 82–89. [Google Scholar] [CrossRef]
- Viana, M.C.M.; Silva, I.P.D.; Freire, F.M.; Ferreira, M.M.; Costa, É.L.D.; Mascarenhas, M.H.T.; Teixeira, M.F.F. Production and nutrition of irrigated Tanzania guinea grass in response to nitrogen fertilization. Rev. Bras. Zootec. 2014, 43, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Hanisch, A.L.; Balbinot Júnior, A.A.; Vogt, G.A. Desempenho produtivo de Urochloa brizantha cv. Marandú em função da inoculação com Azospirillum e doses de nitrogênio. Rev. Agroambiente 2017, 11, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Prado, R.M. Manual de Nutrição de Plantas Forrageiras; FUNEP: Jaboticabal, Brazil, 2008; 500p. [Google Scholar]
- Bonfim-Silva, E.M.; Monteiro, F.A. Nitrogênio e enxofre em características produtivas do capim-braquiária proveniente de área de pastagem em degradação. Rev. Bras. Zootec. 2006, 35, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Toniato, A.K.; Cecato, U.; Duarte, C.F.D.; Hungria, M.; Fernandes, H.J.; Biserra, T.T.; Sella, M.A.Z.; Barreiros, A.R.D. Valor nutritivo do Capim Paiaguás (Urochloa brizantha cv. BRS Paiaguás) Inoculado com Bactérias Promotoras do Crescimento Vegetal e Doses de Nitrogênio. In: Embrapa Soja-Artigo em Anais de Congresso (ALICE). Available online: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1108505 (accessed on 21 December 2022).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
Height of the Plants (cm) | |||||||
---|---|---|---|---|---|---|---|
Treatments | Feb-2021 | Mar-2021 | May-2021 | Nov-2021 | Jan-2022 | Feb-2022 | Mar-2022 |
Control | 65 e | 62 b | 38 | 46 b | 88 d | 79 b | 80 c |
40 kg ha−1 of N | 88 b | 62 a | 40 | 52 a | 92 c | 76 b | 95 b |
80 kg ha−1 of N | 98 a | 71 a | 40 | 52 a | 105 a | 85 a | 96 b |
A. brasilense + 40 kg ha−1 of N | 81 c | 69 a | 41 | 53 a | 97 b | 82 a | 94 b |
A. brasilense + 80 kg ha−1 of N | 93 b | 69 a | 42 | 55 a | 98 b | 82 a | 98 b |
P. fluorescens + 40 kg ha−1 of N | 74 d | 68 a | 40 | 51 a | 94 c | 77 b | 94 b |
P. fluorescens + 80 kg ha−1 of N | 92 b | 66 a | 37 | 52 a | 101 a | 87 a | 105 a |
CV (%) | 8.74 | 8.74 | 8.74 | 8.74 | 8.74 | 8.74 | 8.74 |
p-value | 0.0001 ** | 0.0022 ** | 0.6012 ns | 0.0460 * | 0.0001 ** | 0.0003 ** | 0.0001 ** |
Tillers number per m2 *** | |||||||
Control | 127 b | 136 b | 95 | 104 b | 130 b | 96 b | 123 b |
40 kg ha−1 of N | 197 a | 132 b | 97 | 105 b | 119 b | 114 b | 166 a |
80 kg ha−1 of N | 171 a | 158 b | 96 | 105 b | 122 b | 122 b | 171 a |
