Suitability of Volcanic Ash, Rice Husk Ash, Green Compost and Biochar as Amendments for a Mediterranean Alkaline Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Description of the Organic and Inorganic Amendments
2.3. Experimental Set-Up of Greenhouse Pot Experiment
2.4. Laboratory Analysis of Amendments, Plants and Soils
2.5. Thermal Analysis of Amendments
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physiochemical Properties of Agronomic Interest and Elemental Composition of Amendments and Bulk Soil
3.2. Composition and Stability of Amendments by Thermal Analyses
3.3. Effects of Amendment Addition on Soil Physical Properties and Composition
3.4. Effects of Amendments on Barley Plants Growth and Elemental Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Gugino, B.K.; Idowu, O.J.; Schindelbeck, R.R.; van Es, H.M.; Moebius-Clune, B.N.; Wolfe, D.W.; Abawi, G.S. Cornell Soil Health Assessment Training Manual, 2nd ed.; Cornell University: Geneva, Switzerland, 2009. [Google Scholar]
- Zdruli, P.; Jones, R.J.; Montanarella, L. Organic Matter in the Soils of Southern Europe; Office for Official Publications of the European Communities: Luxembourg, 2004. [Google Scholar]
- López Arias, M.; Corbí, G. Heavy Metal Concentrations, Organic Matter Contents and Other Parameters in Agricultural and Grassland Spanish Soils; INIA: Madrid, Spain, 2005; p. 249. [Google Scholar]
- Eden, M.; Gerke, H.H.; Houot, S. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: A review. Agron. Sustain. Dev. 2017, 37, 11. [Google Scholar] [CrossRef] [Green Version]
- Irshad, M.; Eneji, A.E.; Hussain, Z.; Ashraf, M. Chemical characterization of fresh and composted livestock manures. J. Soil Sci. Plant 2013, 13, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Arif, M.; Burni, T.; Khan, F.; Jan, B.; Khan, I. Growth and phosphorus uptake of sorghum plants in salt affected soil as affected by organic materials composted with rock phosphate Pak. J. Bot. 2014, 46, 173–180. [Google Scholar]
- De la Rosa, J.M.; Rosado, M.; Paneque, M.; Miller, A.Z.; Knicker, H. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Sci. Total Environ. 2018, 613, 969–976. [Google Scholar] [CrossRef] [Green Version]
- EBC, H. European Biochar Certificate–Guidelines for a Sustainable Production of Biochar; European Biochar Fondation (EBC): Arbaz, Switzerland, 2012. [Google Scholar]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Campos, P.; Miller, A.Z.; Prats, S.A.; Knicker, H.; Hagemann, N.; De la Rosa, J.M. Biochar amendment increases bacterial diversity and vegetation cover in trace element-polluted soils: A long-term field experiment. Soil Biol. Biochem. 2020, 150, 108014. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; Amonette, J.E.; Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Ramos, C.G.; Querol, X.; Dalmora, A.C.; de Jesus Pires, K.C.; Schneider, I.A.H.; Oliveira, L.F.S.; Kautzmann, R.M. Evaluation of the potential of volcanic rock waste from southern Brazil as a natural soil fertilizer. J. Clean. Prod. 2017, 142, 2700–2706. [Google Scholar] [CrossRef]
- Shamshuddin, J.; Fauziah, C.I.; Anda, M.; Kapok, J.; Shazana, M.A.R.S. Using ground basalt and/or organic fertilizer to enhance productivity of acid soils in Malaysia for crop production. Malays. J. Soil Sci. 2011, 15, 127–146. [Google Scholar]
- Day, J.M.; Troll, V.R.; Aulinas, M.; Deegan, F.M.; Geiger, H.; Carracedo, J.C.; Perez-Torrado, F.J. Mantle source characteristics and magmatic processes during the 2021 La Palma eruption. Earth Planet Sci. Lett. 2022, 597, 117793. [Google Scholar] [CrossRef]
- Ferrer, N.; Vegas, J.; Galindo, I.; Lozano, G. A geoheritage valuation to prevent environmental degradation of a new volcanic landscape in the Canary Islands. Land Degrad. Dev. 2023, 1–14. [Google Scholar] [CrossRef]
- FAO. Rice Market Monitor; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; Volume 21, pp. 1–38. Available online: https://www.fao.org/3/I9243EN/i9243en.pdf (accessed on 15 December 2022).
