A Methodology Study on the Optimal Detection of Oil and Moisture Content in Soybeans Using LF-NMR and Its 2D T1-T2 Nuclear Magnetic Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Testing Instruments
2.3. Test Methodology
2.3.1. LF-NMR Oil and Water Content Software
2.3.2. LF-NMR Spectrum Tests
2.3.3. Oven-Drying Method
2.3.4. Soxhlet Extraction Method
2.3.5. LF-2D-NMR Technology
2.4. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Soybean Oil and Moisture Content Testing Methods
3.2. Numerical Analysis of Different Methods for Detecting the Oil and Water Content of Soybeans
3.3. One-Dimensional LF-NMR Mapping Analysis
3.4. Results of Qualitative Analysis of LF-2D-NMR Fractions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seleiman, M.; Selim, S.; Alhammad, B.; Alharbi, B.; Cezar, J. Will Novel Coronavirus (COVID-19) Pandemic Impact Agriculture, Food Security and Animal Sectors? Biosci. J. 2020, 36, 1315–1326. [Google Scholar] [CrossRef]
- Wang, J.; Kong, L.-A.; Zhang, L.; Shi, X.; Yu, B.; Li, J.; Zhang, B.; Gao, M.; Liu, X.; Li, X.; et al. Breeding a Soybean Cultivar Heinong 531 with Peking-Type Cyst Nematode Resistance, Enhanced Yield and High Seed-Oil Contents. Phytopathology 2022, 112, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Qiu, Z.; Li, M.; Luo, T.; Wu, Q.; Krishnan, H.B.; Wu, J.; Xu, P.; Zhang, S.; Liu, S. Breeding of ‘DND358’: A New Soybean Cultivar for Processing Soy Protein Isolate with a Hypocholesterolemic Effect Similar to That of Fenofibrate. J. Funct. Foods 2022, 90, 104979. [Google Scholar] [CrossRef]
- Ramachandran, R.P.; Erkinbaev, C.; Thakur, S.; Paliwal, J. Three Dimensional Characterization of Micronized Soybean Seeds Using X-Ray Microtomography. Food Bioprod. Process. 2021, 127, 388–397. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, W.; Luo, Z.; Guo, B. Soybean Seed Counting and Broken Seed Recognition Based on Image Sequence of Falling Seeds. Comput. Electron. Agric. 2022, 196, 106870. [Google Scholar] [CrossRef]
- Gao, H.; Zhu, F.; Cai, J. A Review of Non-Destructive Detection for Fruit Quality. In Computer and Computing Technologies in Agriculture III; Springer: Berlin/Heidelberg, Germany, 2010; pp. 133–140. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, S.; Wu, X.; Xing, C.; Yuan, J. Determination of Soybean Routine Quality Parameters Using Near-Infrared Spectroscopy. Food Sci. Nutr. 2018, 6, 1109–1118. [Google Scholar] [CrossRef]
- Alcantara, G.; Barison, A.; Santos, M.; Santos, L.; Toledo, J.; Ferreira, A. Assessment of Genetically Modified Soybean Crops and Different Cultivars by Fourier Transform Infrared Spectroscopy and Chemometric Analysis. Orbital Electron. J. Chem. 2010, 2, 41–52. [Google Scholar]
- Sørland, G.H.; Larsen, P.M.; Lundby, F.; Rudi, A.-P.; Guiheneuf, T. Determination of Total Fat and Moisture Content in Meat Using Low Field NMR. Meat Sci. 2004, 66, 543–550. [Google Scholar] [CrossRef]
- Li, J.; Chen, M.; Cheng, D.; Li, W.; Guo, S.; Chen, C.; Liu, C.; Chen, S. An Accurate and Effective Single-Seed Moisture Selection Method Based on Nuclear Magnetic Resonance (NMR) in Maize. Comput. Electron. Agric. 2022, 193, 106649. [Google Scholar] [CrossRef]
- Castillo, M.A.; Rueda-Chacón, H.; Agudelo, J.L.; Molina, V.D. Prediction of the Stability and Compatibility of Colombian Heavy Crude Oils by 1D Low Field Nuclear Magnetic Resonance Relaxometry and Chemometric Methods. Fuel 2021, 298, 120721. [Google Scholar] [CrossRef]
- Porrelli, D.; Abrami, M.; Pelizzo, P.; Formentin, C.; Ratti, C.; Turco, G.; Grassi, M.; Canton, G.; Grassi, G.; Murena, L. Trabecular Bone Porosity and Pore Size Distribution in Osteoporotic Patients—A Low Field Nuclear Magnetic Resonance and Microcomputed Tomography Investigation. J. Mech. Behav. Biomed. Mater. 2022, 125, 104933. [Google Scholar] [CrossRef] [PubMed]
