In Vitro Degradability and Methane Production from By-Products Fed to Ruminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Samples and Location
2.2. Chemical Analyses
2.3. In Vitro Gas Production Assay
2.4. Organic Matter Degradability and Ruminal Fermentation Parameters
2.5. Statistical Analyses
3. Results
3.1. Chemical Composition
3.2. In Vitro Gas Production and Short-Chain Fatty Acids
3.3. Kinetic Fermentative Parameters
3.4. Cluster and Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, s295–s309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottet, A.; Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Röös, E.; Bajzelj, B.; Smith, P.; Patel, M.; Little, D.; Garnett, T. Protein futures for Western Europe: Potential land use and climate impacts in 2050. Reg. Environ. Chang. 2017, 17, 367–377. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Bio-processing of agro-by-products to animal feed. Crit. Rev. Biotechnol. 2012, 32, 382–400. [Google Scholar] [CrossRef]
- Salami, S.A.; Luciano, G.; O’Grandy, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Berchielli, T.T.; Pires, A.V.; Oliveira, S.G. Nutrição de Ruminantes, 2nd ed.; Funep: Jaboticabal, Brazil, 2011; 616p. [Google Scholar]
- Getachew, G.; Blummel, M.; Makkar, H.P.S.; Becker, K. In vitro gas measuring techniques for assessment of nutritional quality of feeds: A review. Anim. Feed Sci. Technol. 1998, 72, 261–281. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemistry—AOAC. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2003, 85, 1217–1240. [Google Scholar]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russel, J.B. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, M.K.; Wilian, B.A.; Dhanoa, M.S.; McAllan, A.B.; Drance, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, W.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Abdalla, A.L.; Louvandini, H.; Sallam, S.M.A.H.; Bueno, I.C.S.; Figueira, A.V.O. In vitro evaluation, in vivo quantification, and microbial diversity studies of nutritional strategies for reducing enteric methane production. Trop. Anim. Health Prod. 2012, 44, 953–964. [Google Scholar] [CrossRef]
- Bizzuti, B.E.; Faria, L.A.; Costa, W.S.; Lima, P.M.T.; Ovani, V.S.; Kruger, A.M.; Louvandini, H.; Abdalla, A.L. Potential use of cassava by-product as ruminant feed. Trop. Anim. Health Prod. 2021, 53, 108. [Google Scholar] [CrossRef] [PubMed]
- Ligoski, B.; Gonçalves, L.F.; Claudio, F.L.; Alves, E.M.; Kruger, A.M.; Bizzuti, B.E.; Lima, P.M.T.; Abdalla, A.L.; Paim, T.P. Silage of intercropping corn, palisade grass, and pigeon pea increases protein content and reduces in vitro methane production. Agronomy 2020, 10, 1784. [Google Scholar] [CrossRef]
- Sakita, G.Z.; Lima, P.M.T.; Abdalla Filho, A.L.; Bompadre, T.F.V.; Ovani, V.S.; Chaves, C.M.S.; Bizzuti, B.E.; Costa, W.S.; Paim, T.P.; Campioni, T.S.; et al. Treating tropical grass with fibrolytic enzymes from the fungus Trichoderma reesei: Effects on animal performance, digestibility and enteric methane emissions of growing lambs. Anim. Feed Sci. Technol. 2022, 286, 115253. [Google Scholar] [CrossRef]
- Bueno, I.C.S.; Filho, S.L.C.; Gobbo, S.P.; Louvandini, H.; Vitti, D.M.; Abdalla, A.L. Influence of inoculum source in a gas production method. Anim. Feed Sci. Technol. 2005, 123, 95–105. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Morsy, A.S.; Sallan, S.M.A.; Lucas, R.S.; Louvandini, H.; Kreuzer, M.; Abdalla, A. Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Arch. Anim. Nutr. 2013, 67, 169–184. [Google Scholar] [CrossRef]
- Longo, C.; Bueno, I.C.S.; Nozella, E.; Goddoy, P.; Filho, S.C.; Abdalla, A.L. The influence of head-space and inoculum dilution on in vitro ruminal methane measurements. Int. Congr. Ser. 2006, 1293, 62–65. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfiedl, K.J.; Hristov, A.N. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Conrad, H.R. Origin of plasma fatty acids in lactating cows fed high grain or high fat diets. J. Dairy Sci. 1971, 54, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.D.M.T.; Moreira, G.D.; Sakita, G.; Natel, A.S.; De Mattos, W.T.; Gimenes, F.M.A.; Gerdes, L.; McManus, C.; Abdalla, A.L.; Louvandini, H. Nutritional evaluation of the legume Macrotyloma axillare using in vitro and in vivo bioassays in sheep. J. Anim. Physiol. Anim. Nutr. 2017, 102, e669–e676. [Google Scholar] [CrossRef] [PubMed]
- France, J.; Dhanoa, M.S.; Theodorou, S.J.; Lister, D.R.; Davies, D.R.; Isac, D. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol. 1993, 163, 99–111. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. Available online: https://www.R-project.org/ (accessed on 25 November 2022).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 25 November 2022).