- Utami, S.R.; Kurniawan, S.; Situmorang, B.; Rositasari, N.D. Increasing P-availability and P-uptake using sugarcane filter cake and rice husk ash to improve Chinesse cabbage (Brassica Sp) growth in Andisol, EastJava. J. Agric. Sci. 2012, 4, 153–160. [Google Scholar] [CrossRef] [Green Version]
- European Union (EU). Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products; European Union (EU): Brussels, Belgium, 2019; pp. 1–114. [Google Scholar]
- López-Núñez, R. Portable X-ray Fluorescence Analysis of Organic Amendments: A Review. Appl. Sci. 2022, 12, 6944. [Google Scholar] [CrossRef]
- Serviço Nacional de Informação Sobre Recursos Hídricos. Available online: http://snirh.apambiente.pt (accessed on 2 February 2023).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports 106; FAO: Rome, Italy, 2015; pp. 1–203. [Google Scholar]
- Hansell, A.; Oppenheimer, C. Health hazards from volcanic gases: A systematic literature review. Arch. Environ. Health 2004, 59, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis: Part 3. Chemical Methods and Processes; American Society of Agronomy: Madison, WI, USA, 1996; p. 5. [Google Scholar]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Bian, R.; Shi, W.; Luo, J.; Li, W.; Wang, Y.; Joseph, S.; Pan, G. Copyrolysis of food waste and rice husk to biochar to create a sustainable resource for soil amendment: A pilot-scale case study in Jinhua, China. J. Clean. Prod. 2022, 347, 131269. [Google Scholar] [CrossRef]
- Cronin, S.J.; Stewart, C.; Zernack, A.V.; Brenna, M.; Procter, J.N.; Pardo, N.; Irwin, M. Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand. J. Volcanol. Geotherm. Res. 2014, 286, 233–247. [Google Scholar] [CrossRef]
- Cronin, S.J.; Hedley, M.J.; Neall, V.E.; Smith, R.G. Agronomic impact of tephra fallout from 1995 and 1996 Ruapehu volcanic eruptions, New Zealand. Environ. Geol. 1998, 34, 21–30. [Google Scholar] [CrossRef]
- Commission Regulation (EC). No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Comm. 2006, 364, 5–24. [Google Scholar]
- WHO/FAO. Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session; Report of the Thirty Eight Session of the Codex Committee on Food Hygiene; WHO/FAO: Houston, TX, USA, 2007; ALINORM 07/30/13. [Google Scholar]
- Campos, P.; Knicker, H.; López, R.; De la Rosa, J.M. Application of biochar produced from crop residues on trace elements contaminated soils: Effects on soil properties, enzymatic activities and Brassica rapa growth. Agronomy 2021, 11, 1394. [Google Scholar] [CrossRef]
- Council of the European Communities (CEC). Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC). Off. J. Eur. Communities 1986, 181, 6–12. [Google Scholar]
- Junta de Andalucía. Available online: https://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Estado_Y_Calidad_De_Los_Recursos_Naturales (accessed on 10 February 2023).
- European Union (EU). Commission Decision (EU) 2015/2099 of 18 November 2015 Establishing the Ecological Criteria for the Award of the EU Ecolabel for Growing Media, Soil Improvers and Mulch (Notified under Document C (2015) 7891) (Text with EEA Relevance); European Union (EU): Brussels, Belgium, 2015; pp. 75–100. [Google Scholar]
- Mensah, E.; Kyei-Baffour, N.; Ofori, E.; Obeng, G. Influence of human activities and land use on heavy metal concentrations in irrigated vegetables in Ghana and their health implications. In Appropriate Technologies for Environmental Protection in the Developing World; Yanful, E.K., Ed.; Springer: Ghana, Africa, 2009; pp. 9–14. [Google Scholar] [CrossRef]
- EU. Commission Regulation (EU) 2021/1317 of 9 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs. Commission Regulation (EU) 2021/1323 of 10 August 2021 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Certain Foodstuffs. (Text with EEA Relevance). 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021D1195&from=EN (accessed on 11 February 2023).