A. brasilense + 40 kg ha−1 of N | 192 a | 192 a | 90 | 99 b | 155 a | 152 a | 131 b |
A. brasilense + 80 kg ha−1 of N | 213 a | 153 b | 104 | 127 a | 111 b | 102 b | 150 a |
P. fluorescens + 40 kg ha−1 of N | 168 a | 152 b | 99 | 119 a | 134 b | 143 a | 154 a |
P. fluorescens + 80 kg ha−1 of N | 167 a | 163 b | 92 | 95 b | 112 b | 118 b | 180 a |
CV (%) | 6.70 | 6.70 | 6.70 | 6.70 | 6.70 | 6.70 | 6.70 |
p-value | 0.0012 ** | 0.0255 * | 0.5188 ns | 0.0842 * | 0.0373 * | 0.0009 ** | 0.0063 ** |
Accumulated Yield of Dry Mass | ||||
---|---|---|---|---|
Treatments | Summer (kg ha−1) | Winter (kg ha−1) | Total (kg ha−1) | Roots *** (kg m−3) |
Control | 7861 c | 2269 b | 10130 c | 5.3 c |
40 kg ha−1 of N | 12169 b | 3675 a | 15844 b | 7.7 a |
80 kg ha−1 of N | 14695 a | 4304 a | 18996 a | 5.9 b |
A. brasilense + 40 kg ha−1 of N | 12653 b | 3835 a | 16488 b | 6.9 a |
A. brasilense + 80 kg ha−1 of N | 14502 a | 3562 a | 18064 a | 9.5 a |
P. fluorescens + 40 kg ha−1 of N | 11701 b | 3991 a | 15691 b | 6.3 a |
P. fluorescens + 80 kg ha−1 of N | 14130 a | 3632 a | 17763 a | 7.7 a |
CV (%) | 12.43 | 16.25 | 10.95 | 16.94 |
p-value | 0.0001 ** | 0.0043 ** | 0.0001 ** | 0.0063 ** |
Relative Chlorophyll Indices (SPAD Units) | |||||||
---|---|---|---|---|---|---|---|
Treatments | Feb-2021 | Mar-2021 | May-2021 | Nov-2021 | Jan-2022 | Feb-2022 | Mar-2022 |
Control | 32 c | 31 | 25 c | 31 c | 28 c | 27 a | 28 e |
40 kg ha−1 of N | 32 c | 30 | 26 c | 34 b | 30 b | 24 b | 32 c |
80 kg ha −1 of N | 36 a | 29 | 30 a | 36 a | 34 a | 27 a | 36 a |
A. brasilense + 40 kg ha−1 of N | 32 c | 29 | 28 b | 33 c | 30 b | 24 b | 33 c |
A. brasilense + 80 kg ha−1 of N | 36 a | 30 | 29 b | 34 b | 33 a | 26 a | 34 b |
P. fluorescens + 40 kg ha−1 of N | 31 c | 30 | 28 b | 32 c | 31 b | 27 a | 30 d |
P. fluorescens + 80 kg ha−1 of N | 34 b | 29 | 28 b | 33 b | 33 a | 28 a | 36 a |
CV (%) | 8.24 | 8.24 | 8.24 | 8.24 | 8.24 | 8.24 | 8.24 |
p-value | 0.0001 ** | 0.4590 ns | 0.0001 ** | 0.0001 ** | 0.0001 ** | 0.0005 ** | 0.0001 ** |
Yield of dry mass of the shoots (kg ha−1) *** | |||||||
Control | 1398 c | 1571 b | 1203 | 1066 b | 1816 c | 1812 b | 1263 c |
40 kg ha −1 of N | 3313 a | 1817 b | 1269 | 2406 a | 2788 b | 1919 b | 2333 b |
80 kg ha −1 of N | 3941 a | 2060 a | 1460 | 2844 a | 3474 a | 2503 a | 2715 a |
A. brasilense + 40 kg ha −1 of N | 2765 b | 1898 b | 1263 | 2572 a | 3381 a | 2026 a | 2583 a |
A. brasilense + 80 kg ha −1 of N | 3494 a | 2350 a | 1098 | 2464 a | 3336 a | 2231 a | 3090 a |
P. fluorescens + 40 kg ha −1 of N | 2458 b | 1862 b | 1172 | 2820 a | 3072 b | 2176 a | 2133 b |