- Depeters, E.J.; Fadel, J.G.; Arosemena, A. Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstuffs. Anim. Feed Sci. Technol. 1997, 67, 27–140. [Google Scholar] [CrossRef]
- Huber, J.T. Upgrading Residue and By-Products for Animals; CRC Press: Boca Raton, FL, USA, 1981; Volume 131. [Google Scholar]
- United Nations Development Programme Food and Agriculture Organization of the United Nations—FAO. Feedstuff; Fish Feed Technology: Rome, Italy, 1978; ISBN 92-5-100901-5. [Google Scholar]
- Souza, C.B.; Jonathan, M.; Saad, S.M.I.; Schols, H.A.; Venema, K. Characterization and in vitro digestibility of by–products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioact. Carbohydr. Diet. Fiber 2018, 16, 90–99. [Google Scholar] [CrossRef]
- Chen, C.; Lee, T.; Yu, B. Improving the prediction of methane production determined by in vitro gas production technique for ruminants. Ann. Anim. Sci. 2016, 16, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, D.; Chen, W.; Li, y.; Wu, H.; Meng, Q.; Hou, Z. Estimating ruminal crude protein degradation from beef catle feedstuff. Sci. Rep. 2019, 9, 11368. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, G.B. Energia e Proteína na Nutrição de Ruminantes. Ph.D. Thesis, Universidade Federal do Tocantins, Palmas, Brazil, 2007. [Google Scholar]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- Kozloski, G.V. Bioquímica dos Ruminantes, 3rd ed.; Editora UFMS: Santa Maria, Brazil, 2016. [Google Scholar]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; Lópes, S.; Frande, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Freitas, A.W.P.; Pereira, J.C.; Rocha, F.C. Avaliação da divergência nutricional de genótipos de cana-de-açúcar (Saccharum ssp.). Rev. Bras. Zootec. 2006, 35, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Mizubuti, I.Y.; Ribeiro, E.L.A.; Pereira, E.S.; Pinto, A.P.; Franco, A.L.C.; Syperreck, M.A.; Dórea, J.R.R.; Cunha, G.E.; Capelar, M.G.M.; Muniz, E.B. Cinética de fermentação ruminal in vitro de alguns co-produtos gerados na cadeia produtiva do biodiesel pela técnica de produção de gás. Semin. Ciênc. Agrár. 2011, 32, 2021–2028. [Google Scholar] [CrossRef] [Green Version]
By-Products | DM 100 °C | ASH | CP | NDF | ADF | LIG | CEL | TC | SolC |
---|---|---|---|---|---|---|---|---|---|
Bean Residue | 947 | 51 | 229.4 a | 509 d | 232 de | 60.4 bc | 189 cd | 670 cd | 467 b |
Soybean Hull | 899 | 53.1 | 215.5 a | 637 cd | 474 cd | 62.4 bc | 412 abc | 598 d | 362 bc |
Bean Straw | 916 | 39.5 | 142.8 b | 658 bcd | 395 cd | 81.8 bc | 313 bcd | 769 bc | 341 bc |
Orange Bagasse | 939 | 19.8 | 78.8 c | 653 cd | 521 bcd | 54 bc | 468 ab | 865 ab | 346 bc |
Peanut Shell | 896 | 36.4 | 77.8 c | 938 ab | 864 a | 326 a | 537 ab | 850 ab | 61.9 d |
Sugarcane bagasse | 931 | 30.3 | 53.9 c | 960 a | 715 ab | 131 b | 583 a | 899 ab | 40 d |
Sugarcane Straw | 899 | 65 | 52.1 c | 862 abc | 590 bc | 121 b | 469 ab | 821 abc | 137 cd |
Corn Straw | 877 | 45 | 46.1 c | 921 abc | 626 bc | 110 bc | 515 ab | 902 ab | 79.3 d |
Cassava Bagasse | 917 | 12 | 29.7 c | 81.9 e | 75.5 e | 10.1 c | 65.2 d | 938 a | 918 a |
SE | 14.11 | 6.66 | 9.61 | 47.93 | 42.11 | 14.3 | 45.72 | 28.57 | 45.98 |
p value | 0.101 | 0.208 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0004 | 0.0002 | <0.0001 |