- De la Rosa, J.M.; González-Pérez, J.A.; González-Vázquez, R.; Knicker, H.; López-Capel, E.; Manning, D.A.C.; González-Vila, F.J. Use of pyrolysis/GC–MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest. Catena 2008, 74, 296–303. [Google Scholar] [CrossRef]
- Pappa, A.; Mikedi, K.; Tzamtzis, N.; Statheropoulos, M. Chemometric methods for studying the effects of chemicals on cellulose pyrolysis by thermogravimetry–mass spectrometry. J. Anal. Appl. Pyrolysis 2003, 67, 221–235. [Google Scholar] [CrossRef]
- Pollacco, J.A.P. A generally applicable pedotransfer function that estimates field capacity and permanent wilting point from soil texture and bulk density. Can. J. Soil Sci. 2008, 88, 761–774. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; McCormack, L.; Wang, J.; Guo, D.; Wang, Q.; Zhang, X.; Kuzyakov, Y. Linkages between the soil organic matter fractions and the microbial metabolic functional diversity within a broad-leaved Korean pine forest. Eur. J. Soil Biol. 2015, 66, 57–64. [Google Scholar] [CrossRef]
- Parmar, D.K.; Thakur, D.R.; Jamwal, R.S. Effect of long term organic manure application on soil properties, carbon sequestration, soil—Plant carbon stock and productivity under two vegetable production systems in Himachal Pradesh. J. Environ. Biol. 2016, 37, 333. [Google Scholar]
- Lin, Y.; Ye, G.; Kuzyakov, Y.; Liu, D.; Fan, J.; Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 2019, 134, 187–196. [Google Scholar] [CrossRef]
- Farid, I.M.; Siam, H.S.; Abbas, M.H.; Mohamed, I.; Mahmoud, S.; Tolba, M.; Abbas, H.; Yang, X.; Antoniadis, V.; Rinklebe, J.; et al. Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: A trial for enhancing the health of low fertile arid soils. Chemosphere 2022, 292, 133389. [Google Scholar] [CrossRef] [PubMed]
- Asses, N.; Farhat, A.; Cherif, S.; Hamdi, M.; Bouallagui, H. Comparative study of sewage sludge co-composting with olive mill wastes or green residues: Process monitoring and agriculture value of the resulting composts. Process Saf. Environ. Prot. 2018, 114, 25–35. [Google Scholar] [CrossRef]
- USDA Natural Resources Conservation Service. Carbon to Nitrogen Ratios in Cropping Systems. Available online: https://marionswcd.org/wp-content/uploads/C_N_ratios_cropping_systems.pdf (accessed on 15 January 2023).
- Galán, E.; Fernández-Caliani, J.C.; González, I.; Aparicio, P.; Romero, A. Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South–West Spain. J. Geochem. Explor. 2008, 98, 89–106. [Google Scholar] [CrossRef]
- Pelica, J.; Barbosa, S.; Reboredo, F.; Lidon, F.; Pessoa, F.; Calvão, T. The paradigm of high concentration of metals of natural or anthropogenic origin in soils–the case of Neves-Corvo mine area (southern Portugal). J. Geochem. Explor. 2018, 186, 12–23. [Google Scholar] [CrossRef]
- Kammann, C.I.; Linsel, S.; Gößling, J.W.; Koyro, H.W. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant Soil 2011, 345, 195–210. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Salazar, P.; Barrón, V.; Torrent, J.; del Campillo, M.D.C.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013, 33, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Paneque, M.; José, M.; Franco-Navarro, J.D.; Colmenero-Flores, J.M.; Knicker, H. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena 2016, 147, 280–287. [Google Scholar] [CrossRef] [Green Version]
- ARC. The Nutrient Requirements of Farm Livestock, No. 2. Ruminants; Technical Reviews and Summaries Agricultural Research Council; HMSO: London, UK, 1965.