P. fluorescens + 80 kg ha −1 of N | 2944 b | 1810 b | 1257 | 2376 a | 3911 a | 2442 a | 3024 a |
CV (%) | 3.77 | 3.77 | 3.77 | 3.77 | 3.77 | 3.77 | 3.77 |
p-value | 0.0001 ** | 0.0186 ** | 0.2991 ns | 0.0001 ** | 0.0001 ** | 0.0132 ** | 0.0001 ** |
Leaf Blade Percentage (%) | |||||||
---|---|---|---|---|---|---|---|
Treatments | Feb-2021 | Mar-2021 | May-2021 | Nov-2021 | Jan-2022 | Feb-2022 | Mar-2022 |
Control | 96 a | 95 a | 97 a | 94 a | 75 b | 90 b | 92 b |
40 kg ha−1 of N | 91 b | 88 b | 94 b | 91 b | 73 b | 89 b | 95 a |
80 kg ha−1 of N | 91 b | 94 a | 92 b | 92 b | 74 b | 90 b | 89 c |
A. brasilense + 40 kg ha−1 of N | 94 a | 86 c | 94 b | 89 c | 78 a | 96 a | 89 c |
A. brasilense + 80 kg ha−1 of N | 90 b | 93 a | 92 b | 95 a | 76 b | 91 b | 88 c |
P. fluorescens + 40 kg ha−1 of N | 94 a | 94 a | 93 b | 92 b | 79 a | 91 b | 95 a |
P. fluorescens + 80 kg ha−1 of N | 91 b | 93 a | 97 a | 92 b | 75 b | 92 b | 87 c |
CV (%) | 3.81 | 3.81 | 3.81 | 3.81 | 3.81 | 3.81 | 3.81 |
p-value | 0.0002 ** | 0.0001 ** | 0.0005 ** | 0.0030 ** | 0.0001 ** | 0.0001 ** | 0.0001 ** |
Daily accumulation of dry mass of the shoots (kg ha−1 day−1) *** | |||||||
Control | 40 c | 37 b | 21 | 6 b | 37 c | 52 b | 32 c |
40 kg ha−1 of N | 95 a | 43 b | 23 | 13 a | 57 b | 55 b | 58 b |
80 kg ha−1 of N | 113 a | 49 a | 26 | 15 a | 71 a | 72 a | 68 a |
A. brasilense + 40 kg ha−1 of N | 79 b | 45 b | 23 | 14 a | 69 a | 58 b | 65 a |
A. brasilense + 80 kg ha−1 of N | 100 a | 56 a | 20 | 13 a | 68 a | 64 a | 77 a |
P. fluorescens + 40 kg ha−1 of N | 70 b | 44 b | 21 | 15 a | 63 b | 62 a | 53 b |
P. fluorescens + 80 kg ha−1 of N | 84 b | 43 b | 22 | 13 a | 80 a | 70 a | 76 a |
CV (%) | 7.82 | 7.82 | 7.82 | 7.82 | 7.82 | 7.82 | 7.82 |
p-value | 0.0001 ** | 0.0186 ** | 0.3067 ns | 0.0001 ** | 0.0001 ** | 0.0136 ** | 0.0001 ** |
N Uptake (kg ha−1) | |||||||
---|---|---|---|---|---|---|---|
Treatments | Feb-2021 | Mar-2021 | May-2021 | Nov-2021 | Jan-2022 | Feb-2022 | Mar-2022 |
Control | 39 d | 50 | 34 | 12 e | 23 d | 36 b | 25 d |
40 kg ha−1 of N | 88 b | 59 | 40 | 88 d | 40 c | 41 b | 61 b |
80 kg ha−1 of N | 121 a | 65 | 40 | 130 a | 75 a | 51 a | 68 a |
A. brasilense + 40 kg ha−1 of N | 80 c | 63 | 38 | 78 d | 57 b | 41 b | 53 b |
A. brasilense + 80 kg ha−1 of N | 116 a | 71 | 38 | 99 b | 67 b | 44 b | 78 a |
P. fluorescens + 40 kg ha−1 of N | 71 c | 60 | 39 | 96 c | 50 b | 43 b | 43 c |
P. fluorescens + 80 kg ha−1 of N | 95 b | 63 | 39 | 99 c | 83 a | 49 a | 67 a |