By-Products | IVD | IVGP | NetCH4 | CH4 EF | PF |
---|---|---|---|---|---|
(g Kg−1) | (mL g OMD−1) | (mL g OMD−1) | (%) | ||
Cassava Bagasse | 771 a | 137 a | 6.18 a | 5.20 a | 2.04 a |
Bean Residue | 688 a | 104 ab | 6.48 a | 5.43 a | 2.08 a |
Orange Bagasse | 613 a | 84.6 ab | 3.69 ab | 3.80 ab | 2.12 a |
Bean Straw | 593 a | 89.6 ab | 3.30 ab | 4.03 ab | 1.70 ab |
Soybean Hull | 529 a | 55.3 bc | 2.40 ab | 4.00 ab | 1.97 a |
Sugarcane Straw | 230 b | 16.5 c | 0.32 b | 2.10 bc | 1.35 bc |
Sugarcane Bagasse | 152 b | 9.48 c | 0.39 b | 2.86 b | 1.12 c |
Corn Straw | 139 b | 12.6 c | 0.31 b | 2.53 b | 1.20 bc |
Peanut Shell | 133 b | 8.15 c | 0.37 b | 1.97 c | 0.90 c |
SE | 48.8 | 13.3 | 0.92 | 0.85 | 0.21 |
p value | <0.0001 | <0.0001 | 0.0015 | 0.0205 | 0.0001 |
By-Products | SCFA | Acetate | Propionate | A:P Ratio |
---|---|---|---|---|
Cassava Bagasse | 80.8 a | 46.31 ab | 20.7 a | 2.25 e |
Bean Residue | 79.1 ab | 46.3 ab | 15.3 b | 3.03 de |
Orange Bagasse | 73.8 bc | 49.0 a | 12.4 bc | 3.96 bcd |
Bean Straw | 75.6 ab | 47.6 ab | 15.2 b | 3.74 cd |
Soybean Hull | 68.2 c | 45.0 b | 10.7 cd | 4.24 abc |
Sugarcane Straw | 59.5 d | 40.0 c | 8.32 cd | 4.82 ab |
Sugarcane Bagasse | 56.4 d | 38.3 c | 7.59 d | 5.05 a |
Corn Straw | 56.5 d | 37.8 c | 7.72 d | 4.91 ab |
Peanut Shell | 57.4 d | 38.8 c | 7.80 d | 4.99 ab |
SE | 1.61 | 1.27 | 1.36 | 0.21 |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
By-Products | A | L | T½ | µ½ |
---|---|---|---|---|
Cassava Bagasse | 240 a | 0.20 b | 3.97 cd | 0.044 ab |
Bean Residue | 230 ab | 0.20 b | 3.73 d | 0.05 a |
Orange Bagasse | 230 ab | 0.45 b | 4.4 bcd | 0.034 abc |
Bean Straw | 209 abc | 0.24 b | 3.83 d | 0.047 a |
Soybean Hull | 202 abcd | 1.23 ab | 4.61 bc | 0.029 bcd |
Sugarcane Straw | 175 bcd | 1.82 ab | 5.03 ab | 0.022 cd |
Sugarcane Bagasse | 146 d | 0.74 b | 4.97 ab | 0.025 cd |
Corn Straw | 174 bcd | 1.86 ab | 5.34 a | 0.017 d |
Peanut Shell | 162 cd | 2.71 a | 5.54 a | 0.014 d |
SE | 12.52 | 0.34 | 0.14 | 0.025 |
p value | <0.0001 | 0.0002 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizzuti, B.E.; Pérez-Márquez, S.; van Cleef, F.d.O.S.; Ovani, V.S.; Costa, W.S.; Lima, P.M.T.; Louvandini, H.; Abdalla, A.L. In Vitro Degradability and Methane Production from By-Products Fed to Ruminants. Agronomy 2023, 13, 1043. https://doi.org/10.3390/agronomy13041043
Bizzuti BE, Pérez-Márquez S, van Cleef FdOS, Ovani VS, Costa WS, Lima PMT, Louvandini H, Abdalla AL. In Vitro Degradability and Methane Production from By-Products Fed to Ruminants. Agronomy. 2023; 13(4):1043. https://doi.org/10.3390/agronomy13041043
Chicago/Turabian StyleBizzuti, Beatriz Elisa, Simón Pérez-Márquez, Flavia de Oliveira Scarpino van Cleef, Vagner Silva Ovani, Wilian Santos Costa, Paulo Mello Tavares Lima, Helder Louvandini, and Adibe Luiz Abdalla. 2023. "In Vitro Degradability and Methane Production from By-Products Fed to Ruminants" Agronomy 13, no. 4: 1043. https://doi.org/10.3390/agronomy13041043
APA StyleBizzuti, B. E., Pérez-Márquez, S., van Cleef, F. d. O. S., Ovani, V. S., Costa, W. S., Lima, P. M. T., Louvandini, H., & Abdalla, A. L. (2023). In Vitro Degradability and Methane Production from By-Products Fed to Ruminants. Agronomy, 13(4), 1043. https://doi.org/10.3390/agronomy13041043