- Shand, C. Plant Nutrition for Food Security: A Guide for Integrated Nutrient Management; FAO Fertilizer and Plant Nutrition Bulletin Series; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Volume 16, pp. 1–368. Available online: https://www.fao.org/3/a0443e/a0443e.pdf (accessed on 4 April 2023).
- Jeffery, S.; Verheijen, F.G.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Loveland, P.; Webb, J. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Tillage Res. 2003, 70, 1–18. [Google Scholar] [CrossRef]
- FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods; Food and Agriculture Organization of the United Nations: Quebec, Canada, 2011; Available online: https://www.fao.org/fao-who-codexalimentarius/en/ (accessed on 15 January 2023).
Soil | WB | GC | RA | VA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH (H2O) | 7.9 | ± | 0.1 | 9.1 | ± | 0.1 | 6.3 | ± | 0.2 | 7.8 | ± | 0.0 | 6.0 | ± | 0.0 |
EC (µS cm−1) | 147 | ± | 3 | 224 | ± | 3 | 440 | ± | 8 | 2005 | ± | 7 | 203 | ± | 2 |
WHC (%) | 90 | ± | 2 | 159 | ± | 19 | 315 | ± | 61 | 467 | ± | 14 | 73 | ± | 4 |
Moisture (40 °C; %) | 15.4 | ± | 0.2 | 5.8 | ± | 0.1 | 60.7 | ± | 0.9 | 3.2 | ± | 0.0 | 0.8 | ± | 0.1 |
Density (g cm−3) | 1.4 | ± | 0.3 | 0.3 | ± | 0.0 | 0.3 | ± | 0.0 | 0.2 | ± | 0.0 | 1.2 | ± | 0.0 |
Ash (g kg−1) | 944 | ± | 2 | 52 | ± | 4 | 570 | ± | 47 | 820 | ± | 1 | 1000 | ± | 3 |
TC (g kg−1) | 20.1 | ± | 0.5 | 834.0 | ± | 2.0 | 395.0 | ± | 2.0 | 176.5 | ± | 18.7 | - | - | |
TOC (g kg−1) | 11.1 | ± | 0.2 | “ | “ | “ | - | - | |||||||
TN (g kg−1) | 1.2 | ± | 0.1 | 2.2 | ± | 0.1 | 15.0 | ± | 0.2 | 1.4 | ± | 0.8 | - | - | |
C/N | 9 | 379 | 26 | 126 | - | ||||||||||
P (g kg−1) | 0.23 | ± | 0.06 | 0.45 | 1.15 | 3.75 | 3.02 | ||||||||
P (% P2O5) | 0.05 | ± | 0.01 | 0.10 | 0.26 | 0.86 | 0.69 | ||||||||
K (g kg−1) | 2.3 | ± | 0.4 | 1.7 | 6.1 | 5.8 | 13.4 | ||||||||
K (% K2O) | 0.28 | ± | 0.05 | 0.21 | 0.74 | 0.70 | 1.61 | ||||||||
Al | 27,679 | ± | 1593 | 156 | 8906 | 105 | 57,503 | ||||||||
As | 7.7 | ± | 1.1 | ||||||||||||
B | 9.2 | ± | 0.9 | 6.9 | 18.3 | 9.5 | 12.3 | ||||||||