- Bertram, H.C.; Purslow, P.P.; Andersen, H.J. Relationship between Meat Structure, Water Mobility, and Distribution: A Low-Field Nuclear Magnetic Resonance Study. J. Agric. Food Chem. 2002, 50, 824–829. [Google Scholar] [CrossRef]
- Song, P.; Yue, X.; Gu, Y.; Yang, T. Assessment of Maize Seed Vigor under Saline-Alkali and Drought Stress Based on Low Field Nuclear Magnetic Resonance. Biosyst. Eng. 2022, 220, 135–145. [Google Scholar] [CrossRef]
- Jia, Z.; Liang, C. Molecular Dynamics and Chain Length of Edible Oil Using Low-Field Nuclear Magnetic Resonance. Molecules 2023, 28, 197. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, X.; Du, H.; Sang, Y.; Xiao, H.; Tian, G. Effect of boiling on water mobility, quality and structure characteristics of Mactra veneriformis during hot air drying. LWT 2023, 179, 114690. [Google Scholar] [CrossRef]
- Zhu, J.; Li, S.; Yang, L.; Zhao, Z.; Xia, J.; Zhu, Y.; Li, C. Effect of multiple freeze–thaw cycles on water migration, protein conformation and quality attributes of beef longissimus dorsi muscle by real-time low field nuclear magnetic resonance and Raman spectroscopy. Food Res. Int. 2023, 166, 112644. [Google Scholar] [CrossRef]
- Hu, F.; Zhou, C.; Li, C.; Xu, H.; Zhou, F.; Si, Z. Fluid Identification Method Based on 2D Diffusion-Relaxation Nuclear Magnetic Resonance (NMR). Pet. Explor. Dev. 2012, 39, 591–596. [Google Scholar] [CrossRef]
- Su, G.; Zhou, X.; Wang, L.; Wang, Y.; Nie, S. An Inversion Method of 2D NMR Relaxation Spectra in Low Fields Based on LSQR and L-Curve. J. Magn. Reson. 2016, 265, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.L.; Nie, S.D. A New Error-Fitting Inversion Method for 2-D NMR Spectrum. Appl. Mech. Mater. 2014, 513, 3835–3839. [Google Scholar] [CrossRef]
- Song, Y.Q.; Venkataramanan, L.; Hürlimann, M.D.; Flaum, M.; Frulla, P.; Straley, C. T1–T2 Correlation Spectra Obtained Using a Fast Two-Dimensional Laplace Inversion. J. Magn. Reson. 2002, 154, 261–268. [Google Scholar] [CrossRef]
- Allsopp, K.; Wright, I.; Lastockin, D.; Mirotchnik, K.; Kantzas, A. Determination of Oil and Water Compositions of Oil/Water Emulsions Using Low Field NMR Relaxometry. J. Can. Pet. Technol. 2001, 40, 4. [Google Scholar] [CrossRef]
- Greer, M.; Chen, C.; Mandal, S. Automated Classification of Food Products Using 2D Low-Field NMR. J. Magn. Reson. 2018, 294, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, B.; Zhang, W. Rapid and Non-Invasive Detection and Imaging of the Hydrocolloid-Injected Prawns with Low-Field NMR and MRI. Food Chem. 2018, 242, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, R.; Cheng, S.; Tan, M. Water Dynamics Changes and Protein Denaturation in Surf Clam Evaluated by Two-Dimensional LF-NMR T1-T2 Relaxation Technique during Heating Process. Food Chem. 2020, 320, 126622. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wang, Z.; Song, P.; Yue, X.; Bai, Y.; Feng, L. Evaluating the Effect of Aging Process on the Physicochemical Characteristics of Rice Seeds by Low Field Nuclear Magnetic Resonance and Its Imaging Technique. J. Cereal Sci. 2021, 99, 103190. [Google Scholar] [CrossRef]
- De Souza, R.R.; Toebe, M.; Mello, A.C.; Bittencourt, K.C. Sample Size and Shapiro-Wilk Test: An Analysis for Soybean Grain Yield. Eur. J. Agron. 2023, 142, 126666. [Google Scholar] [CrossRef]