CV (%) | 8.37 | 8.37 | 8.37 | 8.37 | 8.37 | 8.37 | 8.37 |
p-value | 0.0001 ** | 0.1689 ns | 0.1284 ns | 0.0001 ** | 0.0001 ** | 0.0626 * | 0.0001 ** |
Total N concentration (g kg−1) | |||||||
Control | 28 b | 32 | 28 b | 12 e | 13 d | 20 | 20 b |
40 kg ha−1 of N | 27 b | 32 | 32 a | 39 c | 14 d | 22 | 27 a |
80 kg ha−1 of N | 31 a | 32 | 35 a | 53 a | 21 a | 20 | 25 a |
A. brasilense + 40 kg ha−1 of N | 30 b | 34 | 31 a | 31 d | 17 c | 20 | 20 b |
A. brasilense + 80 kg ha−1 of N | 33 a | 30 | 34 a | 50 a | 20 b | 20 | 25 a |
P. fluorescens + 40 kg ha−1 of N | 29 b | 33 | 33 a | 36 c | 16 c | 20 | 20 b |
P. fluorescens + 80 kg ha−1 of N | 33 a | 35 | 32 a | 44 b | 21 a | 20 | 22 b |
CV (%) | 4.59 | 4.59 | 4.59 | 4.59 | 4.59 | 4.59 | 4.59 |
p-value | 0.0005 ** | 0.3400 ns | 0.0128 * | 0.0001 ** | 0.0001 ** | 0.7665 ns | 0.0001 ** |
Crude Protein (%) | |||||||
---|---|---|---|---|---|---|---|
Treatments | Feb-2021 | Mar-2021 | May-2021 | Nov-2021 | Jan-2022 | Feb-2022 | Mar-2022 |
Control | 17 b | 20 | 17 b | 7 f | 8 b | 12 | 13 b |
40 kg ha−1 of N | 17 b | 20 | 20 a | 22 d | 9 b | 13 | 17 a |
80 kg ha−1 of N | 19 a | 20 | 22 a | 29 a | 13 a | 13 | 16 a |
A. brasilense + 40 kg ha−1 of N | 18 b | 21 | 19 b | 19 e | 10 b | 13 | 13 b |
A. brasilense + 80 kg ha−1 of N | 21 a | 19 | 21 a | 25 b | 12 a | 12 | 16 a |
P. fluorescens + 40 kg ha−1 of N | 18 b | 20 | 21 a | 21 d | 10 b | 12 | 12 b |
P. fluorescens + 80 kg ha−1 of N | 21 a | 22 | 20 a | 26 c | 13 a | 13 | 14 b |
CV (%) | 18.07 | 18.07 | 18.07 | 18.07 | 18.07 | 18.07 | 18.07 |
p-value | 0.0024 ** | 0.2776 ns | 0.0178 * | 0.0001 ** | 0.0001 * | 0.9714 ns | 0.0001 ** |
IVDMD (%) | |||||||
Control | 68 b | 72 b | 73 | 77 a | 74 a | 76 a | 75 a |
40 kg ha−1 of N | 68 b | 75 a | 72 | 78 a | 71 b | 77 a | 73 a |
80 kg ha−1 of N | 66 c | 70 c | 73 | 77 a | 70 b | 74 b | 73 a |
A. brasilense + 40 kg ha−1 of N | 70 a | 68 d | 71 | 75 b | 70 b | 77 a | 74 a |
A. brasilense + 80 kg ha−1 of N | 67 c | 68 d | 74 | 78 a | 71 b | 74 b | 71 b |
P. fluorescens + 40 kg ha−1 of N | 71 a | 70 c | 72 | 77 a | 70 b | 76 a | 71 b |
P. fluorescens + 80 kg ha−1 of N | 68 b | 69 d | 71 | 76 b | 70 b | 74 b | 70 b |
CV (%) | 3.59 | 3.59 | 3.59 | 3.59 | 3.59 | 3.59 | 3.59 |
p-value | 0.0001 ** | 0.0001 ** | 0.1617 ns | 0.0172 * | 0.0014 ** | 0.0009 ** | 0.0001 ** |
NDF (%) | |||||||
---|---|---|---|---|---|---|---|
Treatments | Feb-2021 | Mar-2021 | May-2021 | Nov-2021 | Jan-2022 | Feb-2022 | Mar-2022 |
Control | 72 | 73 | 69 | 65 a | 71 | 70 | 70 a |