Ba | 143.3 | ± | 23.0 | 30.0 | 39.0 | 9.1 | 304.1 | ||||||||
Ca | 4780 | ± | 1327 | 10,322 | 40,595 | 3787 | 41,503 | ||||||||
Ca (% CaO) | 0.7 | ± | 0.2 | 1.4 | 5.7 | 0.5 | 5.8 | ||||||||
Cd | 0.1 | ± | 0.0 | ||||||||||||
Co | 8.6 | ± | 1.3 | 0.4 | 4.5 | 0.4 | 56.6 | ||||||||
Cr | 13.9 | ± | 3.5 | ||||||||||||
Cu | 6.5 | ± | 1.5 | ||||||||||||
Fe | 17,798 | ± | 2298 | 198 | 11,929 | 432 | 73,130 | ||||||||
Li | - | 0.2 | 7.2 | 0.2 | 7.9 | ||||||||||
Mg | 6165 | ± | 1006 | 549 | 4411 | 1517 | 28,997 | ||||||||
Mg (% MgO) | 1.0 | ± | 0.2 | 0.1 | 0.7 | 0.3 | 4.8 | ||||||||
Mn | 336.6 | ± | 38.8 | 196.1 | 310.3 | 483.6 | 1189.1 | ||||||||
Mo | 0.1 | ± | 0.0 | 0.4 | 1.0 | 0.9 | 2.3 | ||||||||
Na | 387 | ± | 221 | 185 | 1012 | 321 | 23,053 | ||||||||
Na (% Na2O) | 0.0 | ± | 0.0 | 0.0 | 0.1 | 0.0 | 2.3 | ||||||||
Ni | 10.8 | ± | 3.3 | ||||||||||||
Pb | 9.6 | ± | 0.5 | ||||||||||||
S | - | 140.5 | 1804.4 | 1519.3 | 400.5 | ||||||||||
Sr | - | 25.3 | 84.0 | 13.7 | 719.0 | ||||||||||
V | - | 0.5 | 19.7 | 0.2 | 217.5 | ||||||||||
Zn | 40.3 | ± | 4.9 |
Element | As | Cd | Cr | Cu | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
Amendments | Maximum permissible concentrations established by EU for amendments [19,20] | 40 | 2 | 100 (OI); 150 (MM) | 300 (OI); 600 (OMF) | 50 | 120 | 800 (OF); 1500 (OMF) |
WB | 0.8 c | <0.05 b | 0.3 c | 3.0 c | 0.3 c | <1.0 b | 5.0 c | |
GC | 7.0 a | 0.1 ab | 20.4 b | 63.2 b | 13.0 b | 11.0 a | 54.0 b | |
RA | 3.9 b | 0.1 ab | 0.7 c | 5.9 c | 0.8 c | <1.0 b | 50.3 b | |
VA | 1.3 c | 0.5 a | 88.5 a | 85.1 a | 70.5 a | 5.2 a | 114.2 a | |
Soils | Maximum concentrations established for soils [36,37] | 30 1 | 3 | 100 | 140 | 75 | 300 | 300 |
C | 11.7 | 0.3 | 42.7 | 7.5 | 6.2 | 1.6 | 60.0 b | |
WB_5 | 9.8 | 0.1 | 37.8 | 6.9 | 5.4 | 3.1 | 53.3 c | |
RA_5 | 9.7 | 0.3 | 39.3 | 7.3 | 6.0 | 2.4 | 86.9 a | |
VA_5 | 13.1 | 0.2 | 42.3 | 8.2 | 6.6 | 2.9 | 92.4 a | |
GC_5 | 11.1 | 0.2 | 43.0 | 16.1 | 7.5 | 3.4 | 79.7 ab | |
WB + GC_2.5 | 9.3 | 0.2 | 40.5 | 10.4 | 6.2 | 2.5 | 88.1 a | |
RA + GC_2.5 | 10.4 | 0.1 | 38.7 | 10.0 | 6.5 | 4.0 | 60.2 b | |
VA + GC_2.5 | 8.1 | 0.2 | 39.9 | 10.8 | 7.7 | 2.4 | 58.1 b | |