- Carneiro, C.D.S.; Mársico, E.T.; Ribeiro, R.D.O.R.; Conte-Júnior, C.A.; Mano, S.B.; Augusto, C.J.C.; Oliveira de Jesus, E.F. Low-Field Nuclear Magnetic Resonance (LF NMR 1H) to Assess the Mobility of Water during Storage of Salted Fish (Sardinella Brasiliensis). J. Food Eng. 2016, 169, 321–325. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, R.; Wang, S.; Tan, M. Water Dynamics of Mung Bean (Vigna Radiata) Sprouts Treated with 6-Benzylaminopurine: Discrimination by Low-Field Nuclear Magnetic Resonance and Spectrometry. Int. J. Food Eng. 2018, 14, 20170364. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, Y.; Yue, X.; Xiong, P.; Pan, D.; Song, P.; Luo, B. LF-NMR/MRI Determination of Different 6-Benzylaminopurine Concentrations and Their Effects on Soybean Moisture. Front. Plant Sci. 2022, 13, 885804. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tian, Y.; Sun, B.; Wang, J.; Tong, Q.; Jin, Z. Rapid, Accurate, and Simultaneous Measurement of Water and Oil Contents in the Fried Starchy System Using Low-Field NMR. Food Chem. 2017, 233, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.; Hou, X.; Nie, S. A Rapid Screening Approach for Authentication of Olive Oil and Classification of Binary Blends of Olive Oils Using Low-Field Nuclear Magnetic Resonance Spectra and Support Vector Machine. Food Anal. Methods 2020, 13, 1894–1905. [Google Scholar] [CrossRef]
- Zheng, S.; Li, T.; Li, Y.; Shi, Q.; Wu, F. Novel 1H NMR Relaxometry Methods to Study the Proton Distribution and Water Migration Properties of Tobacco. Anal. Methods 2017, 9, 1741–1747. [Google Scholar] [CrossRef]
- 5th International Working Conference on Stored-Product Protection. Int. J. Trop. Insect Sci. 1989, 10, 563. [CrossRef]
- Ribeiro, A.S.; Gouveia, L.R.; Barros, C.J.P.; Firmino, P.R.A.; Silva, R.O. Discriminating Gamma-Irradiated Soybean Seeds by 1H NMR-Based Metabonomics. Food Control 2014, 36, 266–272. [Google Scholar] [CrossRef]
- Di Nicola, G.; Pacetti, M.; Polonara, F.; Santori, G.; Stryjek, R. Development and Optimization of a Method for Analyzing Biodiesel Mixtures with Non-Aqueous Reversed Phase Liquid Chromatography. J. Chromatogr. A 2008, 1190, 120–126. [Google Scholar] [CrossRef]
Content Type | Method | Standard Curve | R2 |
---|---|---|---|
Moisture content testing | Spectrum method | y = 1930.2x + 1.7203 | 0.999 |
Oil and water content software testing method | y = 3907.7x + 3.5069 | 0.997 | |
Oven-drying method | |||
Oil content testing | Spectrum method | y = 1241.9x + 1.7577 | 0.994 |
Oil and water content software testing method | y = 4262x − 0.9541 | 0.999 | |
Soxhlet extraction method |
Matching Variables | Matching Difference | Cohen’s d |
---|---|---|
Oven-drying method for matching spectrum moisture content | 1 ± 0.262 *** | 1.094 |
Oven-drying method for matching software moisture content | −0.349 ± −0.051 *** | 0.65 |
Soxhlet extraction method for matching spectrum oil content | −1.593 ± 0 *** | 1.854 |
Soxhlet extraction method for matching software oil content | 0.67 ± −0.086 *** | 1.151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhao, J.; Gu, Y.; Zhang, Y.; Chen, Y.; Song, P.; Yang, T. A Methodology Study on the Optimal Detection of Oil and Moisture Content in Soybeans Using LF-NMR and Its 2D T1-T2 Nuclear Magnetic Technology. Agronomy 2023, 13, 1102. https://doi.org/10.3390/agronomy13041102
Zhang Y, Zhao J, Gu Y, Zhang Y, Chen Y, Song P, Yang T. A Methodology Study on the Optimal Detection of Oil and Moisture Content in Soybeans Using LF-NMR and Its 2D T1-T2 Nuclear Magnetic Technology. Agronomy. 2023; 13(4):1102. https://doi.org/10.3390/agronomy13041102
Chicago/Turabian StyleZhang, Yu, Jianxiang Zhao, Ying Gu, Yu Zhang, Yi Chen, Ping Song, and Tao Yang. 2023. "A Methodology Study on the Optimal Detection of Oil and Moisture Content in Soybeans Using LF-NMR and Its 2D T1-T2 Nuclear Magnetic Technology" Agronomy 13, no. 4: 1102. https://doi.org/10.3390/agronomy13041102
APA StyleZhang, Y., Zhao, J., Gu, Y., Zhang, Y., Chen, Y., Song, P., & Yang, T. (2023). A Methodology Study on the Optimal Detection of Oil and Moisture Content in Soybeans Using LF-NMR and Its 2D T1-T2 Nuclear Magnetic Technology. Agronomy, 13(4), 1102. https://doi.org/10.3390/agronomy13041102