40 kg ha−1 of N | 74 | 72 | 68 | 61 a | 72 | 70 | 72 a |
80 kg ha−1 of N | 75 | 73 | 68 | 60 c | 72 | 74 | 71 a |
A. brasilense + 40 kg ha−1 of N | 74 | 77 | 67 | 64 a | 73 | 71 | 64 b |
A. brasilense + 80 kg ha−1 of N | 72 | 74 | 69 | 61 a | 72 | 72 | 72 a |
P. fluorescens + 40 kg ha−1 of N | 73 | 71 | 68 | 63 a | 72 | 72 | 72 a |
P. fluorescens + 80 kg ha−1 of N | 74 | 73 | 70 | 62 b | 73 | 71 | 72 a |
CV (%) | 9.80 | 9.80 | 9.80 | 9.80 | 9.80 | 9.80 | 9.80 |
p-value | 0.9582 ns | 0.3748 ns | 0.9481 ns | 0.0001 ** | 0.9952 ns | 0.8322 ns | 0.0520 * |
ADF (%) | |||||||
Control | 43 | 39 | 36 | 33 a | 38 | 37 | 34 b |
40 kg ha−1 of N | 41 | 38 | 35 | 30 a | 39 | 36 | 36 a |
80 kg ha−1 of N | 43 | 40 | 36 | 29 c | 39 | 40 | 37 a |
A. brasilense + 40 kg ha−1 of N | 40 | 41 | 35 | 32 a | 39 | 37 | 32 b |
A. brasilense + 80 kg ha−1 of N | 40 | 40 | 36 | 30 a | 39 | 39 | 36 a |
P. fluorescens + 40 kg ha−1 of N | 40 | 38 | 35 | 31 a | 38 | 38 | 36 a |
P. fluorescens + 80 kg ha−1 of N | 41 | 39 | 37 | 30 b | 39 | 38 | 37 a |
CV (%) | 9.82 | 9.82 | 9.82 | 9.82 | 9.82 | 9.82 | 9.82 |
p-value | 0.2907 ns | 0.3134 ns | 0.8487 ns | 0.0001 ** | 0.9830 ns | 0.3031 ns | 0.0116 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, G.d.S.; Moreira, A.; Prudencio, M.F.; Heinrichs, R.; Nogueira, M.A.; Hungria, M.; Soares Filho, C.V. Foliar Spray Inoculation with Plant Growth Promoting Bacteria Associated with Nitrogen Doses in Megathyrsus maximus cv. BRS Zuri. Agronomy 2023, 13, 1040. https://doi.org/10.3390/agronomy13041040
Freitas GdS, Moreira A, Prudencio MF, Heinrichs R, Nogueira MA, Hungria M, Soares Filho CV. Foliar Spray Inoculation with Plant Growth Promoting Bacteria Associated with Nitrogen Doses in Megathyrsus maximus cv. BRS Zuri. Agronomy. 2023; 13(4):1040. https://doi.org/10.3390/agronomy13041040
Chicago/Turabian StyleFreitas, Gabriela da Silva, Adônis Moreira, Marcelo Falaci Prudencio, Reges Heinrichs, Marco Antonio Nogueira, Mariangela Hungria, and Cecílio Viega Soares Filho. 2023. "Foliar Spray Inoculation with Plant Growth Promoting Bacteria Associated with Nitrogen Doses in Megathyrsus maximus cv. BRS Zuri" Agronomy 13, no. 4: 1040. https://doi.org/10.3390/agronomy13041040
APA StyleFreitas, G. d. S., Moreira, A., Prudencio, M. F., Heinrichs, R., Nogueira, M. A., Hungria, M., & Soares Filho, C. V. (2023). Foliar Spray Inoculation with Plant Growth Promoting Bacteria Associated with Nitrogen Doses in Megathyrsus maximus cv. BRS Zuri. Agronomy, 13(4), 1040. https://doi.org/10.3390/agronomy13041040