VA + WB_2.5 | 9.6 | 0.2 | 40.4 | 7.2 | 6.0 | 2.6 | 56.5 b | |
RA + WB_2.5 | 9.8 | 0.2 | 40.6 | 7.7 | 6.4 | 5.4 | 57.7 b | |
Barley plants | Maximum concentration established by EU for food [38,39,40] | 0.2 | 0.2 | 20 | 40 | 68 | 0.20 2 | 50 2 |
C | b.d.l | b.d.l | 1.9 | 5.2 | b.d.l | b.d.l | 31.8 b | |
WB_5 | b.d.l | b.d.l | 1.7 | 4.6 | 1.0 | b.d.l | 21.6 c | |
RA_5 | b.d.l | b.d.l | 2.3 | 5.1 | b.d.l | b.d.l | 52.9 a | |
VA_5 | b.d.l | b.d.l | 2.3 | 5.2 | b.d.l | b.d.l | 55.6 a | |
GC_5 | b.d.l | b.d.l | 2.4 | 5.0 | 1.4 | 1.2 | 34.0 b | |
WB + GC_2.5 | b.d.l | b.d.l | 2.5 | 5.3 | b.d.l | b.d.l | 47.3 a | |
RA + GC_2.5 | b.d.l | b.d.l | 2.3 | 4.8 | 1.4 | 1.4 | 28.1 b | |
VA + GC_2.5 | b.d.l | b.d.l | 2.5 | 5.3 | 1.3 | 1.0 | 27.5 b | |
VA + WB_2.5 | b.d.l. | b.d.l | 1.8 | 5.2 | b.d.l | b.d.l | 25.2 bc | |
RA + WB_2.5 | b.d.l | b.d.l | 1.1 | 4.6 | b.d.l | b.d.l | 21.9 c |
C | WB_5 | RA_5 | VA_5 | GC_5 | WB + GC_2.5 | RA + GC_2.5 | VA + GC_2.5 | VA + WB_2.5 | RA + WB_2.5 | |
---|---|---|---|---|---|---|---|---|---|---|
pH (H2O) | 8.7 ± 0.1 ab | 8.8 ± 0.3 ab | 8.3 ± 0.0 a | 8.5 ± 0.2 ab | 8.5 ± 0.0 ab | 8.8 ± 0.1 b | 8.3 ± 0.1 a | 8.7 ± 0.1 b | 8.4 ± 0.1 ab | 8.3 ± 0.0 a |
EC (µS cm−1) | 127 ± 13 b | 139 ± 19 ab | 165 ± 9 ab | 121 ± 3 b | 183 ± 27 a | 163 ± 18 ab | 166 ± 21 ab | 146 ± 37 ab | 132 ± 16 ab | 156 ± 5 ab |
Moisture (%) | 13.2 ± 0.1 b | 14.7 ± 0.4 b | 13.0 ± 1.9 b | 20.0 ± 0.2 a | 20.1 ± 0.3 a | 20.1 ± 0.3 a | 16.0 ± 0.9 b | 20.1 ± 0.4 a | 15.5 ± 0.9 b | 14.2 ± 1.2 b |
TOC (g kg−1) | 9.0 ± 0.1 a | 64.0 ± 13.7 c | 25.0 ± 4.2 b | 9.0 ± 2.1 a | 26.0 ± 1.8 b | 52.0 ± 5.7 c | 27.0 ± 1.7 b | 19.0 ± 5.3 b | 30.0 ± 3.8 b | 44.0 ± 13.5 c |
TN (g kg−1) | 1.10 ± 0.04 de | 1.17 ± 0.03 cd | 1.06 ± 0.01 e | 0.94 ± 0.04 f | 1.49 ± 0.02 a | 1.23 ± 0.04 bc | 1.30 ± 0.08 b | 1.27 ± 0.08 b | 1.13 ± 0.04 de | 1.16 ± 0.05 cd |
C/N | 8 | 55 | 24 | 10 | 18 | 42 | 21 | 15 | 27 | 38 |
P (g kg−1) | 0.63 ± 0.01 efg | 0.59 ± 0.05 g | 0.82 ± 0.02 ab | 0.67 ± 0.01 def | 0.85 ± 0.03 a | 0.68 ± 0.00 def | 0.76 ± 0.01 bc | 0.69 ± 0.04 cde | 0.61 ± 0.03 fg | 0.74 ± 0.09 cd |
P (% P2O5) | 0.14 ± 0.00 efg | 0.13 ± 0.01 g | 0.19 ± 0.01ab | 0.15 ± 0.00 def | 0.20 ± 0.01 a | 0.16 ± 0.00 def | 0.17 ± 0.00 bc | 0.16 ± 0.01 cde | 0.14 ± 0.01 fg | 0.17 ± 0.02 cd |
K (g kg−1) | 4.01 ± 0.16 abc | 3.67 ± 0.15 cd | 4.22 ± 0.07 ab | 4.16 ± 0.17 ab | 4.40 ± 0.20 a | 4.11 ± 0.08 ab | 4.03 ± 0.11 abc | 4.05 ± 0.30 ab | 3.94 ± 0.01 bc | 4.20 ± 0.40 ab |
K (% K2O) | 0.48 ± 0.02 abc | 0.44 ± 0.02 cd | 0.51 ± 0.01 ab | 0.50 ± 0.02 ab | 0.53 ± 0.02 a | 0.5 ± 0.01 ab | 0.49 ± 0.01 abc | 0.49 ± 0.04 ab | 0.48 ± 0.00 bc | 0.51 ± 0.05 ab |
C | WB_5 | RA_5 | VA_5 | GC_5 | WB + GC_2.5 | RA + GC_2.5 | VA + GC_2.5 | VA + WB_2.5 | RA + WB_2.5 | |
---|---|---|---|---|---|---|---|---|---|---|
Height (DAS 60; cm) | 54 ± 5 b | 55 ± 4 ab | 56 ± 3 ab | 56 ± 5 ab | 59 ± 2 a | 57 ± 4 ab | 57 ± 3 ab | 57 ± 6 ab | 57 ± 4 ab | 54 ± 3 b |
Quantum Yield (QY) | 0.76 ± 0.02 b | 0.75 ± 0.01 b | 0.76 ± 0.01 b | 0.75 ± 0.03 b | 0.76 ± 0.01 b | 0.76 ± 0.01 b | 0.77 ± 0.03 b | 0.79 ± 0.01 a | 0.79 ± 0.01 a | 0.79 ± 0.01 a |
Fresh weight per pot (g) | 14.7 ± 2.0 ab | 12.2 ± 0.9 a | 14.8 ± 4.3 ab | 15.4 ± 4.2 ab | 16.4 ± 1.8 ab | 17.0 ± 4.1 ab | 14.0 ± 2.2 ab | 17.0 ± 3.7 ab | 15.8 ± 1.4 ab | 17.7 ± 1.2 b |
Dry matter per pot (g) | 2.0 ± 0.6 cd | 2.4 ± 0.7 bcd | 2.8 ± 1.1 abc | 2.8 ± 0.9 bc | 3.2 ± 0.5 ab | 2.5 ± 0.4 bc | 2.2 ± 0.7 cd | 2.7 ± 0.5 bc | 2.6 ± 0.5 bc | 2.2 ± 0.3 cd |
TC (g kg−1) | 395.9 ± 3.2 abc | 392.1 ± 1.6 abc | 382.5 ± 3.1 d | 388.5 ± 7.4 cd | 397.6 ± 7.0 ab | 399.0 ± 0.7 a | 390.1 ± 2.5 bc | 392.3 ± 2.6 abc | 392.4 ± 1.7 abc | 391.1 ± 4.6 abc |
TN (g kg−1) | 26.65 ± 1.42 a | 26.78 ± 4.58 a | 21.38 ± 1.77 cd | 24.29 ± 1.97 abc | 21.08 ± 1.93 cd | 20.01 ± 1.44 d | 20.60 ± 0.58 cd | 22.66 ± 0.80 bcd | 25.89 ± 1.66 ab | 19.79 ± 1.18 d |
P (g kg−1) | 5.42 ± 0.08 a | 5.07 ± 0.53 abc | 5.55 ± 0.38 a | 5.58 ± 0.39 a | 4.72 ± 0.14 bcd | 5.09 ± 0.20 abc | 4.54 ± 0.42 cd | 5.22 ± 0.42 ab | 5.57 ± 0.21 a | 4.24 ± 0.30 d |
P (% P2O5) | 1.24 ± 0.02 a | 1.16 ± 0.12 abc | 1.27 ± 0.09 a | 1.28 ± 0.09 a | 1.08 ± 0.03 bcd | 1.17 ± 0.05 abc | 1.04 ± 0.10 cd | 1.20 ± 0.10 ab | 1.28 ± 0.05 a | 0.97 ± 0.07 d |
K (g kg−1) | 30.65 ± 2.77 bcd | 33.00 ± 3.34 ab | 35.65 ± 2.53 a | 27.81 ± 0.55 d | 31.51 ± 0.60 bcd | 32.79 ± 0.14 abc | 32.20 ± 2.30 abc | 31.36 ± 2.95 bcd | 31.24 ± 0.79 bcd | 28.56 ± 1.38 cd |
K (% K2O) | 3.69 ± 0.33 bcd | 3.98 ± 0.40 ab | 4.30 ± 0.30 a | 3.35 ± 0.07 d | 3.80 ± 0.07 bcd | 3.95 ± 0.02 abc | 3.88 ± 0.28 | 3.78 ± 0.35 abc | 3.76 ± 0.09 bcd | 3.44 ± 0.17 cd |
Fresh weight per pot (g) * | 3.9 ± 0.8 bc | 4.5 ± 1.1 ab | 2.4 ± 1.3 d | 2.6 ± 1.2 d | 3.0 ± 1.3 cd | 4.9 ± 1.2 a | 2.1 ± 0.7 de | 3.7 ± 0.9 bc | 3.1 ± 0.8 cd | 3.1 ± 0.9 cd |
Dry matter per pot (g) * | 2.0 ± 0.7 bc | 2.6 ± 0.5 ab | 1.4 ± 0.8 c | 1.3 ± 0.7 c | 2.1 ± 0.8 bc | 2.5 ± 0.6 ab | 1.0 ± 0.5 cd | 2.5 ± 0.6 ab | 1.5 ± 0.6 c | 2.1 ± 0.6 bc |
Plant/root fresh matter | 3.8 | 2.7 | 6.1 | 5.8 | 5.4 | 3.4 | 6.8 | 4.6 | 5.1 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Rosa, J.M.; Pérez-Dalí, S.M.; Campos, P.; Sánchez-Martín, Á.; González-Pérez, J.A.; Miller, A.Z. Suitability of Volcanic Ash, Rice Husk Ash, Green Compost and Biochar as Amendments for a Mediterranean Alkaline Soil. Agronomy 2023, 13, 1097. https://doi.org/10.3390/agronomy13041097
De la Rosa JM, Pérez-Dalí SM, Campos P, Sánchez-Martín Á, González-Pérez JA, Miller AZ. Suitability of Volcanic Ash, Rice Husk Ash, Green Compost and Biochar as Amendments for a Mediterranean Alkaline Soil. Agronomy. 2023; 13(4):1097. https://doi.org/10.3390/agronomy13041097
Chicago/Turabian StyleDe la Rosa, José María, Sara María Pérez-Dalí, Paloma Campos, Águeda Sánchez-Martín, José Antonio González-Pérez, and Ana Zelia Miller. 2023. "Suitability of Volcanic Ash, Rice Husk Ash, Green Compost and Biochar as Amendments for a Mediterranean Alkaline Soil" Agronomy 13, no. 4: 1097. https://doi.org/10.3390/agronomy13041097
APA StyleDe la Rosa, J. M., Pérez-Dalí, S. M., Campos, P., Sánchez-Martín, Á., González-Pérez, J. A., & Miller, A. Z. (2023). Suitability of Volcanic Ash, Rice Husk Ash, Green Compost and Biochar as Amendments for a Mediterranean Alkaline Soil. Agronomy, 13(4), 1097. https://doi.org/10.3390/agronomy